CAAM 540 - APPLIED FUNCTIONAL ANALYSIS
Problem Set 7

Posted Thursday 13 November 2008. Due Wednesday 19 November 2008.
[Late papers are due Friday 21 November]

Young, 8.1 [10 points], 8.14 [15 points], 8.16 [35 points], either (both Ex. 8.6 and 8.x) or 8.y [40 points].

8.1

8.14

8.16

Ex. 8.6

Let E be a Banach space and let A, B,C € L(F). Show that if B is compact, then so is ABC.

Show that a compact Hermitian operator is the limit with respect to the operator norm (‘uniform
limit’) of a sequence of finite rank operators.

Let H be a separable Hilbert space and let K be a compact operator on H. Let (¢;)° be a com-
plete orthonormal sequence of eigenvectors of K*K and let (A;){® be the sequence of corresponding
eigenvalues. (Explain why this sequence always exists.) Show that the formula

U(Z%’%) => xuKpj,
=1 j=1
where
N { A2 >0
Hj = J .
O lf )‘j = 0,

defines U as a bounded linear operator on H. What is ||U]|? Show further that K = U(K*K)/2.
Deduce, using Problems 8.1 and 8.14 that K is the limit with respect to the operator norm of a sequence
of finite rank operators.

Prove that the Volterra operator V on L?(0, 1) defined by

(Vz)(t) :/0 z(s)ds, 0<s<1

is a Hilbert—Schmidt operator, and thus compact.

The Volterra operator in Exercise 8.6 is non-self-adjoint.

(a) Determine the spectrum of V.

(b) What does your answer to part (a) suggest about the possibility of generalizing the Spectral
Theorem to non-self-adjoint compact operators?

[You may use the following result: any nonzero A € o(K) must be an eigenvalue for any compact

operator K, and sup |A| = lim [|A"||"/" for any bounded linear operator A.]
A€o (A) n—oo



8.y We are interested in approximating the spectrum of the Fredholm integral operator K : L%[a,b] —
L?[a,b], defined pointwise for ¢ € [a, b] by

(Ku)(t) = / k(t, s)u(s) ds.

For purposes of this problem, assume that the kernel k(¢, s) is sufficiently well-behaved so as not to
complicate the calculations that are to follow. Since K is a compact operator, all nonzero points in
its spectrum must be eigenvalues. Hence, we can approximate the spectrum by looking for nonzero
solutions to the equation

Ku = Ju. (1)

We can approximate an integral over [a,b] via a quadrature rule of the form

b n
/ fs)ds = wef(se),
@ =1

where wy,...,w, are the quadrature weights and s1,...,s, € [a,b] are the quadrature nodes.

With t,,, = s, for m = 1,...n, we can approximate the action of the Fredholm integral operator as

(Ku)(tm) ~ Z wek(tm, se)u(sg).
=1

Each value of m = 1,...,n thus provides a row in a finite-dimensional approximation of equation (1):
wik(t1,s1) ... wpk(ti,sn) Uy Uy
=2 ],
wik(tn,s1) ... wpk(tn,sn) Uy, Uy,

which we write as Ku = Au. The goal of this problem is to (computationally) study how well the n
eigenvalues of the n x n matrix K approximate (some subset of) the spectrum of K, as a function of
the kernel k and quadrature rule.

For all these examples, we shall use the n-point Gauss—Legendre quadrature rules; a MATLAB code
to produce the nodes and weights (adapted from a code in Trefethen’s Spectral Methods in MATLAB)
can be found on the class website.

(a) If [a,b] = [—m, 7] and the kernel k(t,s) has the special form k(¢,s) = k(t — s), where k is a
continuous, 27-periodic function, we saw in class (see Young, Example 7.24) the eigenvectors ¢,,
and associated eigenvalues A,, of K satisfy, for m € 7Z,

eimx " —imT imT
Om(x) = Vo Am = / k(T)e dr = (k,e"™7).

Compute the eigenvalues of the matrix K for modest values of n for the kernels

k) =1,  k(t)=e"  K(t)=sin(t).
Explain your results in terms of the exact eigenvalues for this problem.

(b) Now consider the kernel

K(t) = [sin(?)],

4
A = 1 —m?2
0 m odd.

Produce a plot (e.g., loglog in MATLAB) showing how the error in eigenvalues Ag, A2, A4, and
¢ decreases with growing value of n (say, n = 8,16,...,512).

which gives exact eigenvalues

m even;



(c)

Repeat the experiment in part (b) with the functions

24
—————— M even;
k(t) = [sin(t)]®, A= m*—10n?+9
0 m odd;
and ‘
I{(t) _ esm(t)
with

Ao = 7.9549265210128452745132196. ..
Ao = —0.8529277641641214869989135 . ..
A= 0.0171978335568658124299194 . ..
Ae = —0.0001413004273713492084865 . . ..

Speculate about the reason for the different convergence behavior you observe for the three kernels
in parts (b) and (c).

Now consider the non-self-adjoint integral operator

(K pu)(t) = ﬁ / 11 1Py () ds

on L?[—1,1], which arises in a model for light propagating in a laser cavity (see Trefethen and E.,
Spectra and Pseudospectra, §60, and references therein). The parameter F is called the Fresnel
number.

Produce plots of the spectrum of K in the complex plane for (i) F = 167 and (ii) F = 64.
In each case, select the discretization parameter n sufficiently large that the eigenvalues have
converged to plotting accuracy, i.e., they do not appear to move when you increase n.



