
CAAM 540 · APPLIED FUNCTIONAL ANALYSIS

Problem Set 7

Posted Thursday 13 November 2008. Due Wednesday 19 November 2008.
[Late papers are due Friday 21 November]

Young, 8.1 [10 points], 8.14 [15 points], 8.16 [35 points], either (both Ex. 8.6 and 8.x) or 8.y [40 points].

8.1 Let E be a Banach space and let A,B,C ∈ L(E). Show that if B is compact, then so is ABC.

8.14 Show that a compact Hermitian operator is the limit with respect to the operator norm (‘uniform
limit’) of a sequence of finite rank operators.

8.16 Let H be a separable Hilbert space and let K be a compact operator on H. Let (ϕj)∞1 be a com-
plete orthonormal sequence of eigenvectors of K∗K and let (λj)∞1 be the sequence of corresponding
eigenvalues. (Explain why this sequence always exists.) Show that the formula

U

( ∞∑
j=1

xjϕj

)
=
∞∑
j=1

xjµjKϕj ,

where

µj =
{
λ
−1/2
j if λj > 0

0 if λj = 0,

defines U as a bounded linear operator on H. What is ‖U‖? Show further that K = U(K∗K)1/2.
Deduce, using Problems 8.1 and 8.14 that K is the limit with respect to the operator norm of a sequence
of finite rank operators.

Ex. 8.6 Prove that the Volterra operator V on L2(0, 1) defined by

(V x)(t) =
∫ t

0

x(s) ds, 0 < s < 1

is a Hilbert–Schmidt operator, and thus compact.

8.x The Volterra operator in Exercise 8.6 is non-self-adjoint.

(a) Determine the spectrum of V .

(b) What does your answer to part (a) suggest about the possibility of generalizing the Spectral
Theorem to non-self-adjoint compact operators?

[You may use the following result: any nonzero λ ∈ σ(K) must be an eigenvalue for any compact
operator K, and sup

λ∈σ(A)

|λ| = lim
n→∞

‖An‖1/n for any bounded linear operator A.]



8.y We are interested in approximating the spectrum of the Fredholm integral operator K : L2[a, b] →
L2[a, b], defined pointwise for t ∈ [a, b] by

(Ku)(t) =
∫ b

a

k(t, s)u(s) ds.

For purposes of this problem, assume that the kernel k(t, s) is sufficiently well-behaved so as not to
complicate the calculations that are to follow. Since K is a compact operator, all nonzero points in
its spectrum must be eigenvalues. Hence, we can approximate the spectrum by looking for nonzero
solutions to the equation

Ku = λu. (1)

We can approximate an integral over [a, b] via a quadrature rule of the form∫ b

a

f(s) ds ≈
n∑
`=1

ω`f(s`),

where ω1, . . . , ωn are the quadrature weights and s1, . . . , sn ∈ [a, b] are the quadrature nodes.

With tm = sm for m = 1, . . . n, we can approximate the action of the Fredholm integral operator as

(Ku)(tm) ≈
n∑
`=1

ω`k(tm, s`)u(s`).

Each value of m = 1, . . . , n thus provides a row in a finite-dimensional approximation of equation (1):
ω1k(t1, s1) . . . ωnk(t1, sn)

...
. . .

...
ω1k(tn, s1) . . . ωnk(tn, sn)



u1

...
un

 = λ


u1

...
un

 ,
which we write as Ku = λu. The goal of this problem is to (computationally) study how well the n
eigenvalues of the n× n matrix K approximate (some subset of) the spectrum of K, as a function of
the kernel k and quadrature rule.

For all these examples, we shall use the n-point Gauss–Legendre quadrature rules; a MATLAB code
to produce the nodes and weights (adapted from a code in Trefethen’s Spectral Methods in MATLAB)
can be found on the class website.

(a) If [a, b] = [−π, π] and the kernel k(t, s) has the special form k(t, s) = κ(t − s), where κ is a
continuous, 2π-periodic function, we saw in class (see Young, Example 7.24) the eigenvectors φm
and associated eigenvalues λm of K satisfy, for m ∈ Z,

φm(x) =
eimx√

2π
, λm =

∫ π

−π
κ(τ)e−imτ dτ = (κ, eimτ ).

Compute the eigenvalues of the matrix K for modest values of n for the kernels

κ(t) = 1, κ(t) = eit, κ(t) = sin(t).

Explain your results in terms of the exact eigenvalues for this problem.
(b) Now consider the kernel

κ(t) = |sin(t)|,
which gives exact eigenvalues

λm =


4

1−m2
m even;

0 m odd.

Produce a plot (e.g., loglog in MATLAB) showing how the error in eigenvalues λ0, λ2, λ4, and
λ6 decreases with growing value of n (say, n = 8, 16, . . . , 512).



(c) Repeat the experiment in part (b) with the functions

κ(t) = |sin(t)|3, λm =


24

m4 − 10n2 + 9
m even;

0 m odd;

and
κ(t) = esin(t)

with

λ0 = 7.9549265210128452745132196 . . .

λ2 = −0.8529277641641214869989135 . . .

λ4 = 0.0171978335568658124299194 . . .

λ6 = −0.0001413004273713492084865 . . . .

Speculate about the reason for the different convergence behavior you observe for the three kernels
in parts (b) and (c).

(d) Now consider the non-self-adjoint integral operator

(KFu)(t) =

√
iF
π

∫ 1

−1

e−iF (t−s)2u(s) ds

on L2[−1, 1], which arises in a model for light propagating in a laser cavity (see Trefethen and E.,
Spectra and Pseudospectra, §60, and references therein). The parameter F is called the Fresnel
number.
Produce plots of the spectrum of KF in the complex plane for (i) F = 16π and (ii) F = 64π.
In each case, select the discretization parameter n sufficiently large that the eigenvalues have
converged to plotting accuracy, i.e., they do not appear to move when you increase n.


