
CAAM 540 · APPLIED FUNCTIONAL ANALYSIS

Problem Set 8

Posted Sunday 23 November 2008; corrected 29 November 2008. Due Monday 1 December 2008.
This problem set is optional. If completed, it will replace your lowest normal homework grade.

Complete four of the following problems, worth 25 points each.

1. Let A, B, L, and U be bounded self-adjoint operators in a Hilbert space H.

(a) Suppose that L ≤ A ≤ U . Show that ‖A‖ ≤ max{‖L‖, ‖U‖}.
(b) Suppose that L ≤ A ≤ U and L ≤ B ≤ U . Show that ‖A−B‖ ≤ ‖L− U‖.

2. Let A, B, and C be bounded self-adjoint operators in a Hilbert space H.
Use the operator square root to show the following.

(a) If A and B are positive and commute, then AB is positive and self-adjoint.

(b) Suppose C is a positive operator that commutes with A and B, and that A ≤ B.
Show that AC ≤ BC.

[Hutson and Pym]

3. Let A denote a bounded linear operator on a Hilbert space H, and recall that a point λ ∈ σ(A) is in
the residual spectrum if (λ−A)−1 exists but Dom (λ−A)−1 = Ran (λ−A) is not dense in H. In class
we proved that if A is self-adjoint, then the residual spectrum is empty. Prove that the same holds if
A is normal, i.e., if AA∗ = A∗A.

4. Let A = diag(a1, a2, . . .) be a diagonal infinite matrix that is a bounded operator on `2(N), i.e.,
Aen = anen, and there exists some finite M such that |an| ≤M for all n ∈ N.

(a) What is σ(A)? Classify all λ ∈ σ(A) as belonging to the point spectrum σp(A) (i.e., λ is an
eigenvalue), the continuous spectrum σc(A) (the resolvent exists and is densely defined, but is
unbounded), or the residual spectrum σr(A) (the resolvent exists but is not densely defined).

(b) Let Ω denote any compact subset of the complex plane. Describe a bounded linear operator A
for which σ(A) = Ω.

[Halmos]

5. Consider the discrete Schrödinger operator A on `2(Z) defined so that for u ∈ `2(Z), the nth entry of
Au is given by

(Au)n = un−1 + V (n)u(n) + un+1,

that is, A can be regarded as a doubly-infinite matrix with ones on the super- and sub-diagonal, and
values of the potential V on the main diagonal. For this problem, consider the Fibonacci potential,
defined as

V (n) =
{
λ, if (n/φ mod 1) ≥ 1− 1/φ;
0, otherwise,



where φ = 1
2 (1+

√
5) is the golden ratio, and λ is some constant. Sütő (1987) showed that the spectrum

of this bounded, self-adjoint operator can be approximated in the following manner. Define the family
of polynomials {pn} by the recurrence

p−1(x) = 2

p0(x) = x

p1(x) = x− λ

...

pn+1(x) = pn(x)pn−1(x)− pn−2(x).

Then σ(A) is approximated by the sets

σn = {x ∈ R : |pn(x)| ≤ 2},

which will consist of a series of real intervals, and the quality of the approximation improves as n→∞.

(a) Write a code (e.g., in Mathematica or MATLAB) to compute σn, and plot these sets for λ = 4.1
and n = 0, . . . , 7.

(b) What computational challenges to you expect to emerge as n gets large?

(c) Compare your σn sets for several values of n (say, n = 4 and n = 7) with the spectrum you get
from taking a 500× 500 finite section of the operator A. (To build an N ×N finite section, build
an N × N matrix AN whose main, super-, and sub-diagonals are drawn from those of A. One
mimics the doubly infinite structure of A by making the finite section periodic: set the corner
entries AN (N, 1) = AN (1, N) = 1.)


