We will study the system

\[x' = x - x^3 - ay \]
\[y' = x - y \]

in two different regimes. In the first part we will assume \(a > 1 \) and in the second that \(0 < a < 1 \).

1. Let us assume that \(a > 1 \).
 (i) [10 points] Calculate the \(x \) and \(y \) nullclines and draw the phase plane on large, carefully drawn axes. Evaluate the nullclines at many precise values of \(x \), namely at
 \[\{-3/2, -5/4, -1, -3/4, -1/2, -1/4, 0, 1/4, 1/2, 3/4, 1, 5/4, 3/2\}, \]
 and, for the purpose of graphing, you may assume the precise value \(a = 2 \). Carefully label the axes and nullclines.
 (ii) [10 points] Calculate the direction of the flow on each nullcline on each side of every steady state assuming only that \(a > 1 \). Draw the associated arrows on the phase plane from part (i). Carefully justify every arrow.
 (iii) [10 points] Compute the Jacobian and evaluate its eigenvalues at each steady state and assess the stability of each steady state assuming only that \(a > 1 \).

2. Let us assume that \(0 < a < 1 \).
 (i) [10 points] Calculate the \(x \) and \(y \) nullclines and draw the phase plane on large, fresh, carefully drawn axes. Evaluate the nullclines at many precise values of \(x \), namely at
 \[\{-3/2, -5/4, -1, -3/4, -1/2, -1/4, 0, 1/4, 1/2, 3/4, 1, 5/4, 3/2\}, \]
 and, for the purpose of graphing, you may assume the precise value \(a = 1/2 \). Carefully label the axes and nullclines.
 (ii) [30 points] Calculate the direction of the flow on each nullcline on each side of every steady state assuming only that \(0 < a < 1 \). Draw the associated arrows on the phase plane from part (2.i). Carefully justify every arrow.
 (iii) [30 points] Compute the Jacobian and evaluate its eigenvalues at each steady state and assess the stability of each steady state assuming only that \(0 < a < 1 \).