CAAM 540 • APPLIED FUNCTIONAL ANALYSIS

Problem Set 8

Posted Sunday 23 November 2008; corrected 29 November 2008. Due Monday 1 December 2008.
This problem set is optional. If completed, it will replace your lowest normal homework grade.
Complete four of the following problems, worth 25 points each.

1. Let A, B, L, and U be bounded self-adjoint operators in a Hilbert space H.
(a) Suppose that $L \leq A \leq U$. Show that $\|A\| \leq \max \{\|L\|,\|U\|\}$.
(b) Suppose that $L \leq A \leq U$ and $L \leq B \leq U$. Show that $\|A-B\| \leq\|L-U\|$.
2. Let A, B, and C be bounded self-adjoint operators in a Hilbert space H. Use the operator square root to show the following.
(a) If A and B are positive and commute, then $A B$ is positive and self-adjoint.
(b) Suppose C is a positive operator that commutes with A and B, and that $A \leq B$. Show that $A C \leq B C$.
[Hutson and Pym]
3. Let A denote a bounded linear operator on a Hilbert space H, and recall that a point $\lambda \in \sigma(A)$ is in the residual spectrum if $(\lambda-A)^{-1}$ exists but $\operatorname{Dom}(\lambda-A)^{-1}=\operatorname{Ran}(\lambda-A)$ is not dense in H. In class we proved that if A is self-adjoint, then the residual spectrum is empty. Prove that the same holds if A is normal, i.e., if $A A^{*}=A^{*} A$.
4. Let $A=\operatorname{diag}\left(a_{1}, a_{2}, \ldots\right)$ be a diagonal infinite matrix that is a bounded operator on $\ell_{2}(\mathbb{N})$, i.e., $A e_{n}=a_{n} e_{n}$, and there exists some finite M such that $\left|a_{n}\right| \leq M$ for all $n \in \mathbb{N}$.
(a) What is $\sigma(A)$? Classify all $\lambda \in \sigma(A)$ as belonging to the point spectrum $\sigma_{p}(A)$ (i.e., λ is an eigenvalue), the continuous spectrum $\sigma_{c}(A)$ (the resolvent exists and is densely defined, but is unbounded), or the residual spectrum $\sigma_{r}(A)$ (the resolvent exists but is not densely defined).
(b) Let Ω denote any compact subset of the complex plane. Describe a bounded linear operator A for which $\sigma(A)=\Omega$.
[Halmos]
5. Consider the discrete Schrödinger operator A on $\ell_{2}(\mathbb{Z})$ defined so that for $u \in \ell_{2}(\mathbb{Z})$, the nth entry of $A u$ is given by

$$
(A u)_{n}=u_{n-1}+V(n) u(n)+u_{n+1}
$$

that is, A can be regarded as a doubly-infinite matrix with ones on the super- and sub-diagonal, and values of the potential V on the main diagonal. For this problem, consider the Fibonacci potential, defined as

$$
V(n)= \begin{cases}\lambda, & \text { if }(n / \phi \bmod 1) \geq 1-1 / \phi \\ 0, & \text { otherwise }\end{cases}
$$

where $\phi=\frac{1}{2}(1+\sqrt{5})$ is the golden ratio, and λ is some constant. Sütő (1987) showed that the spectrum of this bounded, self-adjoint operator can be approximated in the following manner. Define the family of polynomials $\left\{p_{n}\right\}$ by the recurrence

$$
\begin{aligned}
p_{-1}(x) & =2 \\
p_{0}(x) & =x \\
p_{1}(x) & =x-\lambda \\
& \vdots \\
p_{n+1}(x) & =p_{n}(x) p_{n-1}(x)-p_{n-2}(x)
\end{aligned}
$$

Then $\sigma(A)$ is approximated by the sets

$$
\sigma_{n}=\left\{x \in \mathbb{R}:\left|p_{n}(x)\right| \leq 2\right\}
$$

which will consist of a series of real intervals, and the quality of the approximation improves as $n \rightarrow \infty$.
(a) Write a code (e.g., in Mathematica or MATLAB) to compute σ_{n}, and plot these sets for $\lambda=4.1$ and $n=0, \ldots, 7$.
(b) What computational challenges to you expect to emerge as n gets large?
(c) Compare your σ_{n} sets for several values of n (say, $n=4$ and $n=7$) with the spectrum you get from taking a 500×500 finite section of the operator A. (To build an $N \times N$ finite section, build an $N \times N$ matrix A_{N} whose main, super-, and sub-diagonals are drawn from those of A. One mimics the doubly infinite structure of A by making the finite section periodic: set the corner entries $A_{N}(N, 1)=A_{N}(1, N)=1$.)

