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This project compared several decoders in how they extract information from neural 

populations in the Macaque visual cortex. Our goals were to better understand 

neural variability and information contained in neural population activity about 

visual stimuli. The project was done in the lab of  Dr. Wei Ji Ma at Baylor College of 

Medicine, as part of the Rice/TMC/UH Computational Neuroscience REU, 

supported by grant DMS-0755294. 

 

 

Introduction 

In order to function in the world around us, our brain makes use of sensory 

information from its environment to produce corresponding behavioral responses. 

To do this, it creates and modifies representations of stimuli in the environment. 

The sensory information is encoded (or represented) by populations of neurons in 

the brain. For different stimuli, different neurons respond and create a population 

response which represents that stimulus. Additionally, the same stimulus produces 

different population responses on different trials, due to neural variability. In this 
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project we compare different procedures for extracting information from neural 

representations of stimuli, or population responses. Specifically, using neural 

population activity in Macaque V1 neurons, we ask how much information it 

contains about visual stimuli. 

 

Physiological Data 

The physiological data that we used was collected by the Tolias lab at Baylor 

College of Medicine. This neural population response data was in the form of spike 

counts per second, recorded using multi-electrode (tetrode) recordings in the V1 

region (visual cortex) of Macaque monkeys. The stimuli that the monkeys viewed 

were orientation gratings, in both low and high contrast. Orientations presented 

were 0, 22.5, 45, 67.5, 90, 112.5, 135, 157.5 degrees. The spike counts were recorded 

on four different days, with 82 neurons in total. For each orientation grating, 

neurons were recorded on many trials, varying from 10-40 depending on day.  

 

Population Coding 

Population coding is a way of representing information about a stimulus 

through the simultaneous activity of a large set of neurons sensitive to this feature 

(a population). Information about the stimulus is first encoded by a population of 
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neurons, as the population response is different for different stimuli. Figure 1 

displays the response of different neurons (in varying colors) to different 

orientations (stimuli).  This response is shown as mean response, or tuning curves, 

denoted by fi(s), where i is a neuron and s is the stimulus shown. The mode of each 

neuron’s tuning curve is called its preferred orientation, as it is the orientation 

where the neuron will most likely fire the most.  However, due to neural variability, 

the tuning curves shown are not a perfect representation of what occurs on 

individual trials. An example of variable single trial activity can be seen in figure 2.  
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Figure 1: Idealized Gaussian tuning curves for different orientations. Each color represents a different neuron. 

 

       Neural activity is variable from trial to trial, so we can look at a conditional 

probability distribution: the probability of a population response given a specific 

stimulus. This probability is given by p(r|s), called the response distribution.  
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The second process involved in 

population coding is called decoding. A 

decoder is a procedure for estimating the 

stimulus from the population pattern of 

activity on a single trial. The estimated 

stimulus can then be compared to the 

true stimulus on that trial.  

Figure 2: Colors correspond to neuron colors from figure 1. Grating shows the orientation for the trial shown. 

This project's goal was to compare the performance of several decoders, both 

simple and machine learning, to see how much information they can extract from 

neural populations. This can broadly simulate how the brain decodes neural 

information, but understanding what decoders work optimally on population 

responses will mainly be useful from an experimenter's viewpoint. 

Studies in population coding also have potential applications in neural 

prosthetics. That is, as we begin to understand how to extract information from 

population responses, we can create artificial help for those whose brains cannot do 

so (both sensory and motor). 

 

 

 



  5 

Decoders 

In order to understand what information we could extract from neural 

population coding, we compared the goodness of several decoders in estimating the 

stimulus presented on each trial. We implemented each decoder in MATLAB, and 

compared the estimated stimuli to the true presented stimuli. In this way we were 

able to quantify the performance of each decoder.  

 

Winner-take-all 

The estimated stimulus chosen is  the preferred 

stimulus of the neuron with the highest response: 

 

The winner-take-all decoder estimates the presented 

stimulus by simply picking the neuron with the highest response. This decoder 

requires knowledge of preferred orientations of neurons (see figure 3). However, 

because of the immense neural variability and noise that occurs naturally in the 

brain, and because this decoder only utilizes information from one – the highest – 

neuron (as opposed to from the whole population) we expected this decoder to do 

very poorly.  
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Population Vector 

The estimated stimulus is chosen by weighing each 

neuron's preferred stimulus proportionally to its response:  

 

By calculating a vector sum of the responses across all neurons – where the angle is 

the preferred orientation of the neuron and the vector length is its spike count 

response – each neuron votes for itself by how strongly it responds. This is a better 

decoder than winner-take-all, but it does not take into account any form of neural 

variability.  

Template-matching 

  This decoder match the observed population response with a set of tuning 

curve templates (mean population responses for different 

stimuli), using the sum-squared difference as error measure:  

 

While this decoder also does not take into account a form 

of neural variability, it does use information from the tuning curves of the neurons 

(more information than in ‘winner-take-all’, because it is the entire mean response 

and not just preferred orientation).  
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Maximum-likelihood 

     This decoder computes the probability that a stimulus value produced the given  

response, and select the stimulus value for which the probability is highest: 

 

This decoder takes neural variability into account. One assumption 

commonly made in past studies is that neural variability is independent between 

neurons and Poisson-distributed for each neuron, so the response distribution is the 

product of Poisson-distributed neurons: 

 

However, the assumption of independence may be a faulty one because 

neurons, especially within populations of neurons, are highly interconnected, and 

thus cause each other to fire. This assumption will be addressed in the variational 

technique discussed later in this report.  

Many of the decoders discussed above require knowledge of mean response 

and preferred orientation. The data only contained discrete firing information at 

eight different orientations, so Von Mises (circular Gaussians) were fit using  (see 

figure 3) 

The Rayleigh’s test for circular uniformity was also used on the data, 

producing a p value for each neuron which indicated how significantly peaked its 

mean response was.  
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For the decoders that required not just preferred orientation, but the entire 

tuning curve information (Template Matching and Maximum Likelihood), two 

techniques were used: 

 (1) using fitted Von Mises (circular Gaussian) tuning curves  

 (2) using linear interpolation of mean activity  

 

Figure 3: An example neuron's fitted Von Mises tuning curve and preferred orientation. 

 

 

 

 

 

 

cos(2( ))
( ) is s

if s ae b
! "

= +



  9 

Support Vector Machines 

     This decoder is a machine learning 

algorithm which classifies data points by 

separating them with a hyperplane  

which has a maximized margin from the 

data.  

Figure 4: An illustration of how SVM works for a two 
dimensional (only two neuron) space and two 

orientations. 

As SVM is a classifying algorithm, on its most simple level it classifies data into 

two classes. There are two ways to implement multi-class classification in SVM: 

(1) One vs. Rest: separates one orientation from all the rest, and the classifier 

with the highest output function assigns the class. 

(2) One vs. One: separates one orientation from one other orientation (pairwise), 

then classifies points to whichever class has the most “votes” for that point. 

Support Vector Machines use kernel functions to fit the maximum-margin 

hyperplane in a high dimensional feature space. In our case, the transformation is 

non-linear: using a radial basis function. In order to learn the data well, we fit two 

hyperparameters that minimized error for the first day’s data.  The first was σ, 

which fit the kernel function (radial basis function) well to the data. Second was C, 

a soft margin parameter which allowed for mislabeling of some data points. 
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Variational Bayesian Logistic Regression 

As discussed above, one goal of this project was to address the assumption of 

independence between neurons. To do so, we generalized our assumption of neural 

variability to the Poisson-like family of distributions, which does not assume 

independence. The response distribution is given below: 
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In order to estimate the presented stimulus based on the population response 

data, an algorithm, Variational Bayesian Logistic Regression. (Drugowitsch 2008) 

was used.  The algorithm uses logistic regression and variational methods to find 

h(s). Between two classes (orientations), we need to find h(s1)-h(s2), or Δh. 

To choose a stimulus, we must look at the probability of a specific stimulus 

given the population response. We can manipulate this probability in the following 

way:    
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This sigmoid model is then approximated by maximizing a lower bound, and 

its posterior is approximated by a variational posterior. By using these variational 

methods, we can find probabilities for classifying the data in each class, which is 

how the estimates of the stimuli are found.  
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How do we determine goodness? 

To compare the different decoders, we used three methods of determining goodness: 

(1) Low bias:  The average estimate should equal the true orientation 

(2) Low variance: The estimates should all be close to each other 

(3) Combined error: Incorporates bias and variance (figure 5) 

 

Figure 5: Bias in green, variance in blue, combined error in red. 
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Results 

Results of the decoder comparison were found by calculating the errors of 

each decoder. Figure 6 displays a histogram for each decoder, per contrast, of the 

distance (in degrees) between the predicted orientation and true presented 

orientation. The number given in the top right of each histogram is the error 

measure, described above. The higher the error measure, the worse the performance 

of the decoder in extracting information from the population activity. Error itself is 

displayed in figure 7. 

 

Figure 6: Histograms of distance from true stimulus for each decoder. ML1 and TM1 use Von Mises curves, ML2 

and TM2 use linear interpolation. 
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Variance and Bias are shown in figure … Variance decreases by decoder from 

winner-take-all to maximum likelihood. Bias is generally very low, and is found to 

be either negative or positive. 

 

Figure 7: Combined error, variance, and bias. Decoders are numbered in the same order as figure 6. 

 

 In the implementation of the Variational Bayesian Logistic Regression in 

order to incorporate the Poisson-like variability, we had an overfitting problem due 

to the lack of hyperparameters. Because there was nothing in the algorithm that we 

could train on one part of the data and use in the rest of the data, the method 

overfitted the data, and thus the error measure was very low.  

 

Figure 8: Histogram of distances from true orientation, variational method. Error measure in corner. Low 

contrast is left, and high contrast is right. 
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 The SVM algorithm had similar overfitting problems, more due to basic 

implementation rather than theoretical hyperparameter problems. Histograms for 

one day’s worth of data are displayed below. As can be seen, specifically to high 

contrast orientations, the variance was very narrow and thus SVM seems to be very 

overfitted.  

 

Figure 9: Histogram of distances from true orientation, SVM decoder. 

 

 

 

 



  15 

Conclusions 

Among the simple decoders, winner-take-all was worst, and maximum-

likelihood was best, as expected. Additionally the high contrast data encode more 

information, as expected. Preliminary results for SVM and VBLR suggest that these 

decoders might do better than the simple decoders, however we have an overfitting 

problem. 

 While a lot was confirmed about the information encoded in population 

activity, future goals of this project are still numerous. Firstly, we wish to work out 

problems in the implementation of SVM, so that it can also be compared. Secondly, 

we want to find hyperparameters or a way to fix the overfitting problem in the 

variational method, in order to have a concrete comparison with the remaining 

decoders, and obtain a conclusion about the assumption of independence in neural 

variability. 
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Appendix A: selected MATLAB code 
 
Low level decoders: 
 
clear all; 
load gratingDat; 
load variables; 
  
degrees = [dat(1).conditions.orientation];  % real orientations 
m = 6; % number of decoders tested 
error = zeros(819,6,2); 
orientationvec = [degrees(1:2:16) * pi/180]; %list of orientations (because 
contrast alternates) 
testorientationvec = 0:0.005:pi; % hypothesized orientations 
for neuron = 1:length(s_i) 
    f1(neuron,:) = a(neuron) .*exp(k(neuron).*cos(2*(testorientationvec-
s_i(neuron)))+ b(neuron)); % Estimated Von Mises tuning curves of all neurons 
    f2(neuron,:) = f1(neuron,:);%interp1([orientationvec pi], 
[mean_spike_count(neuron,:) mean_spike_count(neuron, 1)], 
testorientationvec); % Interpolated tuning curves of all neurons 
end 
  
  
  
contrastvec = [1 2]; 
for contrastind = 1:length(contrastvec) 
    conditionvec = contrastvec(contrastind):2:16;  
     
  
    total_num_trials = 0; 
    total_num_neurons = 0;  
    for day = 1:4 
        for conditionind = 1:length(conditionvec) 
            condition = conditionvec(conditionind); 
  
            [num_trials num_neurons] = size(dat(day).spikeCounts{condition}); 
% number of trials and number of neurons 
            neuronindices = total_num_neurons + (1:num_neurons); 
            trialindices = total_num_trials + (1:num_trials); 
  
            decoders(trialindices,1, contrastind) = 
orientationvec(conditionind) * ones(1,num_trials); % real orientations 
            spike_count_matrix = dat(day).spikeCounts{condition}; % spike 
counts for all neurons for all trials (that day, that condition) 
             
            % Winner-take-all decoder 
            [value index] = max(spike_count_matrix,[],2); % index is between 
1 and numneurons(day) 
            wta_s_hat = s_i(total_num_neurons + index); 
  
            % Population vector decoder 
            preferred_angles = repmat(2*s_i(neuronindices)', num_trials,1); % 
preferred orientations, rescaled and copied across all trials 
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            pv_x_component = sum(spike_count_matrix .* 
cos(preferred_angles),2)./sum(spike_count_matrix,2); 
            pv_y_component = sum(spike_count_matrix .* 
sin(preferred_angles),2)./sum(spike_count_matrix,2); 
            pv_s_hat = atan(pv_y_component./pv_x_component);          
            pv_s_hat = pv_s_hat + pi * (pv_x_component < 0);  
            pv_s_hat = mod(pv_s_hat/2, pi); 
  
            % Template matching decoder 
            TMsum = spike_count_matrix * f1(neuronindices,:); 
            value = max(TMsum,[],2); 
            for i = 1:num_trials 
                indices = find(TMsum(i,:)==value(i)); 
                index(i) = indices(ceil(rand * length(indices))); 
            end 
            tm1_s_hat = testorientationvec(index)'; 
  
            TMsum = spike_count_matrix * f2(neuronindices,:); 
            value = max(TMsum,[],2); 
            for i = 1:num_trials 
                indices = find(TMsum(i,:)==value(i)); 
                index(i) = indices(ceil(rand * length(indices))); 
            end 
            tm2_s_hat = testorientationvec(index)';          
  
  
             
            % Maximum-likelihood decoder 
  
            MLsum = spike_count_matrix * log(f1(neuronindices,:)); 
            value = max(MLsum,[],2); 
            for i = 1:num_trials 
                indices = find(MLsum(i,:)==value(i)); 
                index(i) = indices(ceil(rand * length(indices))); 
            end 
            ml1_s_hat = testorientationvec(index)'; 
  
            MLsum = spike_count_matrix * log(f2(neuronindices,:)); 
            value = max(MLsum,[],2); 
            for i = 1:num_trials 
                indices = find(MLsum(i,:)==value(i)); 
                index(i) = indices(ceil(rand * length(indices))); 
            end 
            ml2_s_hat = testorientationvec(index)';     
  
             
            decoders(trialindices, 2:m+1, contrastind) = [wta_s_hat pv_s_hat 
tm1_s_hat ml1_s_hat tm2_s_hat ml2_s_hat]; 
            total_num_trials = total_num_trials + num_trials; 
        end 
        total_num_neurons = total_num_neurons + num_neurons; 
    end 
  
    error(:,:,contrastind) = decoders(:,2:m+1, contrastind)- 
repmat(decoders(:,1, contrastind),1,m); 
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    error = error + pi*(error<-pi/2-pi/48) - pi*(error>=pi/2-pi/48); 
  
    x = mean(cos(2*error(:,:,contrastind)),1); 
    y = mean(sin(2*error(:,:,contrastind)),1); 
    bias(:,contrastind) = atan(y./x); 
     
    error_vector_length_decoders(contrastind,:) = sqrt((1-x).^2 + y.^2) 
end 
     
%% Plots 
figure; 
decodernames = {'WTA', 'PV', 'TM', 'ML', 'TM2', 'ML2'}; 
contrastnames = {'low contrast', 'high contrast'}; 
for contrastind = 1:length(contrastvec) 
    for i = 1:m 
        subplot(m,2,2*(i-1) + contrastind); 
          hist(error(:,i, contrastind),-pi/2:pi/24:pi/2) 
        if contrastind == 1 
            ylabel(decodernames(i)); 
        end 
        if i==1 
            title(contrastnames(contrastvec(contrastind))); 
        end 
        text(1,80,num2str(error_vector_length_decoders(contrastind,i))); 
        ylim([0 100]) 
    end 
end 
figure; bar(1:4, error_vector_length'); 
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SVM: 

%% create X and Y (data) 
clear all; 
tic 
kappa = 1; 
c = 0; 
num_trials = 100; 
contrast_matrix = [.1 .2]; 
presentedorivec = (10:10:180) * pi/180; % presented orientations, only used 
in machine learning methods 
preforivec = (10:10:180) * pi/180; % preferred orientations of neurons 
N = length(preforivec); 
  
  
[pres pref] = meshgrid(presentedorivec, preforivec); 
f_matrixbase_presented = exp(kappa*cos(2*(pres - pref))) + c; %neuron by 
condition 
  
for contrastind = 1:2 
    contrast = contrast_matrix(contrastind); 
    f_matrix_presented = contrast * f_matrixbase_presented; 
    r_train = poissrnd(repmat(f_matrix_presented, [1,1,num_trials])); %neuron 
by condition by trial 
    spike_counts(:,:,contrastind) = reshape(r_train, N, N*num_trials)'; 
%trial*condition by neuron 
end  
  
  
cd spiderMain 
load gratingDat; 
use_spider; 
load variables; 
day = 1; 
  
X_low  = [dat(day).spikeCounts{1}; 
    dat(day).spikeCounts{3}; 
    dat(day).spikeCounts{5}; 
    dat(day).spikeCounts{7}; 
    dat(day).spikeCounts{9}; 
    dat(day).spikeCounts{11}; 
    dat(day).spikeCounts{13}; 
    dat(day).spikeCounts{15}]; 
  
  
X_high  = [dat(day).spikeCounts{2}; 
    dat(day).spikeCounts{4}; 
    dat(day).spikeCounts{6}; 
    dat(day).spikeCounts{8}; 
    dat(day).spikeCounts{10}; 
    dat(day).spikeCounts{12}; 
    dat(day).spikeCounts{14}; 
    dat(day).spikeCounts{16}]; 
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X_fake_low = spike_counts(:,:,1); 
  
X_fake_high = spike_counts(:,:,2); 
           
  
Y_low = [ones(size(dat(day).spikeCounts{1},1),1), -
ones(size(dat(day).spikeCounts{1},1),7); 
-ones(size(dat(day).spikeCounts{3},1),1), 
ones(size(dat(day).spikeCounts{3},1),1), -
ones(size(dat(day).spikeCounts{3},1),6); 
-ones(size(dat(day).spikeCounts{5},1),2), 
ones(size(dat(day).spikeCounts{5},1),1), -
ones(size(dat(day).spikeCounts{5},1),5); 
-ones(size(dat(day).spikeCounts{7},1),3), 
ones(size(dat(day).spikeCounts{7},1),1), -
ones(size(dat(day).spikeCounts{7},1),4); 
-ones(size(dat(day).spikeCounts{9},1),4), 
ones(size(dat(day).spikeCounts{9},1),1), -
ones(size(dat(day).spikeCounts{9},1),3); 
-ones(size(dat(day).spikeCounts{11},1),5), 
ones(size(dat(day).spikeCounts{11},1),1), -
ones(size(dat(day).spikeCounts{11},1),2); 
-ones(size(dat(day).spikeCounts{13},1),6), 
ones(size(dat(day).spikeCounts{13},1),1), -
ones(size(dat(day).spikeCounts{13},1),1); 
-ones(size(dat(day).spikeCounts{15},1),7), 
ones(size(dat(day).spikeCounts{15},1),1)]; 
  
Y_high = [ones(size(dat(day).spikeCounts{2},1),1), -
ones(size(dat(day).spikeCounts{2},1),7); 
-ones(size(dat(day).spikeCounts{4},1),1), 
ones(size(dat(day).spikeCounts{4},1),1), -
ones(size(dat(day).spikeCounts{4},1),6); 
-ones(size(dat(day).spikeCounts{6},1),2), 
ones(size(dat(day).spikeCounts{6},1),1), -
ones(size(dat(day).spikeCounts{6},1),5); 
-ones(size(dat(day).spikeCounts{8},1),3), 
ones(size(dat(day).spikeCounts{8},1),1), -
ones(size(dat(day).spikeCounts{8},1),4); 
-ones(size(dat(day).spikeCounts{10},1),4), 
ones(size(dat(day).spikeCounts{10},1),1), -
ones(size(dat(day).spikeCounts{10},1),3); 
-ones(size(dat(day).spikeCounts{12},1),5), 
ones(size(dat(day).spikeCounts{12},1),1), -
ones(size(dat(day).spikeCounts{12},1),2); 
-ones(size(dat(day).spikeCounts{14},1),6), 
ones(size(dat(day).spikeCounts{14},1),1), -
ones(size(dat(day).spikeCounts{14},1),1); 
-ones(size(dat(day).spikeCounts{16},1),7), 
ones(size(dat(day).spikeCounts{16},1),1)]; 
  
Y_fake_low = -ones(1800,18); 
Y_fake_high = -ones(1800,18); 



  21 

for i = 1:18 
    Y_fake_low((i-1)*100+1:i*100, i) = 1; 
    Y_fake_high((i-1)*100+1:i*100, i) = 1; 
end 
  
    
d1 = data(X_low, Y_low) 
d2 = data(X_high, Y_high); 
   
  
cd .. 
  
[C1 rbf1 error1 errorlength1 tr_1] = svmdecodertry(d1,1); 
errormatrixlow(:,1,1) = error1; 
[C2 rbf2 error2 errorlength2 tr_2] = svmdecodertry(d1,2); 
errormatrixlow(:,1,2) = error2; 
[C3 rbf3 error3 errorlength3 tr_3] = svmdecodertry(d2,1); 
errormatrixhigh(:,1,1) = error3; 
[C4 rbf4 error4 errorlength4 tr_4] = svmdecodertry(d2,2); 
errormatrixhigh(:,1,2) = error4; 
  
 

 

SVM function: 

function [C rbf error error_vector_length tr] = svmdecodertry(d, method); 
%tr c_trained] 
orientation  = (0:7) * 22.5 * pi/180; 
% orientation2  = (0:17) * 10 * pi/180; 
  
% if orientation == 1 
%     orientation = orientation1; 
% else 
%     orientation = orientation2; 
% end 
if method == 1 % one vs rest  
    rbfvec = 16:19; 
    Cvec = [0.0001:0.001:0.008]; 
else % one vs one 
    rbfvec = 12:17; 
    Cvec = [2:1:22];  
end 
  
a = svm; 
param_matrix = []; 
% tr_matrix = []; 
% c_trained_matrix = []; 
error_vector_length = []; 
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i = 1; 
for rbfind = 1:length(rbfvec) 
    rbf = rbfvec(rbfind); 
    for Cind = 1:length(Cvec) 
        C = Cvec(Cind); 
        param_matrix(i,:) = [C rbf];  
        a.C = C; 
        a.child = kernel('rbf',rbf); 
        if method == 1 
            b = one_vs_rest(a);  
        else 
            b = one_vs_one(a); 
        end 
        c = cv(b); 
        [tr c_trained] = train(c,d); 
         
        tr_matrix.i = tr; 
        c_trained_matrix.i = c_trained; 
        
        truth = [tr{1}.X; tr{2}.X; tr{3}.X; tr{4}.X; tr{5}.X]; 
        classification = [tr{1}.Y; tr{2}.Y; tr{3}.Y; tr{4}.Y; tr{5}.Y]; 
       % tst=test(a,d1) %%%%%%fix d2 
         
      %  test_classification =  [tst{1}.X; tst{2}.X; tst{3}.X; tst{4}.X; 
tst{5}.X]; 
  
        [value true_orientation_index(:,i)] = max(truth,[], 2); 
        [value classified_orientation_index(:,i)] = max(classification, [], 
2);   
     %   [value test_classified_orientation_index(:,i)] = 
max(test_classification, [], 2);      
        i = i+1 
    end 
end 
error = orientation(classified_orientation_index) - 
orientation(true_orientation_index);  
error = error + pi*(error<-pi/2-pi/48) - pi*(error>=pi/2-pi/48); 
x = mean(cos(2*error)); 
y = mean(sin(2*error)); 
error_vector_length = sqrt((1-x).^2 + y.^2); 
  
  
  
[value index] = min(error_vector_length); 
%index 
%size(tr_matrix) 
C = param_matrix(index,1); 
rbf = param_matrix(index,2); 
tr = tr_matrix 
%c_trained = c_trained_matrix.index; 
  
error = error(:,index); 
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Variational Bayesian Logistic Regression: 
 

clear; 
load gratingDat; 
degrees = [dat(1).conditions.orientation];  % real orientations 
orientationvec = degrees(1:2:16) * pi/180; %list of orientations (because 
contrast alternates) 
presentedorivec = orientationvec; % presented orientations, only used in 
machine learning methods 
combinationmatrix = nchoosek(1:length(presentedorivec), 2); % all possible 
presented orientation pairs 
  
k = 2; 
  
contrastvec = [1 2]; 
for day = 1:4 
    day; 
    classificationmatrix = []; 
    VBLRerror = []; 
    classificationmatrix2 = []; 
    VBLRerror2 = []; 
    for contrastind = 1:length(contrastvec)  
        classification = []; 
        r_train_matrix = []; 
        r_test_matrix = []; 
        contrast = contrastvec(contrastind); 
        if contrast == 1 
            conditionvec = 1:2:15;  
        elseif contrast == 2 
            conditionvec = 2:2:16; 
        end 
        for conditionind = 1:length(conditionvec) 
            condition = conditionvec(conditionind);             
            temp = dat(day).spikeCounts{condition}; 
            temp2(conditionind) = size(temp,1);            
        end 
        temp3 = min(temp2); 
        temp4 = floor(temp3/k); 
        for conditionind = 1:length(conditionvec) 
            condition = conditionvec(conditionind); 
            spike_count_matrix = dat(day).spikeCounts{condition};                        
            num_trials(conditionind)= size(spike_count_matrix,1); 
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            r_train = spike_count_matrix(1:(k-1)*temp4,:); 
            r_train_matrix(:,:,conditionind) = r_train; 
            r_test = spike_count_matrix((k-1)*temp4+1:k*temp4,:); 
            r_test_matrix(:,:,conditionind) = r_test; 
        end 
        dh = []; 
        for i = 1:size(combinationmatrix,1) 
            class1 = combinationmatrix(i,1); 
            class2 = combinationmatrix(i,2); 
            X_VBLR = 
[squeeze(r_train_matrix(:,:,class1));squeeze(r_train_matrix(:,:,class2))]; 
            X_test = 
[squeeze(r_test_matrix(:,:,class1));squeeze(r_test_matrix(:,:,class2))]; 
            Y = [ones((k-1)*temp4,1); -ones((k-1)*temp4,1)]; 
  
                  
            [w, V, invV, logdetV, E_a, L] = bayes_logit_fit(X_VBLR,Y);            
            out = bayes_logit_post(X_test, w, V, invV); 
  
             
            dh(:,i) = w; 
                 
            temp = (out >= .5); 
            chosenclass = class1 .* temp + class2 .* (1-temp); 
            trueclass = [class1 * ones(temp4,1); class2 * ones(temp4,1)]; 
            classification = [classification; [trueclass chosenclass]]; 
             
             
             
       %% switching contrast      
            if contrast ==1 
                conditionvec2 = 2:2:16; 
            else  
                conditionvec2 = 1:2:15; 
            end 
  
              classification2 = []; 
              r_train_matrix2 = []; 
              r_test_matrix2 = []; 
              conditionvec = 1:2:15; 
            for conditionind = 1:length(conditionvec) 
                condition = conditionvec(conditionind);             
                temp_2 = dat(day).spikeCounts{condition}; 
                temp2_2(conditionind) = size(temp,1);            
            end 
            temp3_2 = min(temp2_2); 
            temp4_2 = floor(temp3_2/k); 
            for conditionind = 1:length(conditionvec) 
                condition = conditionvec(conditionind); 
                spike_count_matrix2 = dat(day).spikeCounts{condition};                        
                num_trials2(conditionind)= size(spike_count_matrix,1); 
                r_train2 = spike_count_matrix2(1:(k-1)*temp4_2,:); 
                r_train_matrix2(:,:,conditionind) = r_train2; 
                r_test2 = spike_count_matrix2((k-1)*temp4_2+1:k*temp4_2,:); 
                r_test_matrix2(:,:,conditionind) = r_test2; 
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            end 
            dh2 = []; 
            for i = 1:size(combinationmatrix,1) 
                class1_2 = combinationmatrix(i,1); 
                class2_2 = combinationmatrix(i,2); 
                X_VBLR2 = 
[squeeze(r_train_matrix2(:,:,class1_2));squeeze(r_train_matrix2(:,:,class2_2)
)]; 
                X_test2 = 
[squeeze(r_test_matrix2(:,:,class1_2));squeeze(r_test_matrix2(:,:,class2_2))]
; 
                Y2 = [ones((k-1)*temp4,1); -ones((k-1)*temp4,1)]; 
  
  
                [w2, V2, invV2, logdetV2, E_a2, L2] = 
bayes_logit_fit(X_VBLR2,Y2);            
                out = bayes_logit_post(X_test, w2, V2, invV2); 
  
                dh(:,i) = w2; 
  
                temp = (out >= .5); 
                chosenclass2 = class1_2 .* temp + class2_2 .* (1-temp); 
                trueclass2 = [class1_2 * ones(temp4_2,1); class2_2 * 
ones(temp4_2,1)]; 
                classification2 = [classification2; [trueclass2 
chosenclass2]]; 
            end 
  
             
 %%            
             
        end 
        classificationmatrix(:,:, contrastind) = classification; 
        classification_orientation_matrix = 
presentedorivec(classificationmatrix); 
        VBLRerror(:, contrastind) = 
classification_orientation_matrix(:,2,contrastind) - 
classification_orientation_matrix(:,1,contrastind); 
         
        classificationmatrix2(:,:, contrastind) = classification2; 
        classification_orientation_matrix2 = 
presentedorivec(classificationmatrix2); 
        VBLRerror2(:, contrastind) = 
classification_orientation_matrix2(:,2,contrastind) - 
classification_orientation_matrix2(:,1,contrastind); 
         
    end % of contrast loop 
  
    VBLRerror = VBLRerror + pi*(VBLRerror<-pi/2) - pi*(VBLRerror>=pi/2);     
    switch day 
        case 1 
            VBLRerror_matrix1 = VBLRerror; 
        case 2 
            VBLRerror_matrix2 = VBLRerror; 
        case 3 
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            VBLRerror_matrix3 = VBLRerror; 
        case 4 
            VBLRerror_matrix4 = VBLRerror; 
    end 
    x = mean(cos(2*VBLRerror),1); 
    y = mean(sin(2*VBLRerror),1); 
    VBLRerror_vector_length(:,day) = sqrt((1-x).^2 + y.^2); 
     
     
    VBLRerror2 = VBLRerror2 + pi*(VBLRerror2<-pi/2) - pi*(VBLRerror2>=pi/2);     
    switch day 
        case 1 
            VBLRerror2_matrix1 = VBLRerror2; 
        case 2 
            VBLRerror2_matrix2 = VBLRerror2; 
        case 3 
            VBLRerror2_matrix3 = VBLRerror2; 
        case 4 
            VBLRerror2_matrix4 = VBLRerror2; 
    end 
    x2 = mean(cos(2*VBLRerror2),1); 
    y2 = mean(sin(2*VBLRerror2),1); 
    VBLRerror_vector_length2(:,day) = sqrt((1-x2).^2 + y2.^2); 
     
end % of day loop     
     
    VBLRerror_matrix = [VBLRerror_matrix1; VBLRerror_matrix2; 
VBLRerror_matrix3; VBLRerror_matrix4]; 
  
    VBLRerror_matrix2 = [VBLRerror2_matrix1; VBLRerror2_matrix2; 
VBLRerror2_matrix3; VBLRerror2_matrix4]; 
%Plots 
figure; 
subplot(1,2,1); 
hist(VBLRerror_matrix(:,1)) 
text(1,1600,num2str(mean(VBLRerror_vector_length(1,:)))); 
  
subplot(1,2,2); 
hist(VBLRerror_matrix(:,2)) 
text(1,2400,num2str(mean(VBLRerror_vector_length(2,:)))); 
  
  
figure; 
subplot(1,2,1); 
hist(VBLRerror_matrix2(:,1)) 
text(1,1000,num2str(mean(VBLRerror_vector_length2(1,:)))); 
  
subplot(1,2,2); 
hist(VBLRerror_matrix2(:,2)) 
text(1,1000,num2str(mean(VBLRerror_vector_length2(2,:)))); 
  
 

 


