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Abstract 
Ever since psychologists and neuroscientists began studying the physiological inner workings of the 

brain, they have been puzzled by many questions. How are concepts stored and recalled within our 

brains? How does learning and memory occur?  The answers to these questions are cell assemblies.  
A cell assembly is a group of neurons that are strongly connected in such manner that if a sufficient 

amount of neurons become activated, the entire cell assembly activates therefore allowing the 

process to recall a concept.  In this paper, Palm‟s Mathematical definition of a cell assembly is 

extended to fit a binary integer programming problem.  

 

 



I. Introduction 

One of the most important functions that we, as organisms, have is our ability to 

store and recall information, in other words our memory.  Memory allows us to 

learn from our mistakes, to create a recollection of our past, build an identity and to 

grow as individuals.  Since memory plays such a crucial role in our lives then it 

follows that psychologists and neuroscientist have begun studies of the inner 

workings of the brain in order to explain how memory works.   

In the mid-1900s, Donald Hebb, a Canadian psychologist, made important 

contributions regarding associate memory [1].  Associative memory is referring to a 

memory organization where the memory is accessed by its content [2].  For instance, 

it is believed that concepts are stored in “cell assemblies,” such that if a new 

stimulus appears and it is similar to previously stimulus that recalls an already 

formed cell assembly, then this new stimulus through pattern completion will 

activate the entire cell assembly thus allowing for the concept to be accessed.  

Certainly, one of D.O. Hebb‟s most important postulates refers to his Hebbian 

theory as explained in his book “The Organization of Behavior”.   

According to the Hebbian Theory or cell assembly theory, “When an axon of cell 

A is near enough to excite a cell B and repeatedly or persistently takes part in firing 

it, some growth process or metabolic change takes place in one or both cells such 

that A‟s efficiency, as one of the cells firing B, is increased” [3/pg62].  In other 

words, he believed that the strength between the synapses of the neurons could be 

changed with time.  For instance, if the pre-synaptic neuron and the post-synaptic 

neuron become active approximately around the same time then the strength of the 

synapse will increase.  Thus, from these ideas, it follows that a cell assembly is a 

group of neurons are strongly connected in such a manner that if a sufficient 

amount of neurons become activated, the entire cell assembly activates therefore 

allowing the process to recall a concept. 



Even though, D.O. Hebb was the first psychologist to introduce the term of cell 

assemblies, his work has served as a platform for neuroscientists, psychologists and 

scientists from different fields to explore his theories of associative memory.  

Consequently, Günther Palm, a German mathematician, became interested in cell 

assemblies from a mathematical perspective in his book, “Neural Assemblies: An 

Alternative Approach to Artificial Intelligence,”[4].  He was able to define cell 

assemblies using various concepts in linear algebra and discrete mathematics as it 

will be described in more detail later on.   

Cell Assemblies have proven to be an important concept to be explored in the 

path for a better understanding of the inner-workings of the brain regarding to 

associative memory.  As a result, this summer‟s goal has been to study in more 

detail what is encompass in a cell assembly, methods for finding them and further 

studies.  Even though, there are many scientists in addition to Günther Palm that 

have explored these concepts of cell assemblies, for the purpose of this summer 

research program, we have mainly focused on D.O. Hebb and Günther Palm‟s ideas 

as the basis for this research project. 

II.  Cell Assemblies:  A New Perspective 

As previously mentioned, a cell assembly entails a group of neurons that are 

strongly interconnected.  Consequently, in order to visualize the connections 

between these neurons and develop a relation to mathematics, we use different 

concepts found in linear algebra. 

A.  Constructing a Graph 

Even though a “cell assembly” refers to a collection of neurons that work 

together, it can be also refer as a finite network of interconnected nodes or a 

graph with fixed connections.  However, the mathematical definition of a “cell 

assembly” is far more complex and requires more restrictions as you will read 

later on.  However, it is essential to start by giving the proper definition of a 

graph. 



 

Definition:  Let graph 𝐺 𝑉,𝑊  be composed of a set of edges  𝑤𝑖 :  𝑖 = 1,2,… ,𝑚  

and a set of vertices 𝑣𝑖 : 𝑖 = 1,2,… ,𝑛 . 

 

In addition to defining a graph, the connection between the neurons or nodes 

needs to be specified using an adjacency matrix.  An adjacency matrix is a 

representation of a graph which shows the connections between vertices. 

 

Definition:  Let the adjacency matrix 𝐴𝑑  represent the connectivity between 

the neurons.  Therefore, if  𝐴𝑑 𝑛,𝑚 = 1 then there exists a connection 

between the neurons n and m.  Conversely, if 𝐴𝑑 𝑛,𝑚 = 0 then there is no 

connectivity between the neurons n and m. 

 

For Example: 

An example of a graph is given by Fig. 1 since it is composed of 4 vertices 

whose nodes are all interconnected.  It‟s corresponding adjacency matrix, 𝐴𝑑 , 

is showed below where each location contains a binary element explaining 

the presence or absence of a connection between the nodes or neurons. 

 

 

                                             𝐴𝑑 =   

0  1  1  1
1  0  1  1
1  1  0  1
1  1  1  0

  

 

 

 Fig. 1 is examples of an undirected graph since there are no arrows between 

the nodes specifying one directional path.  In addition, for the purpose of this 

summer‟s research project, I will be only be referring to directed graphs with 

no loops. 



B.  Threshold  

Given graph 𝐺 𝑉,𝑊 , threshold is denoted as the minimum number of inputs 

each node receives in order to become excited. 

C.  Mapping Function  

G. Palm uses a graph as a simple model to show the flow of activity in the 

brain [4]. 

Definition:  Given graph 𝐺(𝑉,𝑊) and 𝑐(𝑢, 𝑣), the weight of the edge from 

vertex u to v, the resulting flow of subset, C, is obtained by using threshold, 

k, based on the mapping function, 𝑒(𝐶,𝑘): 

e: 𝒫 𝑉 ⇾ 𝒫(𝑉) 

 𝐶,𝑘 ⇾ 𝐶′ 

𝑒 𝐶, 𝑘 =   𝑣 є 𝑉:   𝑐(𝑢, 𝑣) ≥ 𝑘

𝑢  є C

  

In other words, given graph 𝐺 𝑉,𝑊 , if a subset 𝐶 is activated, then other 

nodes in graph 𝐺 𝑉,𝑊 , will become activated as long as they overcome 

threshold k and so forth. 

For Example: 

 Fig. 2a is an example of graph 𝐺 𝑉,𝑊  where 

 𝑉 =  1,2,3,4,5 .  If subset, 𝐶 =  1,4,5  is 

activated then the mapping flow can be 

observed as follows in Fig 2b, Fig 2c and Fig. 

2d. 

 



Example of the Mapping Function: 

Fig. 2b shows the activation of subset, 

𝐶 =  1,4,5 , for the given graph 𝐺 𝑉,𝑊 . 

 

 

Given a threshold of 𝑘 = 2, subset 𝐶 activates 

node 2, since it receives 2 inputs from nodes 

1 and 4, therefore: 

𝑒1 𝐶,𝑘 =  1,2,4,5  

 

If the mapping function,𝑒 𝐶,𝑘 , applied again 

to  𝑒1 𝐶,𝑘  then node 3 becomes activated 

since it receives at least 2 inputs from nodes 

1, 2 and 4. Consequently, 

𝑒2 𝐶,𝑘 =  1,2,3,4,5  

According to G. Palm, in addition to understanding the mapping function, 

there are a few other definitions that must be understood before defining a 

cell assembly in a mathematical perspective as it will be described in the next 

section.   

D.  Invariant Sets 

A trivial definition required for describing a cell assembly is the notion of an 

invariant set. 

Definition:  A subset 𝐶 of 𝐺(𝑉,𝑊) is called invariant if 𝑒𝑛 𝐶,𝑘 = 𝑒𝑛−1(𝐶,𝑘). 

Figures 2a through 2d illustrate the activity flow of a group of activated 

neurons using the mapping function.  It should be observed that in Fig. 2d all 

the neurons become activated after applying 𝑒 𝐶,𝑘  at the second iteration.  



However, if 𝑒3 𝐶,𝑘  is applied, nodes 1 through 5 will become activated once 

again, therefore 𝑒3 𝐶,𝑘 = 𝑒2(𝐶,𝑘) which is an example of an invariant set.  

For this particular example, by activating subset 𝐶 =  1,4,5 , the entire graph 

became activated.  Nonetheless, this might not be the case for other graphs.  

E.  Closure 

Definition:  Given a subset 𝐶 of 𝐺(𝑉,𝑊), the closure of 𝐶 denoted by 𝑐𝑙 𝐶 ,   is 

the invariant set generated by 𝐶. 

For instance, the closure of 𝐶 in Fig. 2a is the entire graph, 𝑐𝑙 𝐶 =  1,2,3,4,5 . 

F.  Persistent Sets 

According to G. Palm, a persistent set can be defined using the mapping 

function as follows: 

Definition:  A subset 𝐶 of 𝐺(𝑉,𝑊) is persistent if 𝑒 𝐶 ⊇ 𝐶. 

For Example: 

In Fig. 3 subset 𝐶 =  1,2,7  is a persistent set 

of 𝐺(𝑉,𝐸) since if set 𝐶 becomes activated for 

a threshold of 𝑘 = 2 then 𝑒 𝐶 =  1,2,3,6,7  

which satisfies the following: 

𝑒 𝐶 ⊇ 𝐶 

Definition:  A subset 𝐶 of 𝐺(𝑉,𝑊) is minimal persistent if it contains no 

proper subsets that are persistent. 

For Example: 

An example of a minimal persistent set is 

observed in Fig. 4.  The subset 𝐶 =  1,2,3,5  is 

minimal persistent for threshold 𝑘 = 3 since  



every node receives 3 inputs and contains no proper subsets that are 

persistent. 

According to G. Palm in his paper, “Towards a Theory of Cell Assemblies,” he 

defines a cell assembly as the closure of a tight set.  However, the definition of a 

tight set is very complex and encompasses finding a plethora of persistent sets in 

the process.  Nonetheless, G. Palm also states that a minimal persistent set is also 

tight set therefore this paper will primarily focus on tight sets produced from 

minimal persistent sets [4].   

III. Research Goal  

As mentioned previously, a cell assembly is a group of neurons that are 

interconnected in such a manner that when a sufficiently large portion of the cell 

assembly becomes activated, the entire cell assembly activates.  G. Palm used the 

definition of a cell assembly and described it in a mathematical perspective.  

According to G. Palm, a cell assembly is the closure of a tight set.  Since G. Palm 

provided a mathematical definition of a cell assembly then theoretically it should be 

possible to find all the cell assemblies for a given network.  However, due to the 

complexity of the mathematical definition of a cell assembly and the time allowed 

for this summer research program, the search for cell assemblies was narrowed to 

studying 𝑘-assemblies.  A 𝑘-assembly can be defined using G. Palm‟s terms as the 

closure of a tight set where the tight set is produced only from minimal persistent 

sets.  Consequently, the purpose of this summer research program was to study 𝑘-

assemblies and develop algorithms for finding all the 𝑘-assemblies within a given 

network. 

IV. 𝒌-Assemblies:  Is graph theory the solution? 

Social Network Analysis (SNA) studies the interaction between individuals, 

organizations and other units.  Similarly to a cell assembly, a social network is 

represented using a graph where the nodes symbolize the individual or organization 

and the edge connecting them symbolizes the relationship among them [5].  Graph 

theorists interested in Social Network Analysis use different terms found in graph 



theory such as 𝑘-cores to describe this particular network.  Fortunately, by studying 

𝑘-cores, a connection to 𝑘-assemblies was established.   

A. An introduction to 𝒌-cores 

According to Seidman, a 𝑘-core is a subgraph with minimum degree, 𝛿 𝐺 , at 

least 𝑘 [5].  By the definition of a 𝑘-core, it is clearly observed that 𝑘-cores are 

persistent sets as defined by G. Palm which are a key element in finding cell 

assemblies.  However, in the process of finding cell assemblies, an algorithm 

for finding the largest 𝑘-core was implement as a starting point. 

 

Definition: Given 𝐺(𝑉,𝑊), 𝐶 ⊆ 𝑉 is a 𝑘-core if  𝑁 𝑣   𝐶 ≥ 𝑘  where 𝑁 𝑣  is 

the set of neighbors of a vertex 𝑣 є 𝑉 [5]. 

Definition:  𝐶 ⊆ 𝑉 is the largest 𝑘-core in 𝐺(𝑉,𝑊) if no nodes outside 

subgraph, 𝐶, are at least 𝑘. 

 

Algorithm for Finding the Largest 𝒌-cores 

A greedy algorithm can be used to find the largest 𝑘-core in a given graph in 

polynomial time as described below: 

1.  First, given a graph,𝐺(𝑉,𝑊), pick a vertex 𝑣 and determine its degree, 

𝛿 𝑣 , which is the number of inputs vertex 𝑣 receives. 

2. If 𝛿 𝑣 ≥ 𝑘 for every 𝑣 є 𝑉, then the largest 𝑘-core was found. 

3. If 𝛿 𝑣 < 𝑘, then node 𝑣 is deleted. 

Repeat the process for 𝐺 ← 𝐺 − 𝑣 until every node is checked. 

MATLAB Pseudocode 

By using the principles behind the greedy algorithm, an algorithm for finding 

the largest 𝑘-core was developed using the software called MATLAB as 

described below: 

1.  First, the adjacency matrix, 𝐴, of graph, 𝐺(𝑉,𝑊), must be constructed. 



2. A vector, bval, is created to store the indices of vertices with values 

less than 𝑘.  

bval=find(sum(A)<k & sum(A)>0); 

 

3. While loop is created to erase vertices 𝑣 found in bval whose degree is 

less than 𝑘. 

                while sum(bval)>0 

 

                      i=1; 

                      A(:,bval(i))=0; 

                      A(bval(i),:)=0; 

 

                                 bval=find(sum(A)<k & sum(A)>0); 

 

                                 i=i+1; 

 

                           end 

4. Function called largestKcore3 outputs the adjacency matrix, B, 

containing the largest 𝑘-core. 

Example of Largest 𝒌-core 

Fig. 5 shows an example of a graph 𝐺, containing 8 nodes respectively.  If the 

threshold is 𝑘 = 3, then the largest 3-core found using the MATLAB 

algorithm is observed in Fig. 6. 

   

As observed in Fig. 6, nodes 1, 5, and 7 do not become part of the largest 3-

core since they only receive 2 inputs when the required threshold is 𝑘 = 3.   



In addition, 𝑘-cores are restricted to undirected graphs as shown in the 

previous examples.  By finding the largest 𝑘-core, the search for a 𝑘-assembly 

is narrowed since it throws away “un-necessary” vertices that are not part of 

the assembly.  However, further steps must be taken in order to find 𝑘-

assemblies which the reason why minimal 𝑘-cores will be introduced next. 

 

B.  Are Minimal 𝒌-cores 𝒌-assemblies? 

As mentioned before, a 𝑘-assembly is defined as the closure of a tight set 

where the tight set is produced only from minimal persistent sets.  Since 𝑘-

cores are persistent sets then a minimal 𝑘-core is a minimal persistent set.  

Consequently, a 𝑘-assembly can be defined in terms of 𝑘-cores as described 

below: 

 

Definition:  Subset 𝐶 of 𝐺(𝑉,𝑊) is a minimal 𝑘-core if no proper subsets of 𝐶 

are 𝑘-cores. 

Definition:   The closure of a minimal 𝑘-core is a 𝑘-assembly. 

 

Examples of Minimal 𝒌-cores 

In fig. 7, lets denote a graph, 𝐺, be composed of a set of edges 𝑉 such as 

𝑉 =  1,2,3,4,5,6,7,8 , then the subgraph 𝐶 is a minimal 3-core composed of 

𝑉 ′ =  2,4,6,8 . 

In addition, subgraph C is a 𝑘-assembly 

for 𝑘 = 3.  For this particular example, 

there is only one minimal 3-core, 

however if the threshold is changed to 

𝑘 = 2 then there are 8 minimal 2-cores.  

For instance, 𝑀 =  1,2,8  is just one 

example of a minimal 2-core.   

 



As the number of nodes and connectivity of a graph increases, the number of 

minimal 2-cores can become exponential thus it becomes a complex problem 

for finding all of the minimal 2-cores.  Before explaining in more detail the 

complexity of this problem, an algorithm will be described for finding 

minimal 𝑘-cores. 

C. Minimal 𝒌-cores:  A Binary Integer Programming Problem 

The purpose of this summer research program is to find 𝑘-assemblies, 

however, the first step is to find minimal 𝑘-cores.  MATLAB has a built-in 

program called bintprog, a solver for binary integer programming problems, 

which has proven to be helpful in finding minimal 𝑘-cores. 

 

bintprog Algorithm 

The bintprog algorithm solves a series of linear programming relaxation 

problems in search for finding an optimal solution using the branch and 

bound method.  Since in the branch and bound method, a search tree is 

created, bintprog finds a feasible solution to the LP problems and updates the 

best binary integer point found so far as the search tree grows [6].    

 

bintprog Equation 

bintprog solves the object function in the following form: 

𝐦𝐢𝐧𝒇𝑻 
𝑨𝒙 ≤ 𝒃 

𝒆𝒊  ∈   𝟎,𝟏 𝒏 

 

bintprog Inputs 

bintprog minimizes the objective function 𝑥1 + 𝑥2 +  …  𝑥𝑛  according to its 

input arguments 𝑓,𝐴, 𝑏 

𝒇:  Represents the coefficients of the variables of the objective function 



For simplicity of finding 𝑘-assemblies, 𝑓 will be composed of a vector of 

weight „one.‟  In addition, the threshold inequality must be defined in order to 

find the minimal 𝑘-cores and determine the inputs 𝐴, and 𝑏. 

The threshold inequality is defined as follows: 

𝐴𝑑𝑥 ≥ 𝑘𝑥  →   0 ≥  𝑘𝐼 − 𝐴𝑑 𝑥 

This inequality specifies the connections between all the neurons as well as 

the required threshold for a neuron to become ignited or excited. 

Sine bintprog minimizes the objective function, 𝑓𝑇𝑥, constrained to 𝐴𝑥 ≤ 𝑏, an 

additional constrain must be added. Clearly, if the threshold inequality would 

be solved as stated above, the solution obtained would have resulted in the 

zero vector.  Consequently, the following constrain was added: 

𝑥1 + 𝑥2 +  …  𝑥𝑛 ≥ 1 

By simply, adjusting the inequalities to satisfy those established by bintprog, 

the input arguments 𝐴 and 𝑏 can be defined as follows: 

𝐴 =  
𝑘𝐼− 𝐴𝑑

−1−1−1…−1
                              𝑏 =

 

 
 

0
0
⋮
0
−1 

 
 

 

bintprog Example: 

Given a threshold of 𝑘 = 3, the graph 𝐺 on 

Fig. 8a has a minimal 3-core.  In order to 

find this minimal 3-core, bintprog must be 

used, thus a MATLAB function called 

“minimal_k_core” was created to facilitate 

the process of inputting bintprog arguments. 

 



By using the MATLAB function “minimal_k_core”, the adjacency matrix of 

Fig. 8a and threshold 𝑘 is only required.  Consequently, the function outputs 

a binary vector indicating the nodes that belong to the minimal 𝑘-core as 

follows: 

    𝐴𝑑 =

 

  
 

0  0  1  1  0  1
0  0  0  1  0  1
1  0  0  1  0  1
1  1  1  0  1  1
0  0  0  1  0  1
1  1  1  1  1  0 

  
 

 →  𝑏𝑖𝑛𝑡𝑝𝑟𝑜𝑔 →   𝑥 =

 

  
 

1
 0 
1
 1 
 0 
1  

  
 

 → 

    
 
 

Fig. 8b shows the minimal 3-core found by bintprog. 

V. 𝒌-Assemblies 

In this paper, a 𝑘-assembly is defined as the closure of a minimal 𝑘-core.  

Consequently, the steps to find a 𝑘-assembly are as follows: 

1.  First, given a graph 𝐺, construct it respective adjacency matrix, 𝐴𝑑 . 

2. Use the largest 𝑘-core algorithm if desired to narrow the search. 

3. Input the adjacency matrix, 𝐴𝑑 , and threshold, 𝑘, into the MATLAB function 

“minimal_k_cores,” which uses bintprog to find a minimal 𝑘-core. 

4. Find the closure of the minimal 𝑘-core, thus a 𝑘-assembly. 

Example: 

Fig.  9 shows a graph, 𝐺, with its respective adjacency matrix, 𝐴𝑑 , and resulting  

vector 𝑥 indicating which nodes form the minimal 2-core. 

 

 

 



According to Fig. 9, the minimal 2-core found contains nodes 1, 2 and 6.  However, 

in order to find the 𝑘-assembly or 2-assembly, the closure must be applied using the 

mapping function 𝑒(𝑥,𝑘) as follows: 

1.  Find 𝑒1(𝑥,𝑘): 

𝐴𝑑                    𝑥 

                                                                                       

                                                                          

                                                           

2.  Since 𝑒1 𝑥,𝑘  ≠ 𝑥, the mapping function must be applied again, therefore 

 𝑒2 𝑥,𝑘  is as follows: 

                 𝐴𝑑                  𝑥 

 

 

 

 

By generating  𝑒3 𝑥, 𝑘 , an invariant set will be generated since the entire graph is 

excited, thus the entire graph is a 𝑘-assembly for threshold of 𝑘 = 2.   For 

understanding purposes, the example above is relatively small with a threshold 

that is not realistic for a neuron, since it is believe that a neuron has a threshold of 

𝑘 = 10 approximately.  Nonetheless, we can find 𝑘-assemblies for networks of 

higher cardinality and threshold as observed in Fig. 10. 

 

 

 

 

 



Fig. 10 shows an example of a graph composed of 15 nodes where the minimal 3-

core has 4 nodes but the 𝑘-assembly has 8 nodes.  In addition, Fig 10a only shows 

an example of one minimal 3-core, however, there exits other minimal 3-cores. 

VI.   𝐤-Assemblies and Inhibition 

Gunter Palm models of cell assemblies disregard the possibility of having inhibition 

since they are formed by the excitatory long range of cortico-cortical connections [4].  

However, in order to improve the model of a cell assembly, inhibition was added to 

𝑘-assemblies.   

Fig. 11 is an example of a network that has 

inhibition showed by the colored lines.  This 

inhibitory network was modeled according to these 

guidelines: 

~Nodes adjacent to each other have a weight of 1. 

For example:  𝑐 1,2 = 1;   𝑐 2,3 = 1;   𝑐 3,4 = 1; 

                    𝑐 4,5 = 1;   𝑐 5,6 = 1;   𝑐 6,1 = 1. 

~Any other connection, with the exception of the inhibition lines (colored in green), 

has a weight of ½.  Consequently, its adjacency matrix is as follows: 

𝐴𝑑 =  

 

 
 
 

   0          1          0.5     − 0.5         0.5        1  
      1          0            1          0.5     − 0.5       0.5 

     0.5         1             0            1           0.5    − 0.5 
−0.5        0.5          1            0              1          0.5

0.5   − 0.5       0.5           1               0         1
    1         0.5   − 0.5         0.5            1          0  

 
 
 

 

By using the algorithms described previously, a 𝑘-

assembly can be found with the given adjacency 

matrix.  As observed in Fig. 12, one 𝑘-assembly 

found by bintprog is composed of nodes 1,5 and 6 

for threshold 𝑘 = 1.5.   



VII.  Discussion and Future Work 

This summer research project was concentrated on the study and understanding 

of cell assemblies.  In addition, we have established the definition of a 𝑘-assembly 

by creating a bridge between G.  Palm‟s work and graph theory.  As mentioned 

previously, a 𝑘-assembly is a group of neurons that are interconnected in such 

manner that by exciting a sufficiently large group of them, the entire network 

becomes excited, thus a concept can be recalled.  In mathematical terms, a 𝑘-

assembly is the closure of a minimal 𝑘-core.  By using bintprog, a binary integer 

programming solver built in MATLAB, minimal 𝑘-cores can be found.  Similarly, an 

algorithm was constructed to find the closure of a minimal 𝑘-core, a 𝑘-assembly.  

Since by increasing the cardinality of the network and connectivity it creates an 

exponential number of minimal 𝑘-cores, this algorithm finds at least one 𝑘-

assembly.  Finally, inhibition was added to the 𝑘-assembly model therefore a step 

closer to a more realistic and biological model of a cell assembly. 

Even though there have been a lot of accomplishments this summer, there is still 

future work ahead.  For instance, a given network of neurons most likely will 

contain many 𝑘-assemblies therefore it will be very useful to develop a method that 

will find all of them.  In addition, the algorithm for adding inhibition to the 𝑘-

assembly model could be improved.  Also, G. Palm defines a cell assembly as the 

closure of a tight set, however we have only studied and worked with 𝑘-assemblies 

composed only a fraction of G. Palm‟s definition of a cell assembly [4].  In other 

words, if all of the 𝑘-assemblies are found in a given network, this doesn‟t mean 

that we have found all the cell assemblies according to G. Palm, therefore an 

algorithm can be constructed to find these cell assemblies [4]. 
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MATLAB Code 

%function: Returns the largest k-core in the given graph 

  
%Inputs:   
%       k: The threshold/ k-value 
%       n: The number of nodes in the network 
%       d: The density or connectivity in the matrix (0-1) 

  
%output: B-the adjacency matrix for the largest k-core 

  
function B=largestKcore3(k,n,d)   

  
A=sprand(n,n,d); 
A=ceil((A+transpose(A))/2); 
A(1:n+1:end)=0; 

  
%bval vector is the nodes with less than k edges 
bval=find(sum(A)<k & sum(A)>0); 

  
%While there are values in bval keep erasing columns and rows in A 
while sum(bval)>0 

     
        i=1;   
        A(:,bval(i))=0; 
        A(bval(i),:)=0; 

         
%Creates a new bval vector        
        bval=find(sum(A)<k & sum(A)>0); 

  
        i=i+1; 

  
end 
    B=A; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



MATLAB Code 

 
%function: Returns the minimal k-core in a graph 

  
%Inputs:   
%       k: The threshold/ k-value 
%       n: The number of nodes in the network 
%       B: The adjacency matrix for the largest k-core 

  
%output: d: vector containing the minimal k-core 

  
function P=using_bintprog(k,n,B) 

  
%Inputs for bintprog: 

  
f(:,length(B))=1; 

  
Bp=B; 
b=zeros(size(B,1),1); 
b(length(b)+1,1)=1; 

  
%Bintprog adjacency matrix for our purposes requires the diagonal 
%to contain -k values. 

  
for i=1:size(Bp,1) 
    Bp(i,i)=-k; 
end 

  
Bp(size(Bp,1)+1,:)=1; 

  
%bintprog built-in program is applied 
d=bintprog(f,-Bp,-b) 

  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Plots the minimal k-core 

  
A=B; 

  
n1=size(A); 
t1 = 2*pi/n1(1):2*pi/n1(1):2*pi; 
x1 = cos(t1); 
y1 = sin(t1); 

  
for m=1:floor(n/2) 
    text(x1(m)-.03, y1(m)+.06,num2str(m)) 
end 

  
for z=floor(n/2)+1:n 
    text(x1(z), y1(z)-.06,num2str(z)) 
end 

  
%Outputs Figure 1 containing the Original Graph 

  



figure(1) 

  
title('Original Graph') 
hold on 

  
for i=1:size(A) 

  
    for j=1:size(A) 

  
        if A(i,j) > 0 
            plot([x1(i) x1(j)],[y1(i) y1(j)],'k-','LineWidth',5) 
        end 
    end 
end 

  
axis off 

  

 

 

 


