CAAM 540 • APPLIED FUNCTIONAL ANALYSIS

Problem Set 7

Posted Thursday 13 November 2008. Due Wednesday 19 November 2008.
[Late papers are due Friday 21 November]
Young, 8.1 [10 points], 8.14 [15 points], 8.16 [35 points], either (both Ex. 8.6 and 8.x) or $8 . y$ [40 points].
8.1 Let E be a Banach space and let $A, B, C \in \mathcal{L}(E)$. Show that if B is compact, then so is $A B C$.
8.14 Show that a compact Hermitian operator is the limit with respect to the operator norm ('uniform limit') of a sequence of finite rank operators.
8.16 Let H be a separable Hilbert space and let K be a compact operator on H. Let $\left(\varphi_{j}\right)_{1}^{\infty}$ be a complete orthonormal sequence of eigenvectors of $K^{*} K$ and let $\left(\lambda_{j}\right)_{1}^{\infty}$ be the sequence of corresponding eigenvalues. (Explain why this sequence always exists.) Show that the formula

$$
U\left(\sum_{j=1}^{\infty} x_{j} \varphi_{j}\right)=\sum_{j=1}^{\infty} x_{j} \mu_{j} K \varphi_{j}
$$

where

$$
\mu_{j}= \begin{cases}\lambda_{j}^{-1 / 2} & \text { if } \lambda_{j}>0 \\ 0 & \text { if } \lambda_{j}=0\end{cases}
$$

defines U as a bounded linear operator on H. What is $\|U\|$? Show further that $K=U\left(K^{*} K\right)^{1 / 2}$. Deduce, using Problems 8.1 and 8.14 that K is the limit with respect to the operator norm of a sequence of finite rank operators.

Ex. 8.6 Prove that the Volterra operator V on $L^{2}(0,1)$ defined by

$$
(V x)(t)=\int_{0}^{t} x(s) \mathrm{d} s, \quad 0<s<1
$$

is a Hilbert-Schmidt operator, and thus compact.
8.x The Volterra operator in Exercise 8.6 is non-self-adjoint.
(a) Determine the spectrum of V.
(b) What does your answer to part (a) suggest about the possibility of generalizing the Spectral Theorem to non-self-adjoint compact operators?
[You may use the following result: any nonzero $\lambda \in \sigma(K)$ must be an eigenvalue for any compact operator K, and $\sup _{\lambda \in \sigma(A)}|\lambda|=\lim _{n \rightarrow \infty}\left\|A^{n}\right\|^{1 / n}$ for any bounded linear operator A.]
8.y We are interested in approximating the spectrum of the Fredholm integral operator $K: L^{2}[a, b] \rightarrow$ $L^{2}[a, b]$, defined pointwise for $t \in[a, b]$ by

$$
(K u)(t)=\int_{a}^{b} k(t, s) u(s) d s
$$

For purposes of this problem, assume that the kernel $k(t, s)$ is sufficiently well-behaved so as not to complicate the calculations that are to follow. Since K is a compact operator, all nonzero points in its spectrum must be eigenvalues. Hence, we can approximate the spectrum by looking for nonzero solutions to the equation

$$
\begin{equation*}
K u=\lambda u \tag{1}
\end{equation*}
$$

We can approximate an integral over $[a, b]$ via a quadrature rule of the form

$$
\int_{a}^{b} f(s) d s \approx \sum_{\ell=1}^{n} \omega_{\ell} f\left(s_{\ell}\right)
$$

where $\omega_{1}, \ldots, \omega_{n}$ are the quadrature weights and $s_{1}, \ldots, s_{n} \in[a, b]$ are the quadrature nodes.
With $t_{m}=s_{m}$ for $m=1, \ldots n$, we can approximate the action of the Fredholm integral operator as

$$
(K u)\left(t_{m}\right) \approx \sum_{\ell=1}^{n} \omega_{\ell} k\left(t_{m}, s_{\ell}\right) u\left(s_{\ell}\right)
$$

Each value of $m=1, \ldots, n$ thus provides a row in a finite-dimensional approximation of equation (1):

$$
\left[\begin{array}{ccc}
\omega_{1} k\left(t_{1}, s_{1}\right) & \ldots & \omega_{n} k\left(t_{1}, s_{n}\right) \\
\vdots & \ddots & \vdots \\
\omega_{1} k\left(t_{n}, s_{1}\right) & \ldots & \omega_{n} k\left(t_{n}, s_{n}\right)
\end{array}\right]\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right]=\lambda\left[\begin{array}{c}
u_{1} \\
\vdots \\
u_{n}
\end{array}\right]
$$

which we write as $\mathbf{K u}=\lambda \mathbf{u}$. The goal of this problem is to (computationally) study how well the n eigenvalues of the $n \times n$ matrix \mathbf{K} approximate (some subset of) the spectrum of K, as a function of the kernel k and quadrature rule.
For all these examples, we shall use the n-point Gauss-Legendre quadrature rules; a MATLAB code to produce the nodes and weights (adapted from a code in Trefethen's Spectral Methods in MATLAB) can be found on the class website.
(a) If $[a, b]=[-\pi, \pi]$ and the kernel $k(t, s)$ has the special form $k(t, s)=\kappa(t-s)$, where κ is a continuous, 2π-periodic function, we saw in class (see Young, Example 7.24) the eigenvectors ϕ_{m} and associated eigenvalues λ_{m} of K satisfy, for $m \in \mathbb{Z}$,

$$
\phi_{m}(x)=\frac{\mathrm{e}^{i m x}}{\sqrt{2 \pi}}, \quad \lambda_{m}=\int_{-\pi}^{\pi} \kappa(\tau) \mathrm{e}^{-i m \tau} \mathrm{~d} \tau=\left(\kappa, \mathrm{e}^{i m \tau}\right)
$$

Compute the eigenvalues of the matrix \mathbf{K} for modest values of n for the kernels

$$
\kappa(t)=1, \quad \kappa(t)=\mathrm{e}^{i t}, \quad \kappa(t)=\sin (t)
$$

Explain your results in terms of the exact eigenvalues for this problem.
(b) Now consider the kernel

$$
\kappa(t)=|\sin (t)|
$$

which gives exact eigenvalues

$$
\lambda_{m}= \begin{cases}\frac{4}{1-m^{2}} & m \text { even } \\ 0 & m \text { odd }\end{cases}
$$

Produce a plot (e.g., loglog in MATLAB) showing how the error in eigenvalues $\lambda_{0}, \lambda_{2}, \lambda_{4}$, and λ_{6} decreases with growing value of n (say, $n=8,16, \ldots, 512$).
(c) Repeat the experiment in part (b) with the functions

$$
\kappa(t)=|\sin (t)|^{3}, \quad \lambda_{m}= \begin{cases}\frac{24}{m^{4}-10 n^{2}+9} & m \text { even } \\ 0 & m \text { odd }\end{cases}
$$

and

$$
\kappa(t)=\mathrm{e}^{\sin (t)}
$$

with

$$
\begin{aligned}
& \lambda_{0}=7.9549265210128452745132196 \ldots \\
& \lambda_{2}=-0.8529277641641214869989135 \ldots \\
& \lambda_{4}=0.0171978335568658124299194 \ldots \\
& \lambda_{6}=-0.0001413004273713492084865 \ldots
\end{aligned}
$$

Speculate about the reason for the different convergence behavior you observe for the three kernels in parts (b) and (c).
(d) Now consider the non-self-adjoint integral operator

$$
\left(K_{F} u\right)(t)=\sqrt{\frac{\mathrm{i} F}{\pi}} \int_{-1}^{1} \mathrm{e}^{-\mathrm{i} F(t-s)^{2}} u(s) d s
$$

on $L^{2}[-1,1]$, which arises in a model for light propagating in a laser cavity (see Trefethen and E., Spectra and Pseudospectra, $\S 60$, and references therein). The parameter F is called the Fresnel number.
Produce plots of the spectrum of K_{F} in the complex plane for (i) $F=16 \pi$ and (ii) $F=64 \pi$. In each case, select the discretization parameter n sufficiently large that the eigenvalues have converged to plotting accuracy, i.e., they do not appear to move when you increase n.

