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The human brain is comprised of over 100 billion (100×109) neurons, each of which receives on average 10,0001
“inputs” from neighboring neurons. To tackle such complexity we naturally restrict ourselves to well-defined sub-2
networks of the brain. Even then, however, we are far from constructing (for lack of data as well as computational3
resources) detailed models that capture network architecture, cell morphology, cell biophysics, and synaptic plasticity.4
Most existing strategies fall into one of four large subfields; Hopfield networks, conductance based networks, rate5
based networks, and self-organized maps. The rate at which these areas are growing would quickly obsolete any6
attempt at a systematic survey. For the reader who wishes to gain hands-on experience we therefore present a guided7
tour, via representative examples, of the methods of each subfield.8

In Hopfield networks, §27.1, each cell, at a given instant, can take on but two values, e.g., ±1. Furthermore, time9
evolves in discrete steps. The activity of N cells is therefore abstracted to discrete time dynamics on the vertices of the10
N−dimensional cube. One marches from one instant to the next by applying a threshold to a weighted sum of inputs11
at each cell. This permits experimentation, and often analytical treatment, with relatively large networks, but suffers12
in translation to biology.13

The modeling of conductance based networks retains continuous time, membrane conductances, and potential,14
but typically sacrifices ionic machinery and/or cell morphology. The simplest approach adopts the leaky integrate15
and fire (LIF) cell model of Chapter 10 and so sacrifices both, but in a way that makes it relatively straightforward16
to generalize. In §27.2 we carefully formulate and illustrate the full set of conductance and voltage equations for17
networks of excitatory and inhibitory LIF cells. We augment this system, in §27.3, with a learning rule that updates18
the synaptic weights between cells in a fashion that is spike time dependent.19

We generalize this approach, with a focus on synchrony and rhythmogenesis, to multicompartment cells with20
Hodgkin–Huxley type ion channels and calcium-dependent learning rules in §§27.4 and 27.5. During rhythmic net-21
work activity, a cell’s firing rate typically agrees with the average firing rate of the network. In §27.6 we formulate22
and analyze a simple model for evolving a network’s average firing rate in response to average synaptic input.23

In the final section we transcend spikes and rates and consider learning rules associated with self-organized maps24
for evolving the weights between parameterized activity patterns. Although this ignores the bulk of the biophysics25
developed in the previous chapters, it nonetheless reproduces a number of the brain maps that appear during early26
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learning, or development, of the nervous system. We concentrate here on the maps of orientation and direction27
preference in visual cortex.28

27.1 HOPFIELD NETWORKS29

30
The state of a Hopfield network with N cells is specified by s∈RN where each si ∈{−1,1}. These two values could31

represent, e.g., high and low activity states of the corresponding neurons. We advance, from time j to time j+1, for32
j =1,2, . . . , by thresholding a linear combination of state elements. In particular, state s j is advanced to33

s j+1 =Hop(Ws j) where Hop(x)≡
{

1 if x >0
−1 if x ≤0,

(27.1)

is applied to each component of Ws j in the Hopfield net. Here W ∈RN×N is the synaptic weight matrix. This net can34
be trained to remember an input pattern p∈{−1,1}N by setting the weights to W =ppT . In this case, proceeding from35
an arbitrary state s, we find36

Ws=ppT s=p(pT s)= (pT s)p

and so37

Hop(Ws)=

⎧⎪⎨
⎪⎩

p if pT s>0
−e if pT s=0,
−p if pT s<0.

where e ≡ones(N,1) ,

In particular, both p and −p are fixed points of the associated Hopfield net in the sense that38

Hop(Wp)=p and Hop(W(−p))=−p.

Furthermore, these are the only fixed points unless p is balanced in the sense that pT e =0, in which case, −e is the only39
other fixed point. These fixed points are attractors in the sense that the Hopfield trajectory, Eq. (27.1), will terminate40
(rapidly) in one of these fixed points regardless of the initial state.41

All of this generalizes nicely to multiple training patterns. In fact, if p1 and p2 are two such patterns, we set42
P= (p1 p2) and W =PPT . Arguing as above, we find43

Ws=PPTs= (sT p1)p1 +(sT p2)p2.

Evaluating Hop of this is now a much more interesting affair. If p1 and p2 are orthogonal, i.e., pT
1 p2 =0, then it is not44

hard to see that both ±p1 and ±p2 will be fixed points. In the nonorthogonal case the input patterns may combine to45
form phantom fixed points. As a simple example we consider the binary visual stimuli of Figure 27.1.46

We reshape each input pattern of Figure 27.1 into a long vector and lay these into the columns of P= (p1 p2) and47
assemble the weight matrix W =PPT as above. We then present the network with noisy copies of “I” and “O,” as in48
Figure 27.2, and record the next state.49

FIGURE 27.1 Binary visual patterns to be learned by a Hopfield network. Each of these letters is comprised of a 67-by-71 rectangular field of
pixels, where black = 1 and white =−1. (hop.m)
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We should note that fixed points are not the only possible attractors. Indeed, it is quite possible that the network50
may “oscillate” by periodically bouncing between several states. As a concrete example we consider the network of51
Figure 27.3.52

If we assume unit weights along each of the edges in Figure 27.3 then we arrive at the weight matrix53

W =

⎛
⎜⎜⎝

0 0 1 1
0 0 1 1
1 1 0 0
1 1 0 0

⎞
⎟⎟⎠.

If initially we excite cells 1 and 2 then s1 = (1 1 −1 −1). It then follows that s2 =−s1 and s3 =−s2 = s1 and we say54
that the network has an attractor of period 2. We shall see in Exercise 2 that this example captures the general result,55
in the sense that no undirected Hopfield net may have an attractor with period greater than 2.56

27.2 INTEGRATE AND FIRE NETWORKS57

58
We now move from one discrete, on/off, variable to three continuous variables per cell: voltage as well as synaptic59

excitatory and inhibitory conductances. We begin with the simple two-cell network of Figure 27.4.60
The circuit in Figure 27.4 is comprised of two cells driven by two excitatory conductances. We denote the membrane61

potentials by V1 and V2 and conductances by gE,1 and gE,2. The circuit is driven by an excitatory input train that spikes62
at Tinp ≡{Tn

inp : n=1,2, . . .}. Each such spike increments gE,1, the excitatory conductance at cell 1, by a fixed amount,63

winp/τE. Between such spikes we assume that gE,1 returns to zero at the fixed rate τE. In other words, we suppose that64

(A) (B)

FIGURE 27.2 A. Nine noisy copies of “I” that the Hopfield network successfully identified. In other words, iterated application of Hop
converged towards the left pattern in Figure 27.1. B. Nine noisy copies of “O” that the Hopfield network successfully identified. (hop.m)

1

2

3

4

FIGURE 27.3 A four-cell network with bidirectional synapses between nodes 1 and 3, 1 and 4, 2 and 3, and 2 and 4.

Input
1 2

FIGURE 27.4 The smallest network, consisting of two cells driven by two excitatory conductances.
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gE,1 is governed by the differential equation65

τEg′
E,1(t)=−gE,1(t) + winp

∑
n

δ(t−Tn
inp). (27.2)

Similarly, the excitatory conductance at cell 2 is driven by the spikes of cell 1, at times T1 ≡{Tn
1 : n=1,2, . . .} and with66

weight w21. It follows that gE,2 is governed by67

τEg′
E,2(t)=−gE,2(t) + w21

∑
n

δ
(
t−Tn

1
)
. (27.3)

These conductances in turn supply synaptic current to the potential equations68

CmV ′
i(t)=gL(VL −Vi(t)) + gE,i(t)(V

syn
E −Vi(t)), while Vi(t)<Vthr (27.4)

and cell i is not refractory. When Vi(t) exceeds Vthr we augment the spike time sequence, Ti , and we reset Vi(t) to69
a fixed reset potential, Vres , for a set refractory period, tref . These spike times couple the conductance and potential70
equations. We decouple this system by choosing a time step, dt, and specifying an order of operation. In particular,71
we adopt the marching scheme72

1. check for an input spike at the current time, t, and for network spikes from the previous time, t−dt,73

2. update conductances based on the input spikes and network spikes recorded in (1)74

3. update potentials, record spikes, and return to (1)75

In our graphical representation of the potential, e.g., Figure 27.5, the presence of a spike can be inferred from the hard76
reset to Vres .77

Accordingly, if cell 1 receives an input spike in the interval ( jdt,( j+1)dt) then the trapezoid rule on (27.2), applied78

to g
j
E,1 ≈gE,1(( j−1)dt), requires79

τE
(
g

j+1
E,1 −g

j
E,1

)=−(
g

j+1
E,1 +g

j
E,1

)
dt/2+winp

which may be rearranged to read80

g
j+1
E,1 = aEg

j
E,1 +bEwinp

0

0.2

0.4

g E
, 1

�70

�60

�50

0

0.2

0.4

g E
, 2

0 10 20 30 40 50
�70

�60

�50

Time (ms)

0

0.2

0.4

g E
, 1

�70

�60

�50

0

0.2

0.4

g E
, 2

�70

�60

�50

0 10 20 30 40 50

Time (ms)

(A) (B)

V
1

V
2

V
2

V
1

FIGURE 27.5 Response of the two-cell net to low frequency, P= 5, and high frequency, P= 2, stimulus. Voltage is in mV and conductance
mS/cm2. The stimuli and cell are parameterized in Eqs. (27.6) and 27.7. In each case we see that cell 1 fires following every second input spike. In
the low frequency case the resultant spike rate of cell 1 is not sufficient to bring cell 2 to threshold. (twocell.m)
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where81

aE = 2τE −dt
2τE +dt

and bE = 2
2τE +dt

.

Similarly, if cell 1 was found to spike in the previous interval, i.e., in (( j−1)dt, jdt), then we update the conductance82
via83

g
j+1
E,2 = aEg

j
E,2 +bEw21.

If cell 1 did not fire in that interval then simply g
j+1
E,2 = aEg

j
E,2. Regarding the potentials, when cell i is nonrefractory,84

i.e., when85

( j+1)dt−Ti > tref (27.5)

the trapezoid rule in (27.4) requires86

V
j+1
i =

(
2Cm/dt−(

gL +g
j
E,i

))
V

j
i +2gLVL +(

g
j+1
E,i +g

j
E,i

)
Vsyn

E

2Cm/dt+gL +g
j+1
E,i

.

If (27.5) is not satisfied we enforce V
j+1
i =Vres . We have coded this update procedure in twocell.m and illustrate our87

findings, see Figure 27.5, for periodic input trains that spike at88

Tn
inp =nP, n=1,2, . . . (27.6)

where P is the period (ms). Throughout we shall use89

τE =2 ms, Vsyn
E =0 mV, gL =0.3 mS/cm2, VL =−68 mV, Cm =1 μF/cm2,

winp =0.5 mSms/cm2, w21 =0.5 mSms/cm2, tref =3 ms, Vthr =−50, Vres =−70 mV.
(27.7)

As most cells receive input from more than one neighbor we move on to the three cell net of Figure 27.6. We retain90
periodic input and add to the parameter set above w32 =w31 =0.5.91

We have coded the subsequent model in threecell.m. This code is a considerable refinement of the two-cell92
version. In particular, we have laid the weights in a weight matrix, W, and we have “vectorized” the computations93
of both gE and V. We illustrate its use in Figure 27.7.94

We next suppose, see Figure 27.8, that cell 3 inhibits cell 1. This new conductance is governed by95

g
j+1
I ,1 = aIg

j
I ,1+bIwinhs

j
3

where s
j
3 ≡1(V

j
3 −Vth) is one if cell 3 spiked at time j, and is zero otherwise (recall the definition of the Heaviside96

function, 1, Eq. (1.6)). In addition, as in the excitatory case,97

aI = 2τI −dt
2τI +dt

and bI = 2
2τI +dt

.

3
Input

21

FIGURE 27.6 A three-cell network.
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The potential at cell 1 now follows98

V
j+1
1 =

(
2Cm/dt−(

gL +g
j
E,1 +g

j
I ,1

))
V

j
1 +2gLVL +(

g
j+1
E,1 +g

j
E,1

)
Vsyn

E +(
g

j+1
I ,1 +g

j
I ,1

)
Vsyn

I

2Cm/dt+gL +g
j+1
E,1 +g

j+1
I ,1

.

We set99

τI =2 ms, Vsyn
I =−70 mV, and winh =3 mSms/cm2,

and arrive at the trajectories of Figure 27.9.100
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FIGURE 27.7 Response of the three-cell net to low frequency, P= 5 (A), and high frequency, P= 2 (B), stimulus. Observe in the lower right
panel that the third conductance receives a double kick (arrowheads) as cell 2 fires just after each second spike of cell 1. (threecell.m)
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FIGURE 27.8 A three-cell network with feedback inhibition.
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FIGURE 27.9 Response of the network in Figure 27.8 to high frequency, P= 2, stimulus. We note that cell 3 now staggers the firing of cell 1.
(threecellI.m)
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In the simulation of large networks, one computes, but does not typically report, the conductances and poten-101
tials at each time step. Rather one reports the times at which each cell spikes. We have trimmed threecell.m and102
threecellI.m down to threecellrast.m and threecellIrast.m and illustrated their use in Figure 27.10.103

Proceeding to larger networks, we suppose that W ∈ Rn×n denotes the matrix of weights between n excitatory104
cells and Winp ∈ Rn×n denotes the weight of input spikes upon excitatory cells, then, arguing as above, the network105
equations take the form106

g
j+1
E = aEg

j
E +bE

(
Wsj +Winps

j+1
inp

)
Vj+1 =

(
2Cm/dt−(

gL +g
j
E
))
Vj +2gLVL +(

g
j+1
E +g

j
E
)
Vsyn

E

2Cm/dt+gL +g
j+1
E

(27.8)

sj+1 =1(Vj+1−Vthr)

where all operations in the voltage update are elementwise. Here sj and s
j
inp are vectors with binary, i.e., {0,1}, ele-107

ments. We set sj
inp,i =1 if cell i receives an input spike at time jdt. Similarly, via the Heaviside function 1, we set sj

i =1 if108

cell i spiked (exceeded threshold) at time jdt. We have coded this in Enet.m with the help of MATLAB’s sprand function,109
which generates sparse matrices from the uniform distribution on [0,1] with a prescribed fraction of nonzeros.

AQ:1

110
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C
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l

FIGURE 27.10 Raster plots of spike times of the three-cell net without (black plus) and with (red circle) inhibition, subject to the same high
frequency, P= 2, stimulus. (threecellrast.m and threecellIrast.m)
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FIGURE 27.11 Weight matrix (A) and spikes (B) in a 20-cell excitatory net with 15% connectivity subject to a periodic train, P= 50, with
Winp = 1, delivered to the first 20% of the cells. The red dashed lines in A indicate the three rows and single column with vanishing weights.
(Enet.m)
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FIGURE 27.12 Weight matrix (A) and spikes (B) in a 40-cell excitatory net with 7% connectivity subject to a periodic train, P= 50, with Winp = 1,
delivered to the first 20% of the cells. (Enet.m)

To see the meaning of this W matrix, note that cell 15 has no squares in its column and hence has no impact on the111
behavior of the net. Every row has a nonzero entry, except for rows 13, 17, and 20. So in fact every cell except those112
three receives input from at least one neighbor. We have stripped the diagonal clean and hence no cell excites itself.113
These nets are capable of generating rich patterns.114

We now introduce a population of inhibitory cells. We denote their potentials by VI and those of the excitatory cells115
by VE. Now each cell has two conductances; gEE and gIE will denote the excitatory and inhibitory conductances on an116
excitatory cell while gEI and gII will denote the excitatory and inhibitory conductances on an inhibitory cell. Coupling117
occurs through the weight matrices; WEE which connects E cells to E cells, WEI which connects E cells to I cells, WIE118
which connects I cells to E cells, and WII which connects I cells to I cells. The subsequent network equations are119

g
j+1
EE = aEg

j
EE +bE

(
WEEs

j
E +Winp

EEs
j+1
inp,E

)
g

j+1
EI = aEg

j
EI +bE

(
WEIs

j
E +Winp

EI s
j+1
inp,E

)
g

j+1
II = aIg

j
II +bI

(
WIIs

j
I +Winp

II s
j+1
inp,I

)
g

j+1
IE = aIg

j
IE +bI

(
WIEs

j
I +Winp

IE s
j+1
inp,I

)

V
j+1
E =

(
2Cm/dt−(

gL +g
j
EE +g

j
IE

))
V

j
E +2gLVL +(

g
j+1
EE +g

j
EE

)
Vsyn

E +(
g

j+1
IE +g

j
IE

)
Vsyn

I

2Cm/dt+gL +g
j+1
EE +g

j+1
IE

V
j+1
I =

(
2Cm/dt−(

gL +g
j
II +g

j
EI

))
V

j
I +2gLVL +(

g
j+1
II +g

j
II

)
Vsyn

I +(
g

j+1
EI +g

j
EI

)
Vsyn

E

2Cm/dt+gL +g
j+1
II +g

j+1
EI

s
j+1
E = 1

(
V

j+1
E −Vthr

)
s

j+1
I = 1

(
V

j+1
I −Vthr

)
.

We have coded this system in EInet.m with120

τI =1 ms and Vsyn
I =−70 mV

and illustrate its findings in Figure 27.13.121
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FIGURE 27.13 Weight matrices (A) and spikes (B) in an EI-net with 80 E-cells and 20 I-cells. A. WEE , WEI, and WIE each have 25% connectivity
while WII has 5%. Red lines differentiate the respective weight matrices. B. The spikes (black for excitatory and red for inhibitory) associated with
simultaneous input delivered to the excitatory conductances of the first 16 E-cells. (EInet.m)
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FIGURE 27.14 A four-cell net.

27.3 INTEGRATE AND FIRE NETWORKS WITH PLASTIC SYNAPSES122

123
Spikes not only increment transient synaptic conductances, but also impact the associated elements of the synaptic124

weights. In §§12.6,12.7, and 13.4 we discussed a number of the biophysical mechanisms that are suspected to underlie125
such synaptic plasticity. In this section we will implement and analyze a Hebbian rule that goes by the name spike time126
dependent plasticity, or STDP, which has been characterized in several experimental preparations. More precisely, if127
Wi,j is the weight of cell j upon cell i then STDP dictates a positive increment when j spikes before i and a negative128
increment when i spikes before j. The size of the weight change is a function of the time between spikes and the129
current weights. Let us begin with the simple four-cell net of Figure 27.14.130

We excite cell 1 every 40 ms. This activity propagates quickly to fire cells 2 and 4 and eventually cell 3. As 1 fires 4131
we expect this weight, W4,1, to increase, and as 3 does not fire 4 we expect W4,3 to decrease. To do this, when a cell fires132
we potentiate the weights from presynaptic cells that have recently fired and depress the weights to postsynaptic cells133
that have recently fired. We quantify “recent” by adopting a scheme that is in line with observations that the degree of134
both potentiation and depression decays exponentially with the interval between the presynaptic and postsynaptic135
spikes, see Figure 27.15.136

As a concrete example, we denote by T1 and T3 the most recent times at which cells 1 and 3 fired, respectively. If137
cell 2 is the next to fire, at time T2, we update the associated conductances via138

W2,1(T
+
2 ) = W2,1(T

−
2 )+AP exp((T1 −T2)/τP)

W3,2(T
+
2 ) = W3,2(T

−
2 )−AD exp((T3 −T2)/τD).

(27.9)

When called repeatedly these increments may lead to runaway weight loss and gain. There are a number of remedies,139
e.g., the Oja’s Rule of Eq. (14.14), for this. The most simple is to return to zero any weights that tend negative and140
to return to Wmax all weights that exceed this specified maximum. A smoother way of enforcing these bounds is to141
replace Eq. (27.9) with142

W2,1(T+
2 )=W2,1(T−

2 )+AP exp((T1 −T2)/τP)(Wmax −W2,1(T−
2 ))

(27.10)

W3,2(T
+
2 )=W3,2(T

−
2 )−AD exp((T3 −T2)/τD)W3,2(T

−
2 ).
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FIGURE 27.15 Here �t = Tpost −Tpre and EPSC denotes excitatory postsynaptic current. This data suggests potentiation of the form
AP exp(−�t/τP) when pre precedes post, i.e., when �t > 0, and depression of the form AD exp(�t/τD) when post precedes pre, i.e., when �t < 0.
From Bi and Poo (1998).

Another advantage of this procedure is that now the maximum adjustments, AP and AD, are dimensionless.143
Regarding the implementation of these general rules, if our marching scheme determines that cell k fires in the144

interval ( jdt,( j+1)dt) we potentiate its presynaptic weights and depress its postsynaptic weights via145

W
j+1
k,kpre

=W
j
k,kpre

+AP exp
((

Tkpre −( j+1)dt
)
/τP

)(
Wmax −W

j
k,kpre

)
W

j+1
kpost ,k

=W
j
kpost ,k

−AD exp
((

Tkpost −( j+1)dt
)
/τD

)
W

j
kpost ,k

.

We have coded these rules for the four-cell net, with146

AP =AD =0.3 and τP = τD =10 ms (27.11)

and initial weights147

W2,1 =W3,2 =W4,1 =0.75 and W4,3 =0.7 mSms/cm2, (27.12)

and illustrate our findings in Figure 27.16.148
We next apply this learning rule on E-to-E connections of the large net studied in Figure 27.13A. We suppose149

τE =2, τI =1, τP =5, τD =5 ms, AP =0.1, AD =0.3, WEE,max =0.2 mSms/cm2,

and as above drive the first 20% of the E-cells with the same spike pattern with period, P=100. We permit STDP to150
act on the E-to-E connection and arrive at the new weights in Figure 27.17.151

These gray-scale weight plots of Figs. 27.13 and 27.17 are not the best means of tracking weight shifts over time. In152
Figure 27.18 we report instead the running weight distribution.153

To the question, “What has the network learned?” we answer that it has learned to associate the “input pattern,”154
comprised of simultaneous firing of cells155

in≡{1 : 16},

with the output pattern of Figure 27.17B, i.e., the firing of cells156

out ≡{22 : 24,26,31 : 33,39,41,42,44,48,49,51,55,64,66,77 : 79}
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FIGURE 27.16 Spike (A) and weight (B) evolution via STDP in the four-cell net parameterized by Eqs. (27.11) and (27.12). We see indeed that
the direct connection, W4,1, is strengthened (up to Wmax = 1) while the indirect connection, W4,3, is diminished. (fourcell.m)
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FIGURE 27.17 Weights (A) and spikes (B) after 5 seconds of STDP learning with dt = 0.02 ms. A. On comparing to the initial weights in
Figure 27.13A we notice a striking depression in the weights between input cells (for they are firing independently of their network neighbors)
and a striking potentiation of the input to output connections (columns 1:16 and selected rows between 20 and 80). B. The resulting spike pattern
associated with input at t = 3.4 seconds. (EInetH.m)
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FIGURE 27.18 Running histogram of E-to-E synaptic weights for the network of Figure 27.13. As in the four-cell example we see that most
weights shift to the two extremes over time. (EInetH.m)
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within the next few milliseconds. In order to test the strength of this association we measure the learned network’s157
ability to complete incomplete input. In particular, we systematicallydrop input spikes and count the average number158
of dropped output spikes. We implement this test in EInetComp.m and find that dropping one input spike produces159
no loss in output fidelity. Dropping two input spikes produces an average loss of 4% of the output spikes and160
dropping three input spikes produces an average loss of 34% of the output spikes. Each average is computed over161
16!/(d!(16−d)!) random trials of d dropped input spikes. We see no loss when d =1 and substantial loss when d =3.162
At the intermediate stage we note that d =2 produces 12.5% input error and yet our output is only off by 4%. In that163
sense, STDP has endowed the random network of Figure 27.13A with the power of “pattern completion.”164

27.4 HODGKIN–HUXLEY BASED NETWORKS165

166
The leaky integrate and fire setting provides a close to minimal model of the salient properties of a network.167

In instances where there remain large gaps in our understanding of network architecture, cell morphology and168
electrophysiology this approach allows one to probe hypotheses concerning the behavior of large ensembles of cells.169
In settings where more data is available it makes sense to consider more detailed models. The literature is vast and170
growing and so we restrict ourselves here to the study of rhythmic behavior in two canonical situations, namely,171
mutual inhibition and mutual excitation.172

Oscillations via reciprocal inhibition. We consider, see Figure 27.19, a pair of driven Morris Lecar cells that inhibit173
one another. Recall from Exercise 5.11 that each cell possesses a leak, potassium and calcium current and that the174
latter is fast activating and so only the potassium current requires a gating variable, n. The four equations that govern175
the dynamics of the two cells are176

CmV ′
i(t)+gCam∞(Vi)(Vi −VCa)+gKni(Vi −VK)+gCl(Vi −VL)

+wis∞(Vp(i))(Vi −Vsyn)= Istim (27.13)

n′
i(t)= (n∞(Vi)−ni)/τn(Vi) i =1,2.

Furthermore p(1)=2 and p(2)=1, and n∞(V)= s∞(V)=m∞(V). The synaptic weights and potential are177

w1 =w2 =30 μS/cm2 and Vsyn =−80 mV, (27.14)

and the remaining constants and functionals are as specified in Exercise 5.11. Although this model exhibits complex178
action potentials, its synaptic conductances are in a sense simpler than those used in our leaky integrate and fire179
model. More precisely, the synapses in Eq. (27.13) are graded and instantaneous in the sense that the presynaptic180
potential Vp(i) is merely passed through a sigmoid, s∞, rather than thresholded and then delayed via integration181
through a conductance equation, e.g., Eq. (27.2). Thus, graded synaptic transmission does not require presynaptic182
action potentials. It is ubiquitous in invertebrate nervous systems and plays an important role in vertebrates as well,183
e.g., at the synapses made by photoreceptors with their target neurons, the bipolar cells of the retina.184

We approximate Eqs. (27.13) via the hybrid Euler scheme185

n
j
i =

τn
(
V

j−1
i

)
n

j−1
i +m∞

(
V

j−1
i

)
dt

dt+τn
(
V

j−1
i

)
V

j
i =

(Cm/dt)Vj−1
i +gCam∞

(
V

j−1
i

)
VCa +gKn

j
iVK +gClVL +wim∞

(
V

j−1
p(i)

)
Vsyn +I

j
stim

(Cm/dt)+gCam∞
(
V

j−1
i

)+gKn
j
i +gCl +wim∞

(
V

j−1
p(i)

) (27.15)

and illustrate first, see Figure 27.20, that each cell, in isolation, oscillates when driven by current in a particular interval.186
That interval corresponds to the values of Istim for which the gating nullcline, n=m∞(V) (black dashed “sigmoid” in187

Input

1 2

FIGURE 27.19 Using reciprocal graded inhibition to build an oscillator.
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Figure 27.20B) intersects the voltage nullcline,188

n= f (V)≡ Istim −gCam∞(V)(V −VCa)−gCl(V −VCl)

gK(V −VK)
(27.16)

(black dotted “cubic” in Figure 27.20) on the increasing branch of f .189
In analyzing network behavior it will be useful to consider the inhibited nullcline190

n=F(V)≡ Istim −gCam∞(V)(V −VCa)−gCl(V −VCl)−w(V −Vsyn)

gK(V −VK)
. (27.17)

Figure 27.21 depicts the membrane potential trajectories of two coupled Morris Lecar cells under low current stimu-191
lation and we proceed to study the coupled network under increasing levels of Istim in Figs. 27.22–27.24.192

Each of these oscillatory patterns are highly dependent on the coupling weights, w1 and w2 specified in Eq. (27.14).193
In §27.5 we will investigate means for the self-tuning of these weights.194

The Pinksy–Rinzel CA3 network. We construct a network comprised of N two-compartment E-cells of Eq. (10.8). We195
denote the network adjacency matrix by A. It is a binary, {0,1}, matrix for which Aij =1 if cell j is presynaptic to cell i.196
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FIGURE 27.20 A, B. The response of a single Morris Lecar cell to constant current injection, Istim = 0.55 μA/cm2. The voltage trace is plotted
in A and the full phase trajectory (solid red) in B. Also in B we have plotted the gating nullcline, n= m∞(V) (black dashed “sigmoid”), and the
voltage nullcline, Eq. (27.16) (black dotted “cubic”). The cell responds in an oscillatory fashion to those Istim for which the nullclines intersect on
the increasing branch of f . We quantify this in panel C. (ml1pp.m and ml1.m)
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FIGURE 27.21 The voltages responses (A), and phase plane (B) of the coupled system with Istim = 0.55 μA/cm2 delivered to each cell. The
time and voltage scales in A are the same as in Figure 27.20A. The two solid traces in B are the respective trajectories of cell 1 and cell 2. The dashed
and dotted curves are the two nullclines of Figure 27.20B, while the dash-dot curve is the inhibited nullcline of Eq. (27.17). We note that cell 1
fires first. Its voltage then declines gradually until the phase trajectory nears the maximum of f , at which point the voltage declines rapidly, hence
releasing cell 2 from inhibition. Skinner et al. (1994) refer to this mechanism as “intrinsic release.” (ml2.m)
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FIGURE 27.22 As we increase Istim we enter a regime of bistability with one cell resting at a high state and the other resting at a low state.
Here, the voltages responses (A), and phase plane (B) of the coupled system are depicted for Istim = 1.55 μA/cm2. (ml2.m)
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FIGURE 27.23 Voltages responses (A), and phase plane (B) of the coupled system with additional current, here Istim = 2.55 μA/cm2. We see
that network oscillation resumes and, as the inhibited cell slowly depolarizes, the phase trajectory nears a minimum of the inhibited nullcline, F,
and escapes its inhibition. Skinner et al. (1994) refer to this mechanism as “intrinsic escape.” (ml2.m)
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FIGURE 27.24 Voltages responses (A), and phase plane (B) of the coupled system as we inject still more current, here Istim = 3.05 μA/cm2. We
find that the lower branch of the inhibited nullcline, F, crosses the synaptic threshold, Vth = 0. Hence, as the voltage of the inhibited cell increases
past Vth it forces the trajectory of the free cell to follow the inhibited nullcline, and so permit the former to escape from inhibition. Skinner et al.
(1994) refer to this mechanism as “synaptic escape.” (ml2.m)
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Vs, 2

Vd, 1

Vd, 2

FIGURE 27.25 A pair of two-compartment cells, with current injection into the somatic compartment of cell 1 and an excitatory synaptic
projection into the dendritic compartment of cell 2 from the somatic compartment of cell 1. Compare with Figure 10.10A.

For the small circuit of Figure 27.25, e.g.,

AQ:1

197

A=
(

0 0
1 0

)
.

We suppose that each dendritic compartment has both AMPA and NMDA receptors. The vector representing total198
synaptic current is then199

Isyn = IAMPA +INMDA

where the AMPA current into the ith cell is200

IAMPA,i(t)=gAMPAxi(t)(Vd,i(t)−Vsyn), x′ =A1(Vs(t)−20)−x/2 (27.18)

and the associated NMDA current is201

INMDA,i(t)=gNMDAyi(t)M(Vd,i(t))(Vd,i (t)−Vsyn), y′ =A1(Vs(t)−10)−y/150 (27.19)

and yi ≤125. The function M encodes the voltage-dependent magnesium block via202

M(V)= 1
1+0.28 exp(−0.062(V −60))

,

a simple variant of Eq. (9.20). We note that Isyn is delivered to a dendritic compartment when the soma potential of a203
presynaptic cell exceeds 10 mV (for NMDA) and 20 mV (for AMPA).204
We suppose205

gAMPA =0.0045, gNMDA =0.014 mS/cm2, and Vsyn =60 mV, (27.20)

and, as in §10.3, we deliver a tonic −0.5 μA/cm2 to each soma. Into the first soma we inject an additional short current206
pulse and illustrate the response in Figure 27.26.207

Rhythmic activity across populations of neurons is thought to play an important role in the processing of sensory208
information (see Figure 10.6) as well as in diseases such as epilepsy. During epileptic seizures for instance, neurons209
of the hippocampus tend to fire rhythmic bursts of action potentials synchronized across a large neural population.210
Rhythmic activity is also well documented in the olfactory system of vertebrates and invertebrates for instance. We211
now investigate, in Figs. 27.27 and 27.28, the roles played by the AMPA and NMDA conductances in rhythmogenesis212
in large random networks. In each case we suppose that there are N =100 cells and that each cell receives input from213
approximately 20 of its neighbors. Rather than tracking individual spikes we instead record the fraction of bursting214
cells, i.e., the fraction of cells with soma potential in excess of 20 mV.215

We see that both the network frequency and its ability to sustain rhythms is highly dependent on the NMDA216
conductance. We next exhibit the impact of blocking AMPA receptors after rhythmogenesis.217

We note that the rhythms of Figs. 27.27 and 27.28 emerge from the cell and synapse models and the number, but218
not the pattern, of E-to-E connections. Rhythms are of course also initiated and modulated by inhibition. In Exercise 7219
we investigate the role of inhibition on burst duration and composition.220
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FIGURE 27.26 Response of the two-cell net of Figure 27.25 to transient current injection, 101(10,13)(t) μA/cm2, into the soma of cell 1. The
single cell parameters are as specified in Exercise 10.8 and the synaptic parameters in Eq. (27.20). The time step dt = 0.01 ms. A. The two soma
potentials. B. The AMPA and NMDA currents in the dendritic compartment of cell 2. The AMPA current mimics the input from cell 1 while the
NMDA current is initiated by this input but then is amplified by the subsequent burst in cell 2. Compare with Figure 9.11. (hyEprnetdemo.m)
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FIGURE 27.27 Response of a random 100-cell, 20% dense, network of Pinsky–Rinzel cells to transient current injection, 301(10,13)(t) μA/cm2,
into the soma of cell 1. The single cell parameters are as specified in Exercise 10.8 and the synaptic parameters as in Eq. (27.20), except gNMDA = 0.007
in (A) and gNMDA = 0.005 mS/cm2 in (B). (hyEprnet.m)
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FIGURE 27.28 The setting of Figure 27.27A with gAMPA set to zero for t > 400 ms. (hyEprnet.m)
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27.5 HODGKIN–HUXLEY BASED NETWORKS WITH PLASTIC SYNAPSES221

222
We return to the two-cell inhibitory network of Eq. (27.13) and investigate a learning rule that renders desired223

rhythmic behavior. We append to Eq. (27.13) equations that govern the evolution of synaptic weights, wi, in terms of224
the concentration of intracellular calcium, ci(t), in cell i. As Faraday’s constant permits us to tie Coulombs to moles225
and as calcium enters through membrane currents in Amperes per area, we choose to represent concentration in units226
of μC/cm2. We pose the simplest possible dynamics,227

τww′
i(t)= ci(t)−C

C
wi(t)

(27.21)
c′

i(t)=−gCam∞(Vi)(Vi −VCa)−ci(t)/τCa.

The former serves to steer wi to that configuration in which its calcium concentration hits the target value, C. The latter228
equation dictates that calcium enter through calcium channels and that it decays at rate τCa. We adopt the parameters229

τw =35 s, C =9000 μC/cm2, and τCa =10 s, (27.22)

and functionals230

m∞(V)= (1+ tanh((V +10)/20))/2, τn(V)=125/cosh(V/30), (27.23)
n∞(V)= (1+ tanh((V +10)/5))/2, s∞(V)=1/(1+exp(−(V +58)/10)),

and demonstrate in Figure 27.29 that each uncoupled cell is a tonic oscillator.231
We now couple two such cells, as in Eq. (27.13), and permit the weights to evolve according to Eq. (27.21). The232

results of one such simulation are presented in Figure 27.30.233

27.6 RATE BASED NETWORKS234

235
As pointed out earlier, the instantaneous firing rate captures a substantial fraction of the information conveyed236

either by single neurons (Chaps. 20 and 25) or neuronal populations (Chapter 26). Thus, network models are often237
formulated in terms of instantaneous firing rates. Here f (t) will denote the average firing rate, at time t, of a population238
of cells, in response to its average synaptic input, u(t). The spike generating machinery of the individual cells is239
collapsed into a single threshold. In particular, we will assume that240

f (t)=σ(u(t)) (27.24)
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FIGURE 27.29 The phase plane and individual trajectories (solid) associated with a Morris Lecar cell that obeys Eqs. (27.13), (27.22), and
(27.23). The dashed and dotted curves are the respective n and V nullclines. Compare with Figure 27.20B. (soto.m)
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FIGURE 27.30 Convergence of cell calcium levels (A), and synaptic weights (B), in accordance with the learning rule, Eq. (27.21). Evolution
of the oscillator is traced in panels (C), early, (D) middle, and (E) late. AQ:2Initial values were, V = (−80 −40) mV, n= n∞(V), c = (4000 5000) μC/cm2,
and w = (1 2) mS/cm2 The time step dt = 1 ms. (soto.m)
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FIGURE 27.31 Firing rates of a head direction cell from (A) the anterior thalamus, and (B) the postsubiculum. Here, θ is the head direction of
the rat moving in the environment, while θ0 is the cell’s preferred direction. Adapted from Zhang (1996).

for some sigmoidal function σ . The mean synaptic input is then assumed to evolve in a manner reminiscent of the241
conductance equations Eqs. (27.2) and (27.3). In particular242

τu′(t)=−u(t)+w(t)f (t), (27.25)

where w(t) is the average synaptic weight at time t. We will consider a concrete parametric generalization that permits243
insight into the interaction of conjoined populations.244

Head direction cells. Cells whose firing rate is strongly correlated with a fixed head direction during locomotion have245
been discovered in numerous regions of the rat brain, see Figure 27.31 for two examples.246
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For a preferred direction θ0 it is common to fit the rate curves of Figure 27.31 to functions of the form247

f (θ −θ0)=A+Bexp(K cos(θ −θ0)). (27.26)

Here A and Bexp(K) specify the respective background and peak rates, and K determines the width of the distribution.248
We proceed with the concrete choice in Figure 27.32A. For the threshold function we use249

σ(u)≡ a(log(1+exp(b(u+c))))β (27.27)

with parameter values as specified in Figure 27.32B. The synaptic weight function, w, will now couple the disparate250
θ populations. Given the rotational symmetry of the system the simple product, w(t)f (t), in Eq. (27.25), is replaced251
with angular convolution. In particular, u obeys252

τut(θ , t)=−u(θ , t)+w(θ , t)�σ(u(θ , t)), (27.28)

where253

w(θ , t)�σ(u(θ , t))≡ 1
2π

2π∫
0

w(θ −φ, t)σ(u(φ, t))dφ. (27.29)

We discuss weight specification first in the stationary rat and then in the moving rat. In the stationary case we presume,254
in response to an initial disturbance σ(u0(θ)), that u(θ , t) converges over time to U(θ). If the weight function, w(θ , t),255
likewise converges to some W(θ), then Eq. (27.28) yields256

U(θ)=W(θ)�σ(U(θ)). (27.30)

As we expect the limiting firing rate to coincide with the known f , we recognize that Eq. (27.30) is257

U(θ)=W(θ)� f (θ). (27.31)

where f and U(θ)=σ−1( f (θ)) are both known and so W may be determined via deconvolution. From the Convolution258
Theorem, Eq. (7.11), we recognize that their Fourier coefficients obey259

Ûn =Ŵn f̂n, n=0,±1,±2, . . . (27.32)

and so, formally, Ŵn = Ûn/f̂n. Unfortunately, given our choice of f and σ , this quotient does not produce a suitable W.260

More precisely, as |n|→∞ we find that f̂n → 0 faster than Ûn → 0 and so Ŵn →∞. In Exercise 8 we will derive a261
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FIGURE 27.32 A. The graph (black) of Eq. (27.26) when A = 1 Hz, K = 8, Bexp(K)= 39 Hz, and θ0 = 0. The red curve is the result of regularized
deconvolution, σ(W � f ) where W is the (black) weight function in C and f is the desired tuning curve. B. The sigmoid threshold function, Eq. (27.27),
with parameters a = 6.34,b= 10, c = 0.5, and β = 0.8. C. The stationary weight function, W, (black) computed from Eq. (27.33) with λ= 10−3max| f̂n|2.
The dynamic weight function, W, (red) computed from Eq. (27.34) with γ = 0.063. (hdnet.m)
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“regularized” solution262

Ŵn = Ûnf̂ ∗
n

λ+| f̂n|2
, (27.33)

where the regularization parameter, λ, is chosen by hand, to insure that the firing rate σ(u(θ , t)) indeed converges to263
f (θ) when the initial state u(θ ,0) is close to σ−1( f (θ)) and w(θ , t)=W(θ). We have coded this in hdnet.m and illustrate264
it in Figure 27.32B.265

For the stationary weight choice, w(θ , t)=W(θ), in Eq. (27.29), we expect that any initial disturbance will settle into266
a translate of f . We illustrate this in Figure 27.33A with a noisy combination of two competing head directions.267

We next investigate a model for incorporating dynamic information via an asymmetric weight shift268

w(θ , t)=W(θ)+γ (t)W ′(θ) (27.34)

where γ (t) is proportional to the angular velocity of the rat’s head. In the case that u(θ ,0)=U(θ) we may write the269
exact solution270

u(θ , t)=U(θ +(t)) where (t)= 1
τ

t∫
0

γ (s)ds (27.35)

in terms of the steady solution, U, and the antiderivative of γ . We recognize Eq. (27.35) as a traveling bump. If given271
general initial conditions, we discretize knowns and unknowns,272

uj(θ)≈u(θ ,( j−1)dt) and wj(θ)=w(θ ,( j−1)dt)

then we can solve Eq. (27.28) via the hybrid Euler rule273

(τ/dt)(uj+1(θ)−uj(θ))=−uj+1(θ)+wj+1(θ)�σ(uj(θ))

or274

uj+1(θ)= τuj(θ)+dtwj+1(θ)�σ(uj(θ))

τ +dt
. (27.36)

The shifted weight function is depicted in Figure 27.32 C while its resulting dynamic response is illustrated in275
Figure 27.33B.276
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FIGURE 27.33 The evolution of the firing rate, f =σ(u), where u is the solution, obtained via Eq. (27.36) with dt = 1 ms, of the synaptic input
equation, Eq. (27.28), with initial data corresponding to a noisy sum of two shifted copies of f . A. The stationary case, w = W. B. The dynamic case,
w = W +γ W′ with γ = 0.063. The time constant τ is equal to 10 ms. (hdnet.m)
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27.7 BRAIN MAPS AND SELF-ORGANIZING MAPS277

278
A fascinating feature of visual cortex is that it is organized in an orderly manner with nearby neurons sharing many279

common features that vary relatively smoothly as one travels along the cortical surface. This leads to the concept of280
topographic maps that underlies the organization of both sensory and motor areas of the brain. Thus, in visual cortex281
nearby neurons will usually have nearby receptive fields in visual space, but the topographic organization is more282
refined than that. Usually, nearby neurons will also share the same orientation preference, the same direction of motion283
preference, as well as preference for the same eye. Thus, multiple features are jointly represented in topographic maps.284
Figure 27.34Aillustrates the map of orientation preference in the primary visual cortex of the tree shrew. In most regions285
of the map, orientation preference varies smoothly (Figure 27.34B, left), except for singular points close to which all286
possible orientation preferences are found (Figure 27.34B, right). These points are called pinweels. A central question287
of developmental neurobiology is how such maps arise. Two broadly defined mechanisms are thought to be at play.288
The first one is based on molecular guidance cues, which are thought, e.g., to help growing axons find the appropriate289
subregion where they should be making synapses with target neurons. The second mechanisms is visual experience290
which is thought to trigger learning, allowing maps to be refined over time.291

Here, we examine a high level approach to the problem of development of maps of orientation and direction292
preference in visual cortex using a learning rule based on visual experience. To begin we suppose that a retinal293
square, [0,L]× [0,L], is mapped (fairly regularly) onto a square grid of N2 cortical cells. In particular, we suppose that294
the center of the receptive field of cortical cell Cij lies at295

xij = iL/N +U(0,σr), yij = jL/N +U(0,σr), i =1,2, . . . ,N, j =1,2, . . . ,N (27.37)

where U(0,σr) is the uniform distribution with mean 0 and width σr . This leads to a retinotopic map like the one of296
Figure 27.35A. We also assume that the preferred orientation of cell Cij has magnitude and phase297

(a2
ij +b2

ij)
1/2 and arctan(bij/aij)/2

1 mm

200 �m

Lateral

Top

(A)

(B)

FIGURE 27.34 A. Map of orientation preference in the primary visual cortex of the tree shrew obtained by intrinsic imaging. The local
orientation preference is coded in gray scale according to the key shown below. B. Three enlarged portion of the orientation preference map of A
illustrate linear zones (left) and pinwheel arrangements (right). Adapted from Bosking et al. (1997).
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(A) (B)

FIGURE 27.35 AQ:3Initial cortical map. A. Lines of constant x (red x = 1,2, . . .,14) and constant y (black y = 1,2, . . .,14) determined by Eq. (27.37)
with L= 15, N = 128, and σr = 0.5. B. Random preferred orientations (red) and directions (black arrows) of the first 32-by-32 block of cortical cells.
(codpm.m)

and that the preferred direction has magnitude and phase298

(c2
ij +d2

ij)
1/2 and arctan(dij/cij).

We commence from the random distribution of preferred orientations and directions depicted in Figure 27.35B.299
We now parameterize the receptive field of cortical cell Cij via300

wij ≡ (xij yij aij bij cij dij)

and investigate a simple learning rule that adapts w to stimuli. Given a visual stimulus, v= (x y a b c d), centered at301
(x,y), with orientation (a,b) and direction (c,d), we find its closest receptive field, wIJ, by solving302

‖v−wIJ‖=min
ij

‖v−wij‖. (27.38)

We then bring the receptive fields of those cells close to CIJ into alignment with the stimulus v via the update rule303

wij =wij +εe−((i−I)2+( j−J)2)/(2σ 2)(v−wij). (27.39)

This two-step process, Eqs. (27.38) and (27.39), when applied to a large and varied set of stimuli, has the power to304
organize the highly disordered map of Figure 27.35 in a fashion that agrees with experimental findings. The result is305
known as a self-organized map, and the process itself is often interpreted in broad physiological terms as a competitive306
mechanism that detects, via Eq. (27.38), the cortical region that responds maximally to a given stimulus followed by307
enhancement, Eq. (27.39), of the neighboring active synapses. Its application to the problem at hand, with308

ε =0.02 and σ =2.5

results in the map of Figure 27.36.309
We note that Figure 27.36B concurs with several key experimental findings. In addition to orientation being orthog-310

onal to direction, we observe (i) in regions of small orientation magnitude the orientation varies by 180◦ around311
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(A) (B)

*

FIGURE 27.36 Final cortical map achieved after 7 ×105 stimulus presentations. A. Lines of constant x (red x = 1,2, . . .,14) and constant y (black
y = 1,2, . . . ,14). B. Preferred orientations (red) and directions (black arrows) of the first 32-by-32 block of cortical cells. Line lengths reflect vector
magnitudes. A pinwheel is indicated by the gray asterisk and a linear fracture by the dashed gray line. (codpm.m)

a “singularity,” or pinwheel, and (ii) regions of small direction magnitude are separated by “linear fractures” that run312
either vertically or horizontally.313

27.8 SUMMARY AND SOURCES314

315
As recently as ten years ago, simultaneous recordings from large populations of neurons were still fairly rare. Thus,316

most models of network activity are either higher level abstractions (e.g., Hopfield networks), or have been inferred317
indirectly through repeated single neuron recordings and anatomical data. Nowadays, technical advances such as318
multielectrode arrays and optical imaging techniques have rendered population recordings fairly common, opening319
the way for a more refined understanding of neuronal networks. Yet, these new techniques also have substantial320
limitations. For instance the synaptic connections between simultaneously recorded neurons are usually unknown,321
and although many cells are recorded simultaneously, this is often at the expense of a detailed characterization of322
individual ones. For a glimpse at this rapidly growing experimental literature, we recommend Zochowski et al. (2000),323
McLean et al. (2007), Perez-Orive et al. (2002), Ohki et al. (2006), and Airan et al. (2007).324

Hopfield networks go back to Hopfield (1982). See Amit (1992) for a thorough treatment. Exercise 2 is drawn from325
Goles-Chacc et al. (1985). STDP was first observed by Levy and Steward (1983). In weakly electric fish, its role is326
particularly well understood. See, e.g., Bell et al. (1997). Song et al. (2000) is an excellent theoretical counterpart to327
the experimental work of Bi and Poo (1998). We demonstrate in Exercise 5 that STDP in an LIF model may produce328
the backward shift in hippocampal place fields observed by Mehta et al. (1997). Our work on Hodgkin–Huxley based329
networks is based on Skinner et al. (1994), Soto-Treviño et al. (2001), and Pinsky and Rinzel (1994). We consider330
the extension of the latter by Booth and Bose (2001) in Exercise 7. The important question of the degree to which the331
dynamics of Hodgkin–Huxley based networks may be approximated by those of Hopfield-like networks is addressed332
by Terman et al. (2008). Our exposition of rate based networks, including Exers. 8–10, is drawn from Zhang (1996).333
Shriki et al. (2003) establish conditions under which Hodgkin–Huxley based networks may be approximated by334
rate based networks. The section on self-organizing maps is based on Swindale and Bauer (1998). Self-organizing335
maps are due to Kohonen, see Kohonen (2001) for a comprehensive overview. For further neuronal application of336
self-organizing maps see Ritter et al. (1992). Traub and Miles (1991) discusses synchronization mechanisms in the337
hippocampus. For synchronization mechanisms based on electrical synapses in the cortex, see Mancilla et al. (2007).338
Synchronized oscillatory activity across a broad range of olfactory systems is reviewed by Gelperin (2006). For a339
broader perspective on synchronization in biological and other systems, see Pikovsky et al. (2003). For a experimen-340
tal approach to the role of network architecture in synchronization see Bonifazi et al. (2009). For the theory, in a341
neurobiological context, behind such scale-free networks we recommend Freeman and Kozma (2009).342
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27.9 EXERCISES343

344
1. Argue that, for a given weight matrix, W, we may sharpen the Hopfield threshold function by showing that there345

exists a b∈RN such that if346

Hop�

i (x)≡
{

1 if x >bi

−1 if x <bi ,
(27.40)

then in fact Hop(Ws)=Hop�(Ws) for all s∈{−1,1}N .347

2. †In a Hopfield net with undirected edges, we observe that W =WT. Use this symmetry, the b vector of the previous348
exercise and the “energy” functional349

E( j)≡−(s j−1)TWs j +bT(s j +s j−1) where s j =Hop�(Ws j−1),

to argue that the energy difference �E≡E( j+1)−E( j) is simply350

�E=−(s j+1 −s j−1)T (Ws j −b).

Use this to show that if s j+1 �= s j−1 then �E<0 and so conclude that no attractor of an undirected Hopfield net351
can have period greater than 2.352

3. †In the case of periodic input, Eq. (27.6), for the two-cell network we may solve Eq. (27.2) for gE,1 by hand. In353
particular, please show that354

gE,1(t)= winp

τE
exp((P− t)/τE)

1−exp(Pt/P�/τE)

1−exp(P/τE)
(27.41)

where x� denotes the largest integer less than x. First show that gE,1(P+)= winp/τE, then gE,1(t)= exp((P− t)/355
τE)winp/τE for P≤ t <2P, then gE,1(2P+)= (1+exp(−P/τE))winp/τE and so356

gE,1(t)= exp((P− t)/τE)(1+exp(P/τE))winp/τE, 2P≤ t <3P.

Continuing in this fashion you will find a (summable) finite geometric series.357

4. Experiment with threecell.m to further delay the spiking of cell 3. In particular, retain P=2 but set W3,1 =W3,2 =358
w and find the smallest w (to two decimal places) such that cell 3 fires once for every two spikes of cell 2.359

5. †The rat hippocampus is known to contain cells that fire when the rat is near a particular place within a given360
environment. For this exercise we will suppose that the rat is running clockwise, at a fixed velocity, along a circular361
track. As the rat traverses the track the associated “place cell” receives input. We consider a ring, Figure 27.37,362
of 120 integrate and fire cells with reciprocal excitatory connections among immediate neighbors and excitatory363
input into each cell. We suppose that the rat spends 100 ms in each place field and that the associated cell receives364
a kick, winp =10, every 20 ms. The cell parameters are365

τm =20, τgE =5, tref =5, Vrest =−70, Vthr =−54, Vreset =−60,

where times are in ms and voltages in mV.366

120

1

2

FIGURE 27.37 A segment of a ring of 120 “place cells.”
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We set the plasticity parameters367

wmax =5, winit =0.5, τ+ =20, τ− =20, A+ =8, A− =8.4

and note that as the rat travels clockwise and excites cell j then the connection to cell j+1 will increase for368
when the rat enters the place field of cell j+1 its presynaptic cell will have just fired. Conversely, as cell j fires369
independently of cell j+1 we expect to see a decrease in the associated weight. The effect of this weight change370
is a slight backward shift in all of the place fields.371

Please illustrate this by coding the small ring and tracking the spikes in cell 2 and the weights between cells372
1 and 2, as in Figure 27.38, as the simulated rat completes 20 laps of the ring with a time step of dt =1 ms. With373
120 place cells, each receives external input over a 3 degree window.374
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FIGURE 27.38 A. The angle at which cell 2 fires as a function of lap number. B. The forward and backward weights as a function of time.
(bkwshift.m)

6. Show that the calcium target, C, determines the oscillator frequency by adapting soto.m and producing375
Figure 27.39.376
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FIGURE 27.39 The calcium target, C, in Eq. (27.21) determines the oscillator frequency. (sotofreq.m)

7. †We investigate, following Booth and Bose (2001), the effect of inhibition on the burst shape of the two-377
compartment Pinksy–Rinzel CA3 cell. We presume, see Figure 27.40, that the inhibitory cell is isopotential and378
that it is driven by the somatic compartment of the excitatory cell and that it in turn inhibits that cell’s dendritic379
compartment.380
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Vs

Vi

ge gi

Is
Vd

Ii

FIGURE 27.40 The simple EI net of Booth and Bose (2001).

We suppose that the inhibitory cell follows Morris Lecar dynamics and that the full network is described by381

CmV ′
s =−gL(Vs −VL)− INa(Vs)− IK,DR(Vs)+ gc(Vd −Vs)+ Is

p

CmV ′
d =−gL(Vd −VL)− ICa(Vd)− IK,AHP(Vd)− IK,C(Vd)+ gc(Vs −Vd)

1−p
−gisi(Vd −Vinh)

CmV ′
i =−gL,i(Vi −VL,i)− ICa,i(Vi)− IK,i(Vi)+ Ii −gese(Vi −Vexc),

with functionals382

ICa,i(V)=gCa,im∞(V)(V −VCa,i), m∞(V)= (1+ tanh((V +1.2)/18))/2

IK,i(V,w)=gK,iw(V −VK), w′ = (w∞(Vi)−w)/τw(Vi)

w∞(V)= (1+ tanh((V +25)/11))/2, τw(V)= (25/4)/cosh((V +25)/22)

and parameters383

gCa,i =4.4, gK,i =8, gL,i =2, ge =5 mS/cm2,

VCa,i =120, VK,i =−84, VL,i =−60, Vinh =−80, Vexc =0 mV

Is =0.3, and Ii =88 μA/cm2,

and synaptic kinetics384

s′
e =21(Vs +10)(1−se)−1(−10−Vs)se

s′
i =21(Vi +10)(1−si)−1(−10−Vi)si .

and initial conditions, Vd(0)=Vs(0)=0 mV, Vi(0)=−35 mV, w(0)=w∞(−35), and q(0)=0.1. Code this system385
and investigate (by reproducing Figure 27.41) the impact of the inhibitory weight, wi , on the burst frequency and386
shape in the somatic compartment, Vs, of the excitatory cell.387

8. †Recall that the naive solution, Ŵn = Ûn/f̂n, to the deconvolution problem Eq. (27.31), led to infinite growth in388
the high frequencies of W. One means of controlling this growth is to introduce a regularization, or penalization,389
parameter into an associated minimization problem. In particular, rather than attempting to minimize the average390
squared distance of W(θ)� f (θ) from U(θ), we minimize391

E(W)=
2π∫

0

(W(θ)� f (θ)−U(θ))2 dθ +λ

2π∫
0

W(θ)2 dθ (27.42)

for some λ>0. We see that λ mediates a trade-off between fidelity and size. Use Parseval’s identity, Eq. (7.10), to392
arrive at393

E(W)=
∞∑

n=−∞
|Ŵnf̂n −Ûn|2 +λ|Ŵn|2. (27.43)
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FIGURE 27.41 The effect of inhibition on frequency and burst shape. (A) gi = 0. (B) Zoom on (A). (C) gi = 0.315. (D) Zoom on (C). (E) gi = 0.34.
(F) Zoom on (E). (hyprEInet.m)
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Do not be dismayed by these infinities, for this is simply a sum of independent squares, and as such we can394

minimize them one at a time. In particular, argue that the choice of Ŵn that minimizes |Ŵnf̂n −Ûn|2 +λ|Ŵn|2 is395
the one featured in Eq (27.33).396

9. Confirm that Eq. (27.35) is indeed a solution to Eq. (27.28) when w is of the form Eq. (27.34). Hint: Use Exercise 7.4.397

10. †Given the even tuning function, f (θ)= f (−θ), of Figure 27.32(A), argue that398

(i) f̂n = f̂−n,399

(ii) As U(θ)=σ−1( f (θ)) then U is also even and so Ûn = Û−n,400

(iii) Eq. (27.33) now implies that W is even.401

(iv) As W is even W ′ must be odd, i.e., W ′(−θ)=−W ′(θ).402
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