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Poet, oracle and wit

Like unsuccessful anglers by

The ponds of apperception sit,

Baiting with the wrong request

The vectors of their interest;

At nightfall tell the angler’s lie.

With time in tempest everywhere,

To rafts of frail assumption cling

The saintly and the insincere;

Enraged phenomena bear down

In overwhelming waves to drown

Both sufferer and suffering.

The waters long to hear our question put

Which would release their longed for answer, but.

W.H. Auden

Preface

This is a text where concrete physical problems are posed and the ensuing mathematical theory
is developed, tested, applied and associated with existing theory. The problems I pose spring from
questions of equilibria, dynamics, optimization and inference of large electrical, mechanical and
chemical networks. Following Gil Strang, I demonstrate throughout that Linear Algebra is both a
tool for expressing these questions and for achieving, computing and representing their solutions.

The theory needed to resolve the questions of network equilibria, optimization and inference
is now well enshrined in the Fundamental Theorem of Linear Algebra, and it appears difficult
to improve on this approach. Regarding dynamics however there are two distinct paths to the
spectral theorem; one via zeros of the characteristic polynomial, det(zI − A), the other via poles
of the resolvent, (zI −A)−1. The first is common among introductory texts while the latter, to my
knowledge, has yet to succeed at that level – although, since the treatise of Kato, it is well known
to be considerably cleaner and more flexible. I feel strongly that students new to linear algebra can
grasp the resolvent more readily than the determinant. For, with eigenvalues defined as those z for
which (zI−A) does not have an inverse, the direct approach is to simply construct (zI−A)−1 and
observe the offending z. The construction of (zI − A)−1, say via Gauss–Jordan, is straightforward
though tedious. Once they understand the process however they may turn the tedium over to one
of a number of “symbolic algebra” routines. I make systematic use of the symbolic toolbox in
Matlab . By contrast, the indirect approach ignores the inverse and relies on the determinant
as a mere numerical test of invertibility. The approach via the resolvent comes however at the cost
of presuming familiarity with the residue theorem of complex integration. I see this rather as a
win–win situation, for the residue theorem is also key to making proper sense of the Inverse Laplace
and Fourier Transforms. Hence, our two brief chapters on complex variables pay multiple dividends.

The reader will find here an introductory course, an advanced course, an array of intermediate
courses, and a reference for self–study and/or use in advanced courses across Science, Engineering
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and Mathematics. The general audience introductory course, assuming only one year of calculus,
that I have taught to sophomores at Rice University for more than 20 years, is composed of the
following sections from the first 13 chapters:

Introductory Course

1. Orientation, §§1–3
2. Electrical Networks, §§1–2
3. Mechanical Networks, §§1–3
4. The Column and Null Spaces, §§1–3
5. The Fundamental Theorem and Beyond, §§1–3
6. Least Squares, §§1–4
7. Metabolic Networks, §§1–3
8. Dynamical Systems, §§1–4
9. Complex Numbers, Vectors and Functions, §§1–3
10. Complex Integration, §§1–3
11. The Eigenvalue Problem, §§1–2
12. The Hermitian Eigenvalue Problem, §§1–2
13. The Singular Value Decomposition, §§1–2.

This course stresses applications, methods and computation over theory and algorithms. As
the audience has been predominantly students of engineering and science I have used application
chapters to motivate theory chapters and then used this theory to both revisit old applications
and to embark on new ones. For example, the pseudo–inverse is invoked in Chapter 3 in order to
ignore the rigid body motion of a mechanical network. This provokes discussion of null and column
spaces but does not get resolved until the spectral representation and singular value decomposition
in Chapters 11–13. Similary, the resolvent and eigenvalues arise naturally in our consideration, in
Chapter 8, of dynamical systems but do not get resolved until the spectral representation is reached.
As such the material, including the exercises, in the early sections of the first 13 Chapters (with
the exclusion of Chapter 7 on Metabolic Networks) is highly integrated.

For audiences with either prior exposure to linear algebra or motivating applications one can
skim Chapter 1 and the early sections of Chapters of 2, 3 and 7 and use the time saved to delve
more deeply into the latter, more challenging, sections of Chapters 2–13 or perhaps into the more
advanced material of Chapters 14–16. These last three chapters, presuming a solid foundation
in Linear Algebra, develop the Group, Representation and Graph Theory that underly the exact
solution to three exciting problems concerning large networks. In particular: I provide a detailed
derivation of the exact formulas, due to Chung and Sternberg, for the 60 eigenvalues that govern
the electronic structure of the Buckyball, and I provide detailed proofs that concrete constructions
of Margulis achieve large girth in one case and establish a family of expander graphs in the other.

Steve Cox
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1. Orientation

You have likely encountered vectors, and perhaps matrices in your introductory calculus and/or
physics courses. My goal in this chapter is to strengthen these encounters and so prepare you for the
applications, computations and theory to come. I begin in §1.1 with a careful presentation of the
basic objects – and the laws that govern their arithmetic combinations. I then introduce Matlab

in §1.2 as a means to visually explore the sense in which matrices transform vectors. I complete our
orientation in §1.3 with an introduction to the principle methods of proof used in Linear Algebra.
Throughout the chapter I introduce and reinforce concepts through examples and stress that you
gain confidence and expertise by generating examples of your own. The exercises at the end of the
chapter should help toward that end.

1.1. Objects

A vector is a column of real numbers, and is written, e.g.,

x =




2
−4
1


 . (1.1)

The vector has 3 elements and so lies in the class of all 3–element vectors, denoted, R3, where R

stands for “real”. We denote “is a member of” by the symbol ∈. So, e.g., x ∈ R3. We denote the
first element of x by x1, its second element by x2 and so on. For example, x2 = −4 in (1.1).

We will typically use the positive integer n to denote the ambient dimension of our problem, and
so will be working in Rn. The sum of two vectors, x and y, in Rn is defined elementwise by

z = x+ y, where zj = xj + yj, j = 1, . . . , n.

The multiplication of a vector, x ∈ Rn, by a scalar s ∈ R is defined elementwise by

z = sx, where zj = sxj , j = 1, . . . , n.

For example, (
2
5

)
+

(
1
−3

)
=

(
3
2

)
and 6

(
4
2

)
=

(
24
12

)
.

The most common product of two vectors, x and y, in Rn is the inner product,

xTy ≡
(
x1 x2 · · · xn

)




y1
y2
...
yn


 = x1y1 + x2y2 + · · ·+ xnyn =

n∑

j=1

xjyj. (1.2)

As xjyj = yjxj for each j it follows that xT y = yTx. For example,

(
10 1 3

)



8
2
−4


 = 10 · 8 + 1 · 2 + 3 · (−4) = 70. (1.3)

So, the inner product of two vectors is a number. The superscript T on the x on the far left of
Eq. (1.2) stands for transpose and, when applied to a column yields a row. Columns are vertical
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and rows are horizontal and so we see, in Eq. (1.2), that xT is x laid on its side. We follow Euclid
and measure the magnitude, or more commonly the norm, of a vector by the square root of the
sum of the squares of its elements. In symbols,

‖x‖ ≡
√
xTx =

√√√√
n∑

j=1

x2j . (1.4)

For example, the norm of the vector in Eq. (1.1) is
√
21. As Eq. (1.4) is a direct generalization of

the Euclidean distance of high school planar geometry we may expect that Rn has much the same
“look.” To be precise, let us consider the situation of Figure 1.1.

0 0.5 1 1.5 2 2.5 3 3.5 4
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0.5
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y

θ

Figure 1.1. A guide to interpreting the inner product.

We have x and y in R2 and

x =

(
x1
x2

)
=

(
1
3

)
and y =

(
y1
y2

)
=

(
4
1

)

and we recognize that both x and y define right triangles with hypotenuses ‖x‖ and ‖y‖ respectively.
We have denoted by θ the angle that x makes with y. If θx and θy denotes the angles that x and y
respectively make with the positive horizontal axis then θ = θx− θy and the Pythagorean Theorem
permits us to note that

x1 = ‖x‖ cos(θx), x2 = ‖x‖ sin(θx), and y1 = ‖y‖ cos(θy), y2 = ‖y‖ sin(θy),
and these in turn permit us to express the inner product of x and y as

xTy = x1y1 + x2y2

= ‖x‖‖y‖(cos(θx) cos(θy) + sin(θx) sin(θy))

= ‖x‖‖y‖ cos(θx − θy)

= ‖x‖‖y‖ cos(θ).

(1.5)

We interpret this by saying that the inner product of two vectors is proportional to the cosine of the
angle between them. Now given two vectors in say R8 we don’t panic, rather we orient ourselves by
observing that they together lie in a particular plane and that this plane, and the angle they make
with one another is in no way different from the situation illustrated in Figure 1.1. And for this
reason we say that x and y are perpendicular, or orthogonal, to one another whenever xTy = 0.
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In addition to the geometric interpretation of the inner product it is often important to be able
to estimate it in terms of the products of the norms. Here is an argument that works for x and y
in Rn. Once we know where to start, we simply expand

‖(yTy)x− (xTy)y‖2 = ((yTy)x− (xT y)y)T ((yTy)x− (xT y)y)

= ‖y‖4‖x‖2 − 2‖y‖2(xT y)2 + (xT y)2‖y‖2

= ‖y‖2(‖x‖2‖y‖2 − (xT y)2)

(1.6)

and then note that as the initial expression is nonnegative, the final expression requires (after taking
square roots) that

|xTy| ≤ ‖x‖‖y‖. (1.7)

This is known as the Cauchy–Schwarz inequality.
As a vector is simply a column of numbers, a matrix is simply a row of columns, or a column of

rows. This necessarily requires two numbers, the row and column indices, to specify each matrix
element. For example

A =

(
a11 a12 a13
a21 a22 a23

)
=

(
5 0 1
2 3 4

)
(1.8)

is a 2-by-3 matrix. The first dimension is the number of rows and the second is the number of
columns and this ordering is also used to address individual elements. For example, the element in
row 1 column 3 is a13 = 1. We will consistently use upper–case letters to denote matrices.

The addition of two matrices (of the same size) and the multiplication of a matrix by a scalar
proceed exactly as in the vector case. In particular,

(A +B)ij = aij + bij , e.g.,

(
5 0 1
2 3 4

)
+

(
2 4 6
1 −3 4

)
=

(
7 4 7
3 0 8

)
,

and

(cA)ij = caij , e.g., 3

(
5 0 1
2 3 4

)
=

(
15 0 3
6 9 12

)
.

The product of two commensurate matrices proceeds through a long sequence of inner products.
In particular if C = AB then the ij element of C is the product of the ith row of A and the jth
column of B. Hence, for two A and B to be commensurate it follows that each row of A must have
the same number of elements as each column of B. In other words, the number of columns of A
must match the number of rows of B. Hence, if A is m-by-n and B is n-by-p then the ij element
of their product C = AB is

cij =
n∑

k=1

aikbkj = A(i, :)B(:, k), (1.9)

where A(i, :) denotes row i of A and B(:, k) denotes column k of B. For example,

(
5 0 1
2 3 4

)


2 4
6 1
−3 4


 =

(
5 · 2 + 0 · 6 + 1 · (−3) 5 · 4 + 0 · 1 + 1 · 4
2 · 2 + 3 · 6 + 4 · (−3) 2 · 4 + 3 · 1 + 4 · (−4)

)
=

(
7 24
10 −5

)
.

In this case, the product BA is not even defined. If A is m-by-n and B is n-by-m then both AB
and BA are defined, but unless m = n they are of distinct dimensions and so not comparable. If
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m = n so A and B are square then we may ask if AB = BA ? and learn that the answer is typically
no. For example,

(
5 0
2 3

)(
2 4
6 1

)
=

(
10 20
22 11

)
6=
(
2 4
6 1

)(
5 0
2 3

)
=

(
18 12
32 3

)
. (1.10)

We will often abbreviate the awkward phrase “A is m-by-n” with the declaration A ∈ Rm×n. The
matrix algebra of multiplication, though tedious, is easy enough to follow. It stemmed from a
row-centric point of view. It will help to consider the columns. If A ∈ Rm×n and the jth column of
A is A(:, j) and x ∈ Rn then we recognize the product

Ax = [A(:, 1) A(:, 2) · · · A(:, n)]




x1
x2
...
xn


 = x1A(:, 1) + x2A(:, 2) + · · ·+ xnA(:, n), (1.11)

as a weighted sum of the columns of A. For example
(
2 3
1 4

)(
2
3

)
= 2

(
2
1

)
+ 3

(
3
4

)
=

(
13
14

)
. (1.12)

We illustrate this in Figure 1.2(A) and then proceed to illustrate in the second panel the transfor-
mation by this A of a representative collection of unit vectors.
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Figure 1.2. (A) An illustration of the matrix vector multiplication conducted in Eq. (1.12).
Both A(:, 1) and A(:, 2) are plotted heavy for emphasis. We see that their multiples, by 2 and 3,
simply extend them, while their weighted sum simply completes the natural parallelogram. (B)
For a given x on the unit circle (denoted by a dot) we plot its transformation by the A matrix of
Eq. (1.12) (denoted by an asterisk). mymult.m

A common goal of matrix analysis is to describe m-by-n matrices by many fewer than mn
numbers. The simplest such descriptor is the sum of the matrice’s diagonal elements. We call this
the trace and abbreviate it by

tr(A) ≡
n∑

i=1

aii. (1.13)

Looking for matrices to trace you scan Eq. (1.10) and note that 10 + 11 = 18 + 3 and you ask,
knowing that AB 6= BA, whether

tr(AB) = tr(BA) (1.14)
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might possibly be true in general. For arbitrary A and B in Rn×n we therefore construct tr(AB)

(AB)ii =

n∑

k=1

aikbki so tr(AB) =

n∑

i=1

n∑

k=1

aikbki,

and tr(BA)

(BA)ii =
n∑

k=1

bikaki so tr(BA) =
n∑

i=1

n∑

k=1

bikaki.

These sums indeed coincide, for both are simply the sum of the product of each element of A and
the reflected (interchange i and k) element of B.

In general, if A is m-by-n then the matrix that results on exchanging its rows for its columns is
called the transpose of A, denoted AT . It follows that AT is n-by-m and

(AT )ij = aji.

For example,
(
5 0 1
2 3 4

)T
=



5 2
0 3
1 4


 .

We will have frequent need to transpose a product, so let us contrast

((AB)T )ij =

n∑

k=1

ajkbki

with

(BTAT )ij =

n∑

k=1

ajkbki (1.15)

and so conclude that
(AB)T = BTAT , (1.16)

i.e., that the transpose of a product is the product of the transposes in reverse order.
Regarding the norm of a matrix it seems natural, on recalling our definition of the norm of

a vector, to simply define it as the square root of the sum of the squares of each element. This
definition, where A ∈ Rm×n is viewed as a collection of vectors, is associated with the name Frobenius
and hence the subscript in the definition of the Frobenius norm of A,

‖A‖F ≡
(

m∑

i=1

n∑

j=1

a2ij

)1/2

. (1.17)

As scientific progress and mathematical insight most often come from seeing things from multiple
angles we pause to note Eq. (1.17) may be seen as the trace of a product. In particular, with
B = AT and j = i in the general formula Eq. (1.15) we arrive immediately at

(AAT )ii =

n∑

k=1

a2ik.
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As the sum over i is precisely the trace of AAT we have established the equivalent definition

‖A‖F = (tr(AAT ))1/2. (1.18)

For example, the Frobenius norm of the A in Eq. (1.8) is
√
55. Just as the vector norm can help us

bound (recall Eq. (1.7)) the inner product of two vectors, this matrix norm can help us bound the
product of a matrix and vector. More precisely, lets prove that

‖Ax‖ ≤ ‖A‖F‖x‖, (1.19)

for arbitrary A and x. To see this we complement Eq. (1.11) with a row representation

Ax =




A(1, :)x
A(2, :)x

...
A(m, :)x




and so
‖Ax‖ =

√
(A(1, :)x)2 + (A(2, :)x)2 + · · ·+ (A(m, :)x)2

≤
√

‖A(1, :)‖2‖x‖2 + ‖A(2, :)‖2‖x‖2 + · · ·+ ‖A(:, n)‖2‖x‖2
= ‖A‖F‖x‖,

where we have used Eq. (1.7) to conclude that each |A(j, :)x| ≤ ‖A(j, :)‖‖x‖. The simple rearrange-
ment of Eq. (1.19),

‖Ax‖
‖x‖ ≤ ‖A‖F ∀ x, (1.20)

has the nice geometric interpretation: “The matrix A can stretch no vector by more than ‖A‖F .”
We can reinforce this interpretation by returning to Figure 1.2 and noting that no vector in the
ellipse is longer than ‖A‖F =

√
30.

1.2. Computations

The objects of the previous section turn stale and are easily forgotten unless handled. We
are fortunate to work in a time in which both the tedium of their manipulation and the task of
illustrating our “findings” have been automated – leaving one’s imagination the only obstacle to
discovery.

To prepare you to “handle” your own objects we now present a brief introduction to Matlab

via experiments on the innocent looking

A =

(
1 2
0 1

)
. (1.21)

It is inert until it acts. Its action is spelled out in

Ax =

(
1 2
0 1

)(
x1
x2

)
=

(
x1 + 2x2

x2

)
(1.22)

but perhaps these symbols do not yet speak to you. To illustrate or animate this action we might
turn to devices like Figure 1.2 where we plot its deformation of the unit circle. Though this gives a
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general sense of its influence it neglects to track the transformation of individual unit vectors. We
correct for this and display our findings in Figure 1.3, by marking 12 unit vectors in black and their
12 deformations, under A, in red.
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Figure 1.3. Illustration of the action, Ax in red, specified in Eq. (1.22) for the twelve x vectors
(black). That is, A takes the black 1 to the red 1, the black 2 to the red 2 and so on. Yes, both the
black 6 and black 12 remain unmoved by A.

Now we are really on to something – for this figure suggests so many new questions! But
before getting carried away lets take a careful look at the Matlab script, Morb.m, that generated
Figure 1.3. For ease of reference we have numbered each line in our program.

1 A = [1 2; 0 1]; % the matrix

2 plot([-2 2],[0 0]) % plot the horizontal axis

3 hold on % plot future info in same figure

4 plot([0 0],[-2 2]) % plot the vertical axis

5 for j=1:12, % do what follows 12 times

6 ang = j*2*pi/12; % angle

7 x = [cos(ang); sin(ang)]; % a point on the unit circle

8 y = A*x; % transformed by A

9 text(x(1),x(2),num2str(j)) % place the counter value at x

10 s = text(y(1),y(2),num2str(j)); % place the counter value at y

11 set(s,’color’,’r’) % paint that last value red

12 end

13 hold off % let go of the picture

14 axis equal % fiddle with the axes

Our actor, A, gets line 1 billing. We specify matrices, and columns, between square brackets
and terminate each row (except the last) with a semicolon. Note that line 1 is not an equation but
rather an assignment. Matlab assigns what it finds to the right of = to the symbol it finds at the
left.

In line 2 we instruct Matlab to plot a line in the plane from (−2, 0) to (2, 0) using the default
color, blue. In line 4 we instruct Matlab to plot a blue line from (0,−2) to (0, 2).
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In line 5 we enter a loop that terminates at line 12 when the counter, j, reaches its terminal
value. The colon is a powerful synonym for ‘to,’ in the sense that we read line 5 as “for j equal 1 to
12 execute lines 6 through 11.” You see that ang will then take on multiples of π/6 and that x will
be the associated unit vector and y its transformation under A. In line 9 through 10 we take the
important step of actually marking our tracks by turning the counter value to a text string that is
then placed at (x(1),x(2)) in the default (black) color and then again at (y(1),y(2)), but this
time in red.

This script now belongs to your list of objects and as such invites experimentation. For example,
What must change to up the action from 12 to 24 players? Once you’ve learned this script we can
return to pondering Figure 1.3. Do you see that it shears the circle in the sense that it drags the
top half to the right and bottom half to the left while the equator remains unmoved? Does this
suggest that we could learn more be deforming shape other than circles? Though many shapes
come to mind we might miss something if we stick to regular objects. One of the key advantages
of computational experimentation is the ability to simultaneously observe the action upon many
random players. One difficulty with many is that it becomes more difficult to mark our tracks.
To get round this we will restrict our players to one half of the plane and paint each black while
painting red their action by A. So how should we divide the plane. The simple guess of top, x2 > 0,
and bottom, x2 < 0 does not seem to expose any new patterns and so one might instead tilt this
guess to say align with diagonals and so divide the plane into the two bow-ties

E = {x ∈ R2 : |x2| > |x1|} and F = {x ∈ R2 : |x1| > |x2|}. (1.23)

We illustrate our remarkable findings in Figure 1.4.
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Figure 1.4. (A) The deformation (red) by A of 2500 random vectors (black) from E. We surmise
that A takes E to F . (B) The deformation (red) by A of 2500 random vectors (black) from F .

The difference in clarity between between panels (A) and (B) is striking – for these are drawn
from the same matrix. Panel (A) leads immediately, via Eq. (1.22), to the conjecture: if |x2| > |x1|
then |x1 + 2x2| > |x2|. We leave its proof (and more) to Exer. 1.3 in order that we may explicate
the script that generated Figure 1.4.

A = [1 2; 0 1]; % the matrix

for n=1:2500, % do the following 2500 times

x = randn(2,1); % generate a random point

[sax,ord] = sort(abs(x),1,’ascend’); % sort their magnitudes

x = x(ord); % reorder the elements

y = A*x; % transform via A

plot(x(1),x(2),’k.’) % mark the original point black
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hold on % save this picture

plot(y(1),y(2),’r.’) % mark the transformed point red

end

plot([-3 3],[3 -3]) % plot the NW-SE diagonal

plot([-3 3],[-3 3]) % plot the SW-NE diagonal

axis equal % fiddle with axes

hold off % let go of the picture

There are two key differences with the previous script. Our x vectors are now generated (and
reordered) at random and we are plotting points rather than texting strings. The x = randn(2,1)

places two random samples of the normal (or Gaussian, or bell–curve) distribution into the 2–by–1
vector x. In order to ensure that this x lies in E we sort its absolute values via sort in an ascending
fashion. The sort function returns two objects: sax, the sorted values and ord, the order in which
they appeared. More precisely if abs(x1)<abs(x2) then ord=[1 2] and x=x(ord) changes nothing
while if instead abs(x1)>abs(x2) then ord=[2 1] and x=x(ord) corrects their order. If instead we
wish to restrict x to F , to generate panel (B), we switch ascend to descend.

Now that we understand how matrices like A = [1 2; 0 1] act on objects like circles and bowties
we may inspect their action on much more complicated objects. Matlab has a large library of
stock images that we may manipulate. We present such a before an after in Figure 1.5.

Figure 1.5. An image of a camerman, normal and sheared by the A matrix in (1.22).

The code that achieves this transformation is

P = imread(’cameraman.tif’); % read the image

[m,n] = size(P); % record its size

1 SP = 256*ones(m,2*m+n,’uint8’); % create a white canvas

for i=1:m % inspect every pixel

for j=1:n, % of the original image

2 SP(i,2*m+j-2*i) = P(i,j); % and shear it with the matrix A

end

end

imshow([P SP]) % display both images

We have numbered the “interesting lines.” Regarding line 1, Why does 256 designate white? and
Why have we added 2m columns? Regarding line 2, where exactly is A? You can discover the
answers by observing the result of small changes to these lines.
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1.3. Proofs

Regarding the proofs in the text, and more importantly in the exercises and exams, many
will be of the type that brought us Eq. (1.14) and Eq. (1.16). These are what one might call
confirmations. They require a clear head and may require a bit of rearrangement but as they
follow directly from definitions they do not require magic, clairvoyance or even ingenuity. As further
examples of confirmations let us prove (confirm) that

tr(A) = tr(AT ). (1.24)

It would be acceptable to say that “As AT is the reflection of A across its diagonal both A and
AT agree on the diagonal. As the trace of matrix is simply the sum of its diagonal terms we have
confirmed Eq. (1.24).” It would also be acceptable to proceed in symbols and say “from (AT )ii = aii
for each i it follows that

tr(AT ) =

n∑

i=1

(AT )ii =
∑

i=1

aii = tr(A).”

It would not be acceptable to confirm Eq. (1.24) on a particular numerical matrix, nor even on a
class of matrices of a particular size.

As a second example, lets confirm that

if ‖x‖ = 0 then x = 0. (1.25)

It would be acceptable to say that “As the sum of the squares of each element of x is zero then in
fact each element of x must vanish.” Or, in symbols, as

n∑

i=1

x2i = 0

we conclude that each xi = 0.
Our third example is a slight variation on the second.

if x ∈ Rn and xTy = 0 for all y ∈ Rn then x = 0. (1.26)

This says that the only vector that is orthogonal to every vector in the space is the zero vector.
The most straightforward proof is probably the one that reduces this to the previous Proposition,
Eq. (1.25). Namely, since xTy = 0 for each y we can simply use y = x and discern that xTx = 0
and conclude from Eq. (1.25) that indeed x = 0. As this section is meant to be an introduction to
proving let us apply instead a different strategy, one that replaces a proposition with its equivalent
contra–positive. More precisely, if your proposition reads “if c then d” then its contrapositive reads
“if not d then not c.” Do you see that a proposition is true if and only its contrapositive is true?
Why bother? Sometimes the contrapositive is “easier” to prove, sometimes it throws new light
on the original proposition, and it always expands our understanding of the landscape. So let us
construct the contra–positive of Eq. (1.26). As clause d is simply x = 0, not d is simply x 6= 0.
Clause c is a bit more difficult, for it includes the clause “for all,” that is often called the universal
quantifier and abbreviated by ∀. So clause c states xT y = 0 ∀ y. The negation of “some thing
happens for every y” is that “there exists a y for which that thing does not happen.” This “there
exists” is called the existential quantifier and is often abbreviated ∃. Hence, the contra–positive
of Eq. (1.26) is

if x ∈ Rn and x 6= 0 then ∃ y ∈ Rn such that xTy 6= 0. (1.27)
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It is a matter of taste, guided by experience, that causes one to favor (or not) the contra–positive
over the original. At first sight the student new to proofs and unsure of “where to start” may feel
that the two are equally opaque. Mathematics however is that field that is, on first sight, opaque to
everyone, but that on second (or third) thought begins to clarify, suggest pathways, and offer insight
and rewards. The key for the beginner is not to despair but rather to generate as many starting
paths as possible, in the hope that one of them will indeed lead to a fruitful second step, and on to
a deeper understanding of what you are attempting to prove. So, investigating the contra–positive
fits into our bigger strategy of generating multiple starting points and, even when a dead-end, is a
great piece of guilt–free procrastination.

Back to the problem at hand I’d like to point out two avenues “suggested” by Eq. (1.27). The
first is the old avenue – “take y = x” for then x 6= 0 surely implies that xTx 6= 0. The second I feel
is more concrete, more pedestrian, less clever and therefore hopefully contradicts the belief that one
either “gets the proof or not.” The concreteness I speak of is generated by the ∃ for it says we only
have to find one – and I typically find that easier to do than finding many or all. To be precise, if
x 6= 0 then a particular element xi 6= 0. From here we can custom build a y, namely choose y to
be 0 at each element except for the ith in which you set yi = 1. Now xTy = xi which, by not c, is
presumed nonzero.

As a final example lets prove that

if A ∈ Rn×n and Ax = 0 ∀ x ∈ Rn then A = 0. (1.28)

In fact, lets offer three proofs.
The first is a “row proof.” We denote row j of A by A(j, :) and notes that Ax = 0 implies that

the inner product A(j, :)x = 0 for every x. By our proof of Eq. (1.26) it follows that the jth row
vanishes, i.e., A(j, :) = 0. As this holds for each j it follows that the entire matrix is 0.

Our second is a “column proof.” We interpret Ax = 0, ∀ x, in light of Eq. (1.11), to say that
every weighted sum of the columns of A must vanish. So lets get concrete and choose an x that is
zero in every element except the jth, for which we set xj = 1. Now Eq. (1.11) and the if clause in
Eq. (1.28) reveal that A(:, j) = 0, i.e., the jth column vanishes. As j was arbitrary it follows that
every column vanishes ans so the entire matrix is zero.

Our third proof will address the contrapositive,

if A 6= 0 ∈ Rn×n then ∃ x ∈ Rn such that Ax 6= 0. (1.29)

We now move concretely and infer from A 6= 0 that for some particular i and j that aij 6= 0. We
then construct (yet again) an x of zeros except we set xj = 1. It follows (from either the row or
column interpretation of Ax) that the ith element of Ax is aij . As this is not zero we have proven
that Ax 6= 0.

We next move on to a class of propositions that involve infinity in a substantial way. If there are
in fact an infinite number of claims we may use the Principle of Mathematical Induction, if it is a
claim about equality of infinite sets then we may use the method of reciprocal inclusion, while if it
is a claim about convergence of infinite sequences of vectors we may use the ordering of the reals.

The Principle of Mathematical Induction states that the truth of the infinite sequence of
statements {P (n) : n = 1, 2, . . .} follows from establishing that
(PMI1) P (1) is true.
(PMI2) if P (n) is true then P (n+ 1) is true, for arbitrary n.

11



For example, let us prove by induction that
(
1 1
0 1

)n
=

(
1 n
0 1

)
n = 1, 2, . . . . (1.30)

We first check the base case, here Eq. (1.30) holds by inspection when n = 1. We now suppose it
holds for some n then deduce its validity for n + 1. Namely

(
1 1
0 1

)n+1

=

(
1 1
0 1

)(
1 1
0 1

)n
=

(
1 1
0 1

)(
1 n
0 1

)
=

(
1 n+ 1
0 1

)
.

Regarding infinite sets, the Principle of Mutual Inclusion states that two sets coincide if
each is a subset of the other. For example, given an x ∈ Rn lets consider the outer product matrix
xxT ∈ Rn×n and let us prove that the two sets

N1 ≡ {y : xT y = 0} and N2 ≡ {z : xxT z = 0}
coincide. If x = 0 both sides are simply Rn. So lets assume x 6= 0 and check the reciprocal
inclusions, N1 ⊂ N2 and N2 ⊂ N1. The former here looks to be the “easy” direction. For if xT y = 0
then surely xxT y = 0. Next, if xxT z = 0 then xTxxT z = 0, i.e., ‖x‖2xT z = 0 which, as x 6= 0
implies that xT z = 0.

Regarding Infinite Sequences {xn}∞n=1 ⊂ R we note that although the elements may change
erratically with n we may always extract a well ordered subsequence. For example, from the
oscillatory xn = (−1)n/n we may extract the decreasing xnk

≡ x2k = 1/(2k). More generally we
call a sequence monotone if either xn ≤ xn+1 for all n or xn ≥ xn+1 for all n. We state and prove
the general case:

Proposition 1.1. Given {xn}∞n=1 ⊂ R there exists a monotone subsequence {xnk
}∞k=1 ⊂ R.

Proof: Call xn a peak if xn > xm for all m < n. If our sequence has no peaks then it is already
monotone. If our sequence has an infinite number of peaks (as in our example above) at n1 < n2 <
· · · then xn1 ≥ xn2 ≥ · · · is a monotone subsequence. It remains to study sequences with at least
one but at most finitely many peaks. In this case, if xN is the peak with the biggest index then xn1

where n1 = N + 1 is not a peak and so ∃ and n2 > n1 such that xn2 ≥ xn1 . In the same fashion,
as n2 is not a peak ∃ and n3 > n2 such that xn3 ≥ xn2 . On repetition this procedure generates an
infinite monotone subsequence. End of Proof.

The great attraction of (bounded) monotone sequences is that they must converge to their
smallest or largest value. To make this precise we call u an upper bound for {xn} if xn ≤ u for
all n and we denote by xu the least upper bound. For example, 1 is the least upper bound of
{1− 1/n}n.

Proposition 1.2. If {xn}n is monotonically nondecreasing and xu is its least upper bound then

lim
n→∞

xn = xu.

That is, given any ε > 0 ∃ N > 0 such that |xn − xu| ≤ ε ∀ n > N . We often abbreviate this as
xn → xu.

12



Proof: Given ε > 0 if there exists an N > 0 such that xn ≤ xu − ε for n > N then xu − ε/2 is an
upper bound less than xu, contrary to its definition. End of Proof.

In a similar fashion we call ℓ a lower bound for {xn} if xn ≥ ℓ for all n and we denote by xℓ

the greatest lower bound. For example, 0 is the greatest lower bound of {1/n}n. If {xn} is
nonincreasing then xn → xℓ. Combining these last two propositions we find that every bounded
sequence of real numbers has a convergent subsequence. Our argument in fact translates nicely to
vectors.

Proposition 1.3. If {xj}j ⊂ Rn and there exists a finite M for which ‖xj‖ ≤ M for all j then
there exists a subsequence {xjk} ⊂ {xj}j and an x ∈ Rn such that xjk → x. That is given any
ε > 0 ∃ N > 0 such that ‖xjk − x‖ ≤ ε ∀ jk > N .

Proof: We note the elements of xj by xj(1) through xj(n). As {xj(1)}j is a bounded sequence in
R it has a subsequence, {xjk(1)}j, that converges to a number that we label x(1). As {xjk(2)}j
is a bounded sequence in R it has a subsequence, {xjkl(2)}l, that converges to a number that we
label x(2). Moreover, this new subsequence does not affect the convergence of the first element. In
particular, xjkl

(1) → x(1) as l → ∞. We now continue to extract a subsequence from the previous
sequence until we have exhausted all n dimensions. End of Proof.

Our first application of this is to an alternate notion of matrix norm. We observed in Eq. (1.20)
that the Frobenius norm is larger than the biggest stretch. The word “biggest” suggest that we
are looking for the least upper bound. This three word phrase is a bit awkward and so is often
rephrased as supremum which itself it abbreviated to sup. All this suggests that

‖A‖ ≡ sup
‖x‖=1

‖Ax‖ (1.31)

is worthy of study. By definition there exists a sequence {xj}j of unit vectors for which ‖Axj‖ →
‖A‖. By Prop. 1.3 there exists a convergent subsequence, xjk → x̃. It follows that ‖xjk‖ → ‖x̃‖
and so ‖x̃‖ = 1. In addition,

‖Axjk − Ax̃‖ = ‖A(xjk − x̃)‖ ≤ ‖A‖F‖xjk − x̃‖

permits us to conclude that Axjk → Ax̃ and so ‖Axjk‖ → ‖Ax̃‖ and recalling ‖Axjk‖ → ‖A‖ we
conclude that ‖Ax̃‖ = ‖A‖. The upshot is that the supremum in Eq. (1.31) is actually attained.
We distinguish this fact by writing

‖A‖ ≡ max
‖x‖=1

‖Ax‖. (1.32)

By definition we know that ‖A‖ ≤ ‖A‖F for every matrix. A simple example that shows up the
disparity involves In, the identity matrix on Rn. Please confirm that ‖In‖ = 1 while ‖In‖F =

√
n.

1.4. Notes and Exercises

For thousands more worked examples I recommend Lipschutz (1989). Higham and Higham
(2005) is an excellent guide to Matlab . For a more thorough guide to proofs please see Velleman
(2006).
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1. Consider the matrix

A =

(
0 1
−1 0

)
. (1.33)

Evaluate the product Ax for several choices of x. Sketch both x and Ax in the plane for several
carefully marked x and explain why A is called a “rotation.” Argue, on strictly geometric
grounds, why A5 = A.

2. Consider the matrix

A =

(
0 −1
−1 0

)
. (1.34)

Evaluate the product Ax for several choices of x. Sketch both x and Ax in the plane for several
carefully marked x and explain why A is called a “reflection.” Argue, on strictly geometric
grounds, why A3 = A.

3. We will consider the action of

A =

(
1 2
0 1

)
and B =

(
1 0
2 1

)
, (1.35)

on the bow-ties, E and F , of Eq. (1.23).

(a) Show that if x ∈ E then Ax ∈ F ,

(b) Show that if x ∈ F then Bx ∈ E.

(c) Prove by induction that

An =

(
1 2n
0 1

)
and Bn =

(
1 0
2n 1

)
,

for positive integer n.

(d) Use (c) to generalize (a) and (b). That is, show that if x ∈ E then Anx ∈ F while if x ∈ F
then Bnx ∈ E for all positive integer n.

4. We will make frequent use of the identity matrix, I ∈ Rn×n, comprised of zeros off the
diagonal and ones on the diagonal. In symbols, Iij = 0 if i 6= j, while Iii = 1. Prove the two
propositions, if A ∈ Rn×n then AI = IA = A. The identity also gives us a means to define
the inverse of a matrix. One (square) matrix is the inverse of another (square) matrix if their
product is the identity matrix. Please show that

A−1 =

(
1 −2
0 1

)
and B−1 =

(
1 0
−2 1

)
, (1.36)

are the inverses of the A and B matrices of Eq. (1.36).

5. Write a Matlab program to investigate the shear of the integer diamond by the A and B
matrices, Eq. (1.35), and their inverses, Eq. (1.36). More precisely, write a program that
generates Figure 1.6.
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Figure 1.6. Shearing the integral diamond. (Left) The labels are at integral points, 1 =
(−2, 0), 2 = (−1,−1), 3 = (−10), 4 = (−1, 1) and so on. (Center) Transformation by A
(black) and A−1 (red) of the points in panel (Left). (Right) Transformation by B (black) and
B−1 (red) of the points in panel (Left).

6. We can view, see Figure 1.7(A), vector sums as parallelogram generators. Please show that
the area of this parallelogram is ad− bc. Show all of your work.

(0,0)

(a,b)

(c,d)

(a+c,b+d)
(A)

−1 −0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

1.5

2

(B)

Figure 1.7. (A) The vectors (a, b) and (c, d) drawn from the origin, (0, 0), sum to the fourth
vertex of a parallelogram. (B) A black square and its deformation (red diamond) by the matrix
in (1.37)

7. Show that

A =

(
2 −1
−1 2

)
(1.37)

takes the black square to the red diamond in Figure 1.7(B). Use the previous exercise to
compute the area of the red diamond.

8. Each of the following chapters will demonstrate the fundamental role that matrices play in
modeling the world. Perhaps one of the simplest contexts is in the field of information retrieval.
Here one has m “terms” and n “documents” and builds a so–called term-by-document matrix
A where aij is the number of times that term i appears in document j. In Figure 1.8(A) below
we depict such a matrix where the documents are the 81 chapters of the Tao Te Ching and our
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10 terms are heaven, virtue, nature, life, knowledge, understand, fear, death, good, and right.
This matrix is then used to process new queries. For example, if the disciple is looking for the
chapters most expressive of virtue and good then, as these are the second and ninth of our our
terms we build the query vector

q = (0 1 0 0 0 0 0 0 1 0) (1.38)

and search for means to compare this to the columns of A. The standard approach is to exploit
the geometric interpretation (recall Eq. (1.5)) of the inner product and to so rank the chapters
by the cosine of the angle they make with the query. More precisely, for the jth document we
compute

cos(θj) =
qaj

‖q‖‖aj‖
. (1.39)

and present these scores in Figure 1.8(B). As small angles correspond to values of cosine near 1
our analysis would direct the disciple to chapter 49 of the Tao Te Ching. Typically a threshold
is chosen, e.g., 0.8, and a rank ordered list of all documents that exceed that threshold is
returned.

Please change tao.m to find the chapter most expressive of heaven, nature and knowledge.
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Figure 1.8. Query matching. (A) The 10×81 term-by-document matrix for the Tao Te Ching,
illustrated with the help of the Matlab command imagesc. (B) The cosine scores associated
with the query in Eq. (1.38) as expressed in Eq. (1.39). tao.m

9. Prove that matrix multiplication is associative, i.e., that (AB)C = A(BC).

10. Prove that if x and y lie in Rn and A ∈ Rn×n then

xTAy = yTATx.

Hint: The left side is a number. Now argue as we did in achieving Eq. (1.16).

11. Suppose that A ∈ Rn×n and xTAx = 0 ∀ x ∈ Rn. Does this imply that A = 0? If so, prove it.
If not, offer a counterexample.

12. Prove that tr(A+B) = tr(A) + tr(B).

13. Use Eq. (1.14) to prove that the fundamental commutator relation of Quantum Mechanics,

AB − BA = I,

can not hold for matrices.
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14. Construct a nonzero A ∈ R2×2 for which A2 = 0.

15. A matrix that equals its transpose is called symmetric. Suppose S = ATGA where A ∈ Rm×n

and G ∈ Rm×m. Prove that if G = GT then S = ST .

16. Establish the triangle inequality

‖x+ y‖ ≤ ‖x‖+ ‖y‖ ∀ x, y ∈ Rn. (1.40)

First draw this for two concrete planar x and y and discuss the aptness of the name. Then, for
the general case expand ‖x+ y‖2, invoke the Cauchy–Schwarz inequality, Eq. (1.7), and finish
with a square root.

17. The other natural vector product is the outer product. Note that if x ∈ Rn then the outer
product of x with itself, xxT , lies in Rn×n. Please prove that ‖xxT ‖F = ‖x‖2.

18. The outer product is also a useful ingredient in the Householder Reflection

H = I − 2xxT , (1.41)

associated with the unit vector x.

(a) How does H transform vectors that are multiples of x?

(b) How does H transform vectors that are orthogonal to x?

(c) How does H transform vectors that are neither colinear with nor orthogonal to x? Illustrate
your answers to (a-c) with a careful drawing.

(d) Confirm that HT = H and that H2 = I.

19. There is a third way of computing the product of two vectors in R3, perhaps familiar from
vector calculus. The cross product of u and v is written u × v and defined as the matrix
vector product

u× v ≡ X(u)v =




0 −u3 u2
u3 0 −u1
−u2 u1 0





v1
v2
v3


 =



−u3v2 + u2v3
u3v1 − u1v3
−u2v1 + u1v2




(a) How does X(u) transform vectors that are multiples of u?

(b) How does X(u) transform vectors that are orthogonal to u?

(c) How does X(u) transform vectors that are neither colinear with nor orthogonal to u? Illus-
trate your answers to (a-c) with a careful drawing. You may wish to use the Matlab function
cross.

(d) Confirm that X(u)T = −X(u) and that X(u)2 = uuT − ‖u‖2I.
(e) Use (d) to derive

‖u× v‖2 = ‖u‖2‖v‖2 − (uTv)2.

(f) If θ is the angle between u and v use (e) and (1.5) to show that

‖u× v‖ = ‖u‖‖v‖| sin θ|.

(g) Use (f) and Figure 1.9(A) to conclude that ‖u × v‖ is the area (base times height) of the
parallelogram with sides u and v.
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(h) Use (g) and Figure 1.9(B) to conclude that |wT (u × v)| is the volume (area of base times
height) of the parallelepiped with sides u, v and w. Hint: Let u and v define the base. Then
u× v is parallel to the height vector obtained by drawing a perpendicular from w to the base.

0
θ

u

v

u+v
(A)

u
v

w

(B)
u×v

Figure 1.9. (A) Parallelogram. (B) Parallelepiped.

20. Show that if A ∈ Rm×n and B ∈ Rn×p then ‖AB‖F ≤ ‖A‖F‖B‖F . Hint: Adapt the proof of
Eq. (1.19).

21. Via experimentation with small n arrive (show your work) at a formula for fn in


1 1 0
0 1 1
0 0 1



n

=



1 n fn
0 1 n
0 0 1




and prove, via induction, that your formula holds true for all n.

22. Suppose that {aj : j = 0,±1,±2, . . .} is a doubly infinite sequence. Prove, via induction, that

n∑

j=0

n∑

k=0

aj−k =
n∑

m=−n
(n+ 1− |m|)am. (1.42)

23. For the matrix of (1.37) compute, by hand and showing all work, that ‖A‖ = 3 and ‖A‖F =√
10. Hint: For the former, choose x = (cos(θ), sin(θ))T and show that ‖Ax‖2 = 5 −

8 cos(θ) sin(θ). Now take a derivative in order to find the θ that gives the largest ‖Ax‖.
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