1. [5 points] Solve \(x_{n+1} = x_n / 10 \) subject to \(x_0 = 100 \).

2. [5 points] Solve \(x_{n+1} = x_n / 10 + 9 / 10 \) subject to \(x_0 = 100 \).

3. Consider the pair of first order equations

\[
\begin{align*}
x_{n+1} &= 2x_n - y_n \\
y_{n+1} &= -x_n + 2y_n
\end{align*}
\]

(i) [5 points] Show that \(x_n \) obeys the second order equation

\[x_{n+2} = 4x_{n+1} - 3x_n \]

(ii) [5 points] Insert the guess \(x_n = c\lambda^n \) into equation (2) and find the two roots \(\lambda_\pm \).

(iii) [5 points] The general solution is now \(x_n = c_+ \lambda_+^n + c_- \lambda_-^n \). Find \(c_\pm \) when \(x_0 = 1 \) and \(y_0 = 0 \).

(iv) [5 points] Write equation (1) as a matrix equation \(V_{n+1} = MV_n \). What is \(M \)?

(v) [5 points] Solve \(MV = \lambda V \) for the two eigenvalues, \(\lambda_\pm \), and associated eigenvectors, \(V_\pm \).

(vi) [5 points] The general solution is now \(V_n = c_+ \lambda_+^n V_+ + c_- \lambda_-^n V_- \). Find \(c_\pm \) when \(x_0 = 1 \) and \(y_0 = 0 \).

4. Suppose \(a, b \) and \(c \) are positive and consider

\[x_{n+1} = f(x_n) \quad \text{where} \quad f(x) = \frac{cx}{1 + (ax)^b} \]

(i) [5 points] Graph \(f \) and find and label its two steady states. Under what condition on \(c \) are both such states nonnegative?

(ii) [5 points] Show that the nonzero steady state is stable so long as \(b < \frac{2c}{(c - 1)} \).

(iii) [5 points] Produce a careful cobweb sketch in the case that \(b = 1 \).
5. Suppose a, b, c and d are positive and consider

\begin{align*}
x_{n+1} &= ax_n - bx_n y_n \\
y_{n+1} &= dx_n y_n - cy_n
\end{align*}

(i) [5 points] Find the two steady states. Under what condition on a are both such states nonnegative?

(ii) [5 points] Compute the matrix of partial derivatives of equation (3) and evaluate it at the nonzero steady state. Your final result should be

\[J = \begin{pmatrix} 1 & -b(1 + c)/d \\ d(a - 1)/b & 1 \end{pmatrix} \]

(iii) [5 points] Compute the eigenvalues of J and argue that at least of them lies outside the unit circle.