
  1 

Decoding of Neural Populations in Visual Cortex

Noam Roth
Washington University in St. Louis

August 7th, 2009

This project compared several decoders in how they extract information from neural

populations in the Macaque visual cortex. Our goals were to better understand

neural variability and information contained in neural population activity about

visual stimuli. The project was done in the lab of Dr. Wei Ji Ma at Baylor College of

Medicine, as part of the Rice/TMC/UH Computational Neuroscience REU,

supported by grant DMS-0755294.

Introduction

In order to function in the world around us, our brain makes use of sensory

information from its environment to produce corresponding behavioral responses.

To do this, it creates and modifies representations of stimuli in the environment.

The sensory information is encoded (or represented) by populations of neurons in

the brain. For different stimuli, different neurons respond and create a population

response which represents that stimulus. Additionally, the same stimulus produces

different population responses on different trials, due to neural variability. In this

  2 

project we compare different procedures for extracting information from neural

representations of stimuli, or population responses. Specifically, using neural

population activity in Macaque V1 neurons, we ask how much information it

contains about visual stimuli.

Physiological Data

The physiological data that we used was collected by the Tolias lab at Baylor

College of Medicine. This neural population response data was in the form of spike

counts per second, recorded using multi-electrode (tetrode) recordings in the V1

region (visual cortex) of Macaque monkeys. The stimuli that the monkeys viewed

were orientation gratings, in both low and high contrast. Orientations presented

were 0, 22.5, 45, 67.5, 90, 112.5, 135, 157.5 degrees. The spike counts were recorded

on four different days, with 82 neurons in total. For each orientation grating,

neurons were recorded on many trials, varying from 10-40 depending on day.

Population Coding

Population coding is a way of representing information about a stimulus

through the simultaneous activity of a large set of neurons sensitive to this feature

(a population). Information about the stimulus is first encoded by a population of

  3 

neurons, as the population response is different for different stimuli. Figure 1

displays the response of different neurons (in varying colors) to different

orientations (stimuli). This response is shown as mean response, or tuning curves,

denoted by fi(s), where i is a neuron and s is the stimulus shown. The mode of each

neuron’s tuning curve is called its preferred orientation, as it is the orientation

where the neuron will most likely fire the most. However, due to neural variability,

the tuning curves shown are not a perfect representation of what occurs on

individual trials. An example of variable single trial activity can be seen in figure 2.

Orientation

1
2
3
4
5
6
7

s

Different neurons

fN (s)fi (s)

 

Figure 1: Idealized Gaussian tuning curves for different orientations. Each color represents a different neuron. 

 Neural activity is variable from trial to trial, so we can look at a conditional

probability distribution: the probability of a population response given a specific

stimulus. This probability is given by p(r|s), called the response distribution.

  4 

The second process involved in

population coding is called decoding. A

decoder is a procedure for estimating the

stimulus from the population pattern of

activity on a single trial. The estimated

stimulus can then be compared to the

true stimulus on that trial.  

Figure 2: Colors correspond to neuron colors from figure 1. Grating shows the orientation for the trial shown. 

This project's goal was to compare the performance of several decoders, both

simple and machine learning, to see how much information they can extract from

neural populations. This can broadly simulate how the brain decodes neural

information, but understanding what decoders work optimally on population

responses will mainly be useful from an experimenter's viewpoint.

Studies in population coding also have potential applications in neural

prosthetics. That is, as we begin to understand how to extract information from

population responses, we can create artificial help for those whose brains cannot do

so (both sensory and motor).

  5 

Decoders

In order to understand what information we could extract from neural

population coding, we compared the goodness of several decoders in estimating the

stimulus presented on each trial. We implemented each decoder in MATLAB, and

compared the estimated stimuli to the true presented stimuli. In this way we were

able to quantify the performance of each decoder.

Winner-take-all

The estimated stimulus chosen is the preferred

stimulus of the neuron with the highest response:

The winner-take-all decoder estimates the presented

stimulus by simply picking the neuron with the highest response. This decoder

requires knowledge of preferred orientations of neurons (see figure 3). However,

because of the immense neural variability and noise that occurs naturally in the

brain, and because this decoder only utilizes information from one – the highest –

neuron (as opposed to from the whole population) we expected this decoder to do

very poorly.

ˆ : argmax
j i

i

s s j r= =

  6 

Population Vector

The estimated stimulus is chosen by weighing each

neuron's preferred stimulus proportionally to its response:

By calculating a vector sum of the responses across all neurons – where the angle is

the preferred orientation of the neuron and the vector length is its spike count

response – each neuron votes for itself by how strongly it responds. This is a better

decoder than winner-take-all, but it does not take into account any form of neural

variability.

Template-matching

 This decoder match the observed population response with a set of tuning

curve templates (mean population responses for different

stimuli), using the sum-squared difference as error measure:

While this decoder also does not take into account a form

of neural variability, it does use information from the tuning curves of the neurons

(more information than in ‘winner-take-all’, because it is the entire mean response

and not just preferred orientation).

1

1

sin(2)
1

ˆ arctan
2

cos(2)

N

i i

i

N

i i

i

r s

s

r s

=

=

=
!

!

2

1

ˆ argmin (())
N

i i
s i

s r f s
=

= !"

  7 

Maximum-likelihood

 This decoder computes the probability that a stimulus value produced the given

response, and select the stimulus value for which the probability is highest:

This decoder takes neural variability into account. One assumption

commonly made in past studies is that neural variability is independent between

neurons and Poisson-distributed for each neuron, so the response distribution is the

product of Poisson-distributed neurons:

However, the assumption of independence may be a faulty one because

neurons, especially within populations of neurons, are highly interconnected, and

thus cause each other to fire. This assumption will be addressed in the variational

technique discussed later in this report.

Many of the decoders discussed above require knowledge of mean response

and preferred orientation. The data only contained discrete firing information at

eight different orientations, so Von Mises (circular Gaussians) were fit using (see

figure 3)

The Rayleigh’s test for circular uniformity was also used on the data,

producing a p value for each neuron which indicated how significantly peaked its

mean response was.

ˆ argmax (|)
s

s p r s=
r

()

1

()
(|)

!

i if s rN
i

i i

e f s
p r s

r

!

=

="
r

  8 

For the decoders that required not just preferred orientation, but the entire

tuning curve information (Template Matching and Maximum Likelihood), two

techniques were used:

 (1) using fitted Von Mises (circular Gaussian) tuning curves

 (2) using linear interpolation of mean activity

 

Figure 3: An example neuron's fitted Von Mises tuning curve and preferred orientation. 

cos(2())
() is s

if s ae b
! "

= +

  9 

Support Vector Machines

 This decoder is a machine learning

algorithm which classifies data points by

separating them with a hyperplane

which has a maximized margin from the

data.

Figure 4: An illustration of how SVM works for a two 
dimensional (only two neuron) space and two 

orientations.

As SVM is a classifying algorithm, on its most simple level it classifies data into

two classes. There are two ways to implement multi-class classification in SVM:

(1) One vs. Rest: separates one orientation from all the rest, and the classifier

with the highest output function assigns the class.

(2) One vs. One: separates one orientation from one other orientation (pairwise),

then classifies points to whichever class has the most “votes” for that point.

Support Vector Machines use kernel functions to fit the maximum-margin

hyperplane in a high dimensional feature space. In our case, the transformation is

non-linear: using a radial basis function. In order to learn the data well, we fit two

hyperparameters that minimized error for the first day’s data. The first was σ,

which fit the kernel function (radial basis function) well to the data. Second was C,

a soft margin parameter which allowed for mislabeling of some data points.

  10 

Variational Bayesian Logistic Regression

As discussed above, one goal of this project was to address the assumption of

independence between neurons. To do so, we generalized our assumption of neural

variability to the Poisson-like family of distributions, which does not assume

independence. The response distribution is given below:

()(|) () h s rp r s r e! "

=
r rr r

In order to estimate the presented stimulus based on the population response

data, an algorithm, Variational Bayesian Logistic Regression. (Drugowitsch 2008)

was used. The algorithm uses logistic regression and variational methods to find

h(s). Between two classes (orientations), we need to find h(s1)-h(s2), or Δh.

To choose a stimulus, we must look at the probability of a specific stimulus

given the population response. We can manipulate this probability in the following

way:

1

(h () h ()) r1 21 2

h() r

1
1 h() r h() r h r

1 2

(r |) (r) 1 1
(| r) = (h r)

(r |) (r |) (r) (r) 11
s s

s

s s

p s e
p s

p s p s e e ee

!
"

! !
$

$

$ $ % $
= = = = % $

+ + ++

This sigmoid model is then approximated by maximizing a lower bound, and

its posterior is approximated by a variational posterior. By using these variational

methods, we can find probabilities for classifying the data in each class, which is

how the estimates of the stimuli are found.

  11 

How do we determine goodness?

To compare the different decoders, we used three methods of determining goodness:

(1) Low bias: The average estimate should equal the true orientation

(2) Low variance: The estimates should all be close to each other

(3) Combined error: Incorporates bias and variance (figure 5)

Figure 5: Bias in green, variance in blue, combined error in red.

  12 

Results

Results of the decoder comparison were found by calculating the errors of

each decoder. Figure 6 displays a histogram for each decoder, per contrast, of the

distance (in degrees) between the predicted orientation and true presented

orientation. The number given in the top right of each histogram is the error

measure, described above. The higher the error measure, the worse the performance

of the decoder in extracting information from the population activity. Error itself is

displayed in figure 7.

 

Figure 6: Histograms of distance from true stimulus for each decoder. ML1 and TM1 use Von Mises curves, ML2 

and TM2 use linear interpolation.

  13 

Variance and Bias are shown in figure … Variance decreases by decoder from

winner-take-all to maximum likelihood. Bias is generally very low, and is found to

be either negative or positive.

 

Figure 7: Combined error, variance, and bias. Decoders are numbered in the same order as figure 6. 

 

 In the implementation of the Variational Bayesian Logistic Regression in

order to incorporate the Poisson-like variability, we had an overfitting problem due

to the lack of hyperparameters. Because there was nothing in the algorithm that we

could train on one part of the data and use in the rest of the data, the method

overfitted the data, and thus the error measure was very low.

 

Figure 8: Histogram of distances from true orientation, variational method. Error measure in corner. Low 

contrast is left, and high contrast is right.

  14 

 The SVM algorithm had similar overfitting problems, more due to basic

implementation rather than theoretical hyperparameter problems. Histograms for

one day’s worth of data are displayed below. As can be seen, specifically to high

contrast orientations, the variance was very narrow and thus SVM seems to be very

overfitted.

 

Figure 9: Histogram of distances from true orientation, SVM decoder. 

  15 

Conclusions

Among the simple decoders, winner-take-all was worst, and maximum-

likelihood was best, as expected. Additionally the high contrast data encode more

information, as expected. Preliminary results for SVM and VBLR suggest that these

decoders might do better than the simple decoders, however we have an overfitting

problem.

 While a lot was confirmed about the information encoded in population

activity, future goals of this project are still numerous. Firstly, we wish to work out

problems in the implementation of SVM, so that it can also be compared. Secondly,

we want to find hyperparameters or a way to fix the overfitting problem in the

variational method, in order to have a concrete comparison with the remaining

decoders, and obtain a conclusion about the assumption of independence in neural

variability.

References

Bishop, C. (2006). Pattern Recognition and Machine Learning. New York: Springer
 Science.

Drugowitsch, J. (2008). “Bayesian Logistic Regression.”

MacKay, D (2003). Information Theory, Inference, and Learning Algorithms.
 Cambridge: Cambridge University Press.

  16 

Appendix A: selected MATLAB code

Low level decoders:

clear all;
load gratingDat;
load variables;

degrees = [dat(1).conditions.orientation]; % real orientations
m = 6; % number of decoders tested
error = zeros(819,6,2);
orientationvec = [degrees(1:2:16) * pi/180]; %list of orientations (because
contrast alternates)
testorientationvec = 0:0.005:pi; % hypothesized orientations
for neuron = 1:length(s_i)
 f1(neuron,:) = a(neuron) .*exp(k(neuron).*cos(2*(testorientationvec-
s_i(neuron)))+ b(neuron)); % Estimated Von Mises tuning curves of all neurons
 f2(neuron,:) = f1(neuron,:);%interp1([orientationvec pi],
[mean_spike_count(neuron,:) mean_spike_count(neuron, 1)],
testorientationvec); % Interpolated tuning curves of all neurons
end

contrastvec = [1 2];
for contrastind = 1:length(contrastvec)
 conditionvec = contrastvec(contrastind):2:16;

 total_num_trials = 0;
 total_num_neurons = 0;
 for day = 1:4
 for conditionind = 1:length(conditionvec)
 condition = conditionvec(conditionind);

 [num_trials num_neurons] = size(dat(day).spikeCounts{condition});
% number of trials and number of neurons
 neuronindices = total_num_neurons + (1:num_neurons);
 trialindices = total_num_trials + (1:num_trials);

 decoders(trialindices,1, contrastind) =
orientationvec(conditionind) * ones(1,num_trials); % real orientations
 spike_count_matrix = dat(day).spikeCounts{condition}; % spike
counts for all neurons for all trials (that day, that condition)

 % Winner-take-all decoder
 [value index] = max(spike_count_matrix,[],2); % index is between
1 and numneurons(day)
 wta_s_hat = s_i(total_num_neurons + index);

 % Population vector decoder
 preferred_angles = repmat(2*s_i(neuronindices)', num_trials,1); %
preferred orientations, rescaled and copied across all trials

  17 

 pv_x_component = sum(spike_count_matrix .*
cos(preferred_angles),2)./sum(spike_count_matrix,2);
 pv_y_component = sum(spike_count_matrix .*
sin(preferred_angles),2)./sum(spike_count_matrix,2);
 pv_s_hat = atan(pv_y_component./pv_x_component);
 pv_s_hat = pv_s_hat + pi * (pv_x_component < 0);
 pv_s_hat = mod(pv_s_hat/2, pi);

 % Template matching decoder
 TMsum = spike_count_matrix * f1(neuronindices,:);
 value = max(TMsum,[],2);
 for i = 1:num_trials
 indices = find(TMsum(i,:)==value(i));
 index(i) = indices(ceil(rand * length(indices)));
 end
 tm1_s_hat = testorientationvec(index)';

 TMsum = spike_count_matrix * f2(neuronindices,:);
 value = max(TMsum,[],2);
 for i = 1:num_trials
 indices = find(TMsum(i,:)==value(i));
 index(i) = indices(ceil(rand * length(indices)));
 end
 tm2_s_hat = testorientationvec(index)';

 % Maximum-likelihood decoder

 MLsum = spike_count_matrix * log(f1(neuronindices,:));
 value = max(MLsum,[],2);
 for i = 1:num_trials
 indices = find(MLsum(i,:)==value(i));
 index(i) = indices(ceil(rand * length(indices)));
 end
 ml1_s_hat = testorientationvec(index)';

 MLsum = spike_count_matrix * log(f2(neuronindices,:));
 value = max(MLsum,[],2);
 for i = 1:num_trials
 indices = find(MLsum(i,:)==value(i));
 index(i) = indices(ceil(rand * length(indices)));
 end
 ml2_s_hat = testorientationvec(index)';

 decoders(trialindices, 2:m+1, contrastind) = [wta_s_hat pv_s_hat
tm1_s_hat ml1_s_hat tm2_s_hat ml2_s_hat];
 total_num_trials = total_num_trials + num_trials;
 end
 total_num_neurons = total_num_neurons + num_neurons;
 end

 error(:,:,contrastind) = decoders(:,2:m+1, contrastind)-
repmat(decoders(:,1, contrastind),1,m);

  18 

 error = error + pi*(error<-pi/2-pi/48) - pi*(error>=pi/2-pi/48);

 x = mean(cos(2*error(:,:,contrastind)),1);
 y = mean(sin(2*error(:,:,contrastind)),1);
 bias(:,contrastind) = atan(y./x);

 error_vector_length_decoders(contrastind,:) = sqrt((1-x).^2 + y.^2)
end

%% Plots
figure;
decodernames = {'WTA', 'PV', 'TM', 'ML', 'TM2', 'ML2'};
contrastnames = {'low contrast', 'high contrast'};
for contrastind = 1:length(contrastvec)
 for i = 1:m
 subplot(m,2,2*(i-1) + contrastind);
 hist(error(:,i, contrastind),-pi/2:pi/24:pi/2)
 if contrastind == 1
 ylabel(decodernames(i));
 end
 if i==1
 title(contrastnames(contrastvec(contrastind)));
 end
 text(1,80,num2str(error_vector_length_decoders(contrastind,i)));
 ylim([0 100])
 end
end
figure; bar(1:4, error_vector_length');

  19 

SVM:

%% create X and Y (data)
clear all;
tic
kappa = 1;
c = 0;
num_trials = 100;
contrast_matrix = [.1 .2];
presentedorivec = (10:10:180) * pi/180; % presented orientations, only used
in machine learning methods
preforivec = (10:10:180) * pi/180; % preferred orientations of neurons
N = length(preforivec);

[pres pref] = meshgrid(presentedorivec, preforivec);
f_matrixbase_presented = exp(kappa*cos(2*(pres - pref))) + c; %neuron by
condition

for contrastind = 1:2
 contrast = contrast_matrix(contrastind);
 f_matrix_presented = contrast * f_matrixbase_presented;
 r_train = poissrnd(repmat(f_matrix_presented, [1,1,num_trials])); %neuron
by condition by trial
 spike_counts(:,:,contrastind) = reshape(r_train, N, N*num_trials)';
%trial*condition by neuron
end

cd spiderMain
load gratingDat;
use_spider;
load variables;
day = 1;

X_low = [dat(day).spikeCounts{1};
 dat(day).spikeCounts{3};
 dat(day).spikeCounts{5};
 dat(day).spikeCounts{7};
 dat(day).spikeCounts{9};
 dat(day).spikeCounts{11};
 dat(day).spikeCounts{13};
 dat(day).spikeCounts{15}];

X_high = [dat(day).spikeCounts{2};
 dat(day).spikeCounts{4};
 dat(day).spikeCounts{6};
 dat(day).spikeCounts{8};
 dat(day).spikeCounts{10};
 dat(day).spikeCounts{12};
 dat(day).spikeCounts{14};
 dat(day).spikeCounts{16}];

  20 

X_fake_low = spike_counts(:,:,1);

X_fake_high = spike_counts(:,:,2);

Y_low = [ones(size(dat(day).spikeCounts{1},1),1), -
ones(size(dat(day).spikeCounts{1},1),7);
-ones(size(dat(day).spikeCounts{3},1),1),
ones(size(dat(day).spikeCounts{3},1),1), -
ones(size(dat(day).spikeCounts{3},1),6);
-ones(size(dat(day).spikeCounts{5},1),2),
ones(size(dat(day).spikeCounts{5},1),1), -
ones(size(dat(day).spikeCounts{5},1),5);
-ones(size(dat(day).spikeCounts{7},1),3),
ones(size(dat(day).spikeCounts{7},1),1), -
ones(size(dat(day).spikeCounts{7},1),4);
-ones(size(dat(day).spikeCounts{9},1),4),
ones(size(dat(day).spikeCounts{9},1),1), -
ones(size(dat(day).spikeCounts{9},1),3);
-ones(size(dat(day).spikeCounts{11},1),5),
ones(size(dat(day).spikeCounts{11},1),1), -
ones(size(dat(day).spikeCounts{11},1),2);
-ones(size(dat(day).spikeCounts{13},1),6),
ones(size(dat(day).spikeCounts{13},1),1), -
ones(size(dat(day).spikeCounts{13},1),1);
-ones(size(dat(day).spikeCounts{15},1),7),
ones(size(dat(day).spikeCounts{15},1),1)];

Y_high = [ones(size(dat(day).spikeCounts{2},1),1), -
ones(size(dat(day).spikeCounts{2},1),7);
-ones(size(dat(day).spikeCounts{4},1),1),
ones(size(dat(day).spikeCounts{4},1),1), -
ones(size(dat(day).spikeCounts{4},1),6);
-ones(size(dat(day).spikeCounts{6},1),2),
ones(size(dat(day).spikeCounts{6},1),1), -
ones(size(dat(day).spikeCounts{6},1),5);
-ones(size(dat(day).spikeCounts{8},1),3),
ones(size(dat(day).spikeCounts{8},1),1), -
ones(size(dat(day).spikeCounts{8},1),4);
-ones(size(dat(day).spikeCounts{10},1),4),
ones(size(dat(day).spikeCounts{10},1),1), -
ones(size(dat(day).spikeCounts{10},1),3);
-ones(size(dat(day).spikeCounts{12},1),5),
ones(size(dat(day).spikeCounts{12},1),1), -
ones(size(dat(day).spikeCounts{12},1),2);
-ones(size(dat(day).spikeCounts{14},1),6),
ones(size(dat(day).spikeCounts{14},1),1), -
ones(size(dat(day).spikeCounts{14},1),1);
-ones(size(dat(day).spikeCounts{16},1),7),
ones(size(dat(day).spikeCounts{16},1),1)];

Y_fake_low = -ones(1800,18);
Y_fake_high = -ones(1800,18);

  21 

for i = 1:18
 Y_fake_low((i-1)*100+1:i*100, i) = 1;
 Y_fake_high((i-1)*100+1:i*100, i) = 1;
end

d1 = data(X_low, Y_low)
d2 = data(X_high, Y_high);

cd ..

[C1 rbf1 error1 errorlength1 tr_1] = svmdecodertry(d1,1);
errormatrixlow(:,1,1) = error1;
[C2 rbf2 error2 errorlength2 tr_2] = svmdecodertry(d1,2);
errormatrixlow(:,1,2) = error2;
[C3 rbf3 error3 errorlength3 tr_3] = svmdecodertry(d2,1);
errormatrixhigh(:,1,1) = error3;
[C4 rbf4 error4 errorlength4 tr_4] = svmdecodertry(d2,2);
errormatrixhigh(:,1,2) = error4;

SVM function:

function [C rbf error error_vector_length tr] = svmdecodertry(d, method);
%tr c_trained]
orientation = (0:7) * 22.5 * pi/180;
% orientation2 = (0:17) * 10 * pi/180;

% if orientation == 1
% orientation = orientation1;
% else
% orientation = orientation2;
% end
if method == 1 % one vs rest
 rbfvec = 16:19;
 Cvec = [0.0001:0.001:0.008];
else % one vs one
 rbfvec = 12:17;
 Cvec = [2:1:22];
end

a = svm;
param_matrix = [];
% tr_matrix = [];
% c_trained_matrix = [];
error_vector_length = [];

  22 

i = 1;
for rbfind = 1:length(rbfvec)
 rbf = rbfvec(rbfind);
 for Cind = 1:length(Cvec)
 C = Cvec(Cind);
 param_matrix(i,:) = [C rbf];
 a.C = C;
 a.child = kernel('rbf',rbf);
 if method == 1
 b = one_vs_rest(a);
 else
 b = one_vs_one(a);
 end
 c = cv(b);
 [tr c_trained] = train(c,d);

 tr_matrix.i = tr;
 c_trained_matrix.i = c_trained;

 truth = [tr{1}.X; tr{2}.X; tr{3}.X; tr{4}.X; tr{5}.X];
 classification = [tr{1}.Y; tr{2}.Y; tr{3}.Y; tr{4}.Y; tr{5}.Y];
 % tst=test(a,d1) %%%%%%fix d2

 % test_classification = [tst{1}.X; tst{2}.X; tst{3}.X; tst{4}.X;
tst{5}.X];

 [value true_orientation_index(:,i)] = max(truth,[], 2);
 [value classified_orientation_index(:,i)] = max(classification, [],
2);
 % [value test_classified_orientation_index(:,i)] =
max(test_classification, [], 2);
 i = i+1
 end
end
error = orientation(classified_orientation_index) -
orientation(true_orientation_index);
error = error + pi*(error<-pi/2-pi/48) - pi*(error>=pi/2-pi/48);
x = mean(cos(2*error));
y = mean(sin(2*error));
error_vector_length = sqrt((1-x).^2 + y.^2);

[value index] = min(error_vector_length);
%index
%size(tr_matrix)
C = param_matrix(index,1);
rbf = param_matrix(index,2);
tr = tr_matrix
%c_trained = c_trained_matrix.index;

error = error(:,index);

  23 

Variational Bayesian Logistic Regression:

clear;
load gratingDat;
degrees = [dat(1).conditions.orientation]; % real orientations
orientationvec = degrees(1:2:16) * pi/180; %list of orientations (because
contrast alternates)
presentedorivec = orientationvec; % presented orientations, only used in
machine learning methods
combinationmatrix = nchoosek(1:length(presentedorivec), 2); % all possible
presented orientation pairs

k = 2;

contrastvec = [1 2];
for day = 1:4
 day;
 classificationmatrix = [];
 VBLRerror = [];
 classificationmatrix2 = [];
 VBLRerror2 = [];
 for contrastind = 1:length(contrastvec)
 classification = [];
 r_train_matrix = [];
 r_test_matrix = [];
 contrast = contrastvec(contrastind);
 if contrast == 1
 conditionvec = 1:2:15;
 elseif contrast == 2
 conditionvec = 2:2:16;
 end
 for conditionind = 1:length(conditionvec)
 condition = conditionvec(conditionind);
 temp = dat(day).spikeCounts{condition};
 temp2(conditionind) = size(temp,1);
 end
 temp3 = min(temp2);
 temp4 = floor(temp3/k);
 for conditionind = 1:length(conditionvec)
 condition = conditionvec(conditionind);
 spike_count_matrix = dat(day).spikeCounts{condition};
 num_trials(conditionind)= size(spike_count_matrix,1);

  24 

 r_train = spike_count_matrix(1:(k-1)*temp4,:);
 r_train_matrix(:,:,conditionind) = r_train;
 r_test = spike_count_matrix((k-1)*temp4+1:k*temp4,:);
 r_test_matrix(:,:,conditionind) = r_test;
 end
 dh = [];
 for i = 1:size(combinationmatrix,1)
 class1 = combinationmatrix(i,1);
 class2 = combinationmatrix(i,2);
 X_VBLR =
[squeeze(r_train_matrix(:,:,class1));squeeze(r_train_matrix(:,:,class2))];
 X_test =
[squeeze(r_test_matrix(:,:,class1));squeeze(r_test_matrix(:,:,class2))];
 Y = [ones((k-1)*temp4,1); -ones((k-1)*temp4,1)];

 [w, V, invV, logdetV, E_a, L] = bayes_logit_fit(X_VBLR,Y);
 out = bayes_logit_post(X_test, w, V, invV);

 dh(:,i) = w;

 temp = (out >= .5);
 chosenclass = class1 .* temp + class2 .* (1-temp);
 trueclass = [class1 * ones(temp4,1); class2 * ones(temp4,1)];
 classification = [classification; [trueclass chosenclass]];

 %% switching contrast
 if contrast ==1
 conditionvec2 = 2:2:16;
 else
 conditionvec2 = 1:2:15;
 end

 classification2 = [];
 r_train_matrix2 = [];
 r_test_matrix2 = [];
 conditionvec = 1:2:15;
 for conditionind = 1:length(conditionvec)
 condition = conditionvec(conditionind);
 temp_2 = dat(day).spikeCounts{condition};
 temp2_2(conditionind) = size(temp,1);
 end
 temp3_2 = min(temp2_2);
 temp4_2 = floor(temp3_2/k);
 for conditionind = 1:length(conditionvec)
 condition = conditionvec(conditionind);
 spike_count_matrix2 = dat(day).spikeCounts{condition};
 num_trials2(conditionind)= size(spike_count_matrix,1);
 r_train2 = spike_count_matrix2(1:(k-1)*temp4_2,:);
 r_train_matrix2(:,:,conditionind) = r_train2;
 r_test2 = spike_count_matrix2((k-1)*temp4_2+1:k*temp4_2,:);
 r_test_matrix2(:,:,conditionind) = r_test2;

  25 

 end
 dh2 = [];
 for i = 1:size(combinationmatrix,1)
 class1_2 = combinationmatrix(i,1);
 class2_2 = combinationmatrix(i,2);
 X_VBLR2 =
[squeeze(r_train_matrix2(:,:,class1_2));squeeze(r_train_matrix2(:,:,class2_2)
)];
 X_test2 =
[squeeze(r_test_matrix2(:,:,class1_2));squeeze(r_test_matrix2(:,:,class2_2))]
;
 Y2 = [ones((k-1)*temp4,1); -ones((k-1)*temp4,1)];

 [w2, V2, invV2, logdetV2, E_a2, L2] =
bayes_logit_fit(X_VBLR2,Y2);
 out = bayes_logit_post(X_test, w2, V2, invV2);

 dh(:,i) = w2;

 temp = (out >= .5);
 chosenclass2 = class1_2 .* temp + class2_2 .* (1-temp);
 trueclass2 = [class1_2 * ones(temp4_2,1); class2_2 *
ones(temp4_2,1)];
 classification2 = [classification2; [trueclass2
chosenclass2]];
 end

 %%

 end
 classificationmatrix(:,:, contrastind) = classification;
 classification_orientation_matrix =
presentedorivec(classificationmatrix);
 VBLRerror(:, contrastind) =
classification_orientation_matrix(:,2,contrastind) -
classification_orientation_matrix(:,1,contrastind);

 classificationmatrix2(:,:, contrastind) = classification2;
 classification_orientation_matrix2 =
presentedorivec(classificationmatrix2);
 VBLRerror2(:, contrastind) =
classification_orientation_matrix2(:,2,contrastind) -
classification_orientation_matrix2(:,1,contrastind);

 end % of contrast loop

 VBLRerror = VBLRerror + pi*(VBLRerror<-pi/2) - pi*(VBLRerror>=pi/2);
 switch day
 case 1
 VBLRerror_matrix1 = VBLRerror;
 case 2
 VBLRerror_matrix2 = VBLRerror;
 case 3

  26 

 VBLRerror_matrix3 = VBLRerror;
 case 4
 VBLRerror_matrix4 = VBLRerror;
 end
 x = mean(cos(2*VBLRerror),1);
 y = mean(sin(2*VBLRerror),1);
 VBLRerror_vector_length(:,day) = sqrt((1-x).^2 + y.^2);

 VBLRerror2 = VBLRerror2 + pi*(VBLRerror2<-pi/2) - pi*(VBLRerror2>=pi/2);
 switch day
 case 1
 VBLRerror2_matrix1 = VBLRerror2;
 case 2
 VBLRerror2_matrix2 = VBLRerror2;
 case 3
 VBLRerror2_matrix3 = VBLRerror2;
 case 4
 VBLRerror2_matrix4 = VBLRerror2;
 end
 x2 = mean(cos(2*VBLRerror2),1);
 y2 = mean(sin(2*VBLRerror2),1);
 VBLRerror_vector_length2(:,day) = sqrt((1-x2).^2 + y2.^2);

end % of day loop

 VBLRerror_matrix = [VBLRerror_matrix1; VBLRerror_matrix2;
VBLRerror_matrix3; VBLRerror_matrix4];

 VBLRerror_matrix2 = [VBLRerror2_matrix1; VBLRerror2_matrix2;
VBLRerror2_matrix3; VBLRerror2_matrix4];
%Plots
figure;
subplot(1,2,1);
hist(VBLRerror_matrix(:,1))
text(1,1600,num2str(mean(VBLRerror_vector_length(1,:))));

subplot(1,2,2);
hist(VBLRerror_matrix(:,2))
text(1,2400,num2str(mean(VBLRerror_vector_length(2,:))));

figure;
subplot(1,2,1);
hist(VBLRerror_matrix2(:,1))
text(1,1000,num2str(mean(VBLRerror_vector_length2(1,:))));

subplot(1,2,2);
hist(VBLRerror_matrix2(:,2))
text(1,1000,num2str(mean(VBLRerror_vector_length2(2,:))));

