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1. The Passive Isopotential Cell

1.pint 1. Introduction

Modern neuroscience can be traced back to work of Camillo Golgi, an
Italian physician and scientist who invented around the end of the 19th

century a method allowing to stain randomly and sparsely neurons, the
cells constituting the elementary building blocks of all nervous systems.

This anatomical method is now called the Golgi stain in his honor. The
Spanish neuroanatomist Santiago Ramón y Cajal first took advantage of

the Golgi method to systematically describe the different types of neurons
contained in the brain of many animal species (fig. 1.1). His work founded
modern neuroscience by showing that neurons typically consist of several

distinct compartments: the soma that contains the cell nucleus and its
genetic code, the axon that allows electrical signals to propagate to other

downstream neurons and the dendrites where a neuron typically receives in-
puts from other, upstream neurons through electrical or chemical synapses.

The electrical signals that propagate along the axon are generated at the
axon hillock whereas the dendrites of several types of neurons contain small

protuberances called spines where synapses are often localized (fig. 1.2).

gc

Figure 1.1. Portraits of Camillo Golgi (top) and Santiago Ramón y Cajal
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(bottom) and drawing of cortical pyramidal cells from Cajal (right).

pyr

Figure 1.2. Schematic illustration of a pyramidal neuron and its main
compartments.

The neuron is isolated from the extracellular space by the cell membrane,
a lipid bilayer that acts simultaneously as an electrical insulator and as an
electrical capacitor, meaning that it is able to store electrical charge. A

fundamental property of neurons is that the concentration of ions in the
acqueous solution that constitutes the cell intracellular fluid, or cytoplasm,

is different from the concentration in the extracellular space (fig. 1.3). This
difference is maintained by a battery of specialized proteins embedded in

the cell membrane called exchangers and pumps. Exchangers and pumps
are able to shuttle ions in or out of the cell at the expense of energy.

In addition, other proteins embedded in the membrane act as channels,
allowing specific ions, such as sodium, potassium or chloride to move in
or out of the cell. The simplest ones that we will study first exist in a

single, open state, always allowing ions to flow across them. More complex
channels can be either closed or open, with their opening controlled either
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by the presence of specific chemicals such as neurotransmitters that bind

to them or by changes in the electrical potential across the membrane (fig.
1.4).

rest

Figure 1.3. The lipid bilayer membrane is illustrated on the left along

with ion concentrations (in millimoles per liter, mM) typical of the giant
squid axon, a neuron responsible for fast escape responses. Accordingly,

the diagram on the right illustrates the typical relative ionic concentrations
inside and outside a neuron.

chans

Figure 1.4. The lipid bilayer membrane contains exchangers (top) and

pumps that maintain appropriate ionic concentrations by shuttling specific
ions in and out of the cell at the expense of energy (ATP). In addition,

the cell membrane contains channels that let specific ions move in or out
of the cell. These may be passive, meaning that they are stably open over
time. Many channels are active, meaning that they can be either closed

or open depending either on the potential across the cell membrane or in
response to a ligand such as a neurotransmitter substance (green disc).

4



How does an electrical potential arise across the cell membrane? This can

be intuitively understood from the description given above by considering a
simple model. Assume that two compartments of a container are filled with

an acqueous solution containing a chloride salt at different concentrations.
Assume also that the two compartments are separated by an insulating
membrane containing chloride channels, so that only chloride ions can flow

across it. Initially, the membrane potential will be zero since there is no
difference in electric charge across the membrane. However, chloride will

start to flow down its concentration gradient and, since cations cannot pass
the membrane, this will result in an electrical charge imbalance and thus an

electrical membrane potential. Net flow will stop at equilibrium, when the
membrane potential gradient exactly compensates for the concentration

gradient across the membrane (fig. 1.5).
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Figure 1.5. Schematic illustration of how electrochemical potentials arise.

If the membrane is specifically permeable to Cl− and not to associated
cations, then diffusion of chloride across its concentration gradient will

setup an associated electrical potential that will reach equilibrium when
the diffusion and electrical gradients neutralize each other.

To formalize these arguments, we begin with the oversimplified geometry
of a spherical cell and investigate the passive role its membrane plays as a
leaky dielectric layer separating two conductors in the presence of exoge-

nous current injection. To say that the cell is isopotential is to imply
that the transmembrane potential difference, V = φin−φout, does not vary
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in space. Our goal here is to derive an equation for the evolution of V of

with time.

We suppose our cell to have outer radius a with a membrane of thickness
δ. We will focus here on the consequences of a concentration gradient of

charged particles across the membrane. For example, typical values of the
inner and outer concentration of chloride, Cl−, in the squid giant axon are

0.04 and 0.56 Molar respectively. (1 Molar denotes 1 mole per liter). We
will use the symbol c(r) to denote the concentration of Cl− at radius r for
a − δ ≤ r ≤ a.

φin

φout

stimI
inc

outc

δ

a

geo

Figure 1.6. A cross section of a spherical cell with radius a and membrane

thickness δ. The inner and outer concentrations are denoted cin and cout

while the inner and outer potentials are denoted φin and φout. We have

also impaled the cell with an electrode ready to deliver the current Istim.

1.nern 2. The Nernst Potential

As explained in the previous section, the gradients in both concentration
and charge trigger associated Fickian and Ohmic fluxes through the mem-

brane, respectively. Regarding the former, Fick’s law states that the flux
of matter across a surface is proportional to the concentration gradient,
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i.e.,

JFick(r) = −D
dc

dr
(r) (1.1)fick

where D (area/time) denotes diffusivity. This diffusivity is typically de-
composed into D = µkT where T is temperature, k is Boltzman’s constant

and µ denotes mobility. Ohm’s law states that the flux of ions in solution
across a surface is proportional to the potential gradient, to the charge

density, and to mobility, i.e.,

JOhm(r) = −µzec(r)
dφ

dr
(r) (1.2)ohm

where z denotes the ion’s valence (z = −1 for Cl−) e denotes the elementary
electronic charge, and so zec is a measure of charge density. The combined
or net flux is therefore

J(r) = −µkT
dc

dr
(r) − µzec(r)

dφ

dr
(r) (1.3)NP

This will now permit us to deduce the resting potential gradient from the

resting concentration gradient. At rest we expect the net flux, J , to vanish.
As such, we note that (1.3) takes the form

−kT
d

dr
(log c(r)) = ze

dφ

dr
(r).

We next integrate each side through the membrane, i.e., from r = a− δ to
r = a, and arrive at

ze(φ(a − δ) − φ(a)) = kT log(c(a)/c(a − δ)) (1.4)N-

In terms of in-out notation of Figure 1.6 and V ≡ φin−φout Eq. (1.4) takes
the form

V =
kT

ze
log

cout

cin
(1.5)npot

At T = 27oC the leading coefficient is kT/e = 25.8 mV . If c is indeed

pegged to chloride concentration then recalling that z = −1, cin = 0.04 M
and cout = 0.56 we find

VCl = −68 mV
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for the value of the chloride Nernst Potential.

1.mcons 3. Membrane Conductance

Now when the transmembrane potential, V , is different from VCl we expect

a flux of ions to cross the membrane and for an associated current to
flow. Our goal here is to establish an associated membrane conductance.

In fact the membrane is an insulating sheet perforated with a significant
number of channels through which chloride ions may pass fairly easily. This
conductor/insulator composite presents an effective bulk resistivity of

ρCl =
1

3
1010 Ωcm

to current flow. When scaled by the membrane thickness, e.g. δ = 10 nm,

we arrive at the effective membrane conductance (per unit area)

gCl =
1

ρClδ
= 0.3 mS/cm2

where S is for Siemens, the reciprocal of Ω. Next to VCl it takes its place

in the simple circuit diagram below.

Cl
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g

I

m oi
ClV

φφφ

mcon

Figure 1.7 The equivalent circuit model of the cell’s leaky biased mem-

brane. We have labeled the intermediate potential solely for clarity.

We may now use Ohm’s law to represent the associated current density.
We take potential differences in the direction of the arrow, namely, left to
right. As such,

φin − φmid = VCl

and so

ICl = gCl(φmid − φout) = gCl(φin − VCl − φout) = gCl(V − VCl). (1.6)ICl

The current density takes units of µA/cm2.
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1.mcap 4. Membrane Capacitance & Current Balance

In addition to presenting significant resistance biological membranes form
good dielectrics between their conducting surfaces. The effective dielectric

constant, in Farads per cm, is

ε = 10−12 F/cm.

When scaled by the membrane thickness, δ = 10 nm, we arrive at the

membrane capacitance

Cm = ε/δ = 1 µF/cm2.

The associated displacement current operates in parallel with the Ohmic
current.

φ
VCl

in outmid

I

g

Cl

Cl

IC

Cm

Istim φφ

mcap

Figure 1.8 The equivalent circuit model of the cell’s leaky biased and
dielectric membrane. These two currents will balance the injected current,

Istim.

The current density associated with a membrane capacitance is propor-

tional to the rate of change of the potential across the capacitor. That
is

IC(t) = Cm
d

dt
(φin(t) − φout(t)) = Cm

dV

dt
(t) (1.7)IC

Our interest is in tracking how these two membrane currents respond to
an injected pulse of current. In order to apply Kirchhoff’s Current law we

scale the membrane current densities by membrane surface area, A, and
find

Istim(t) = AIC(t) + AICl(t). (1.8)kcl

On substituting (1.6) and (1.7) this becomes an ordinary differential equa-

tion for the membrane potential V . Namely,

Istim(t) = ACmV ′(t) + AgCl(V (t) − VCl). (1.9)pode
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We solve this starting from rest, i.e., V (0) = VCl, subject to a 10 pA
stimulus that turns on at 2 ms and off at 22 ms, and for a cell of radius

a = 10 µm. In this case A = 4πa2 = 4π10−6 cm2.
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Figure 1.9. The solution (left) to (1.9) and the associated membrane
currents (right) for a cell of radius 10 µm subject to a 20 ms 10 pA current

injection.

This model is indeed rich enough to replicate the passive response of actual

cells. In coming chapters we shall spend considerable effort developing
detailed models of more complicated membrane conductances. We shall see

that many postsynaptic receptors behave like biased dynamic conductance
changes.

1.syn1 5. Synaptic Conductance

The chloride conductance is the simplest of the membrane conductances.
We shall see that there are many additional conductances that are either
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gated by ligands, e.g., neurotransmitters, or by voltage, or by a combina-

tion of both.
This section is devoted to a first attack on the former. As the ligand gated

membrane receptors bind and unbind neurotransmitter they produce a
transient conductance change biased by an associated reversal potential.
This is modeled by adding a third parallel branch to the membrane circuit

of Figure 1.8

φ φ φ
VCl

in outmid

I

g

Cl

Cl

IC

Cm

Vsyn

Isyn

g syn

syn1

Figure 1.10. The circuit diagram for the passive cell with synapse. The
arrow through the synaptic conductance is there to indicate that its con-
ductance density varies with time.

Kirchhoff’s Current Law, in the absence of injected current, now reveals

that V must satisfy

CmV ′(t) + gCl(V (t) − VCl) + gsyn(t)(V (t) − Vsyn) = 0 (1.10)psyn

Though we shall derive a number of functional forms for gsyn(t) it will
suffice here to note that Isyn(t) typically rises faster than it decays and
that the stereotypical response can be achieved by choosing gsyn to be a

so–called ‘alpha’ function,

gsyn(t) = gmax(t/τα) exp(1 − t/τα) (1.11)alpha

where τα is the synaptic time constant (ms), and gmax is the maximal
conductance density (mS/cm2).
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If Vsyn > VCl then Isyn will serve to increase (depolarize) V . In this case
we call the synapse excitatory.

If Vsyn < VCl then Isyn will serve to decrease (hyperpolarize) V . In this
case we call the synapse inhibitory.
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Figure 1.11. Response to excitatory synaptic input, Vsyn = 0, gmax =

0.01 (mS/cm2) and τα = 2 ms.
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1.exe 6. Exercises

1. The stimulus used in Figure 1.9 is on long enough for the response V
to level off. Deduce from Eq. (1.9) the maximum value of V . Hint:

V ′(t) = 0 there.

2. Regarding the gsyn of Eq. (1.11), compute (i) its maximum value and
the time at which it attains this value, and (ii) its integral over all
time.

3. Most cells receive both excitatory and inhibitory input. Draw the

circuit diagram (analogous to Figure 1.10) and express KCL as an
ordinary differential equation (analogous to Eq. (1.10)) in the case that

our spherical cell receives both excitatory input with conductance gE(t)
and associated potential VE and inhibitory input with conductance
gI(t) and associated potential VI .
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2. The Active Isopotential Cell

The passive model constructed in chapter 1 provides a fairly accurate pre-

diction of the cell’s response to ‘small’ current and/or synaptic input. For
larger inputs this model however fails to reproduce the observed ‘action

potential.’ For example, if we presume a stimulus of the form

Istim(t) = (t > 2)(t < 22)I0

and we adopt the membrane model of Hodgkin and Huxley we would ex-
pect the response to change abruptly as the amplitude, I0, exceeds approx-
imately 16 pA. We depict this scenario below.
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Figure 2.1 Response of the active cell to subthreshold (left) and suprathresh-
old (right) current stimuli.

Following Hodgkin and Huxley, the action potential is understood as the
product of voltage–gated conductances that permit the coordinated influx
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of sodium, Na+, and the eflux of potassium, K+. As with chloride, the

respective concentration gradients beget associated Nernst potentials, and
we are compelled to consider a more complex circuit diagram.

g

I

outin
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Cl

Nag

NaI

NaV

Kg

KI

KV

mC

CI

Cl

hhcirc

Figure 2.2 The equivalent circuit model of the cell’s active membrane.

As these channels are not entirely closed at rest, the resting potential
is not simply VCl. We shall eventually derive a formula for it, but for

now we suppose the resting potential to be some measured value, Vr.
It is very convenient, when deriving equations that start from rest, to

choose variables with respect to rest. To wit, we denote our new dependent
variable by

v = V − Vr

and our three new membrane batteries by

vNa = VNa − Vr, vK = VK − Vr, and vCl = VCl − Vr.

2.gK 1. The Potassium Channel

Hodgkin and Huxley observed that the potassium conductance varied with
time and voltage. At a fixed voltage however they observed that the con-
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ductance grew monotonically in time to a steady level (fig. 2.3, right).
They therefore postulated a potassium conductance of the form

gK = gKn4(t; v) (2.1)gK

where gK is the conductance/area of open K+ channels n(t; v) is the prob-
ability that a K+ channel is open at time t.

hhres

Figure 2.3. Time course of the sodium (left) and potassium (right) con-

ductances measured by Hodgkin and Huxley in the giant squid axon as
the membrane potential was stepped to a constant value above rest (labels

in the middle). The points represent experimental data, the solid lines
represent the fits of their model as explained in the text.

To say that n approaches a steady (voltage dependent) level n∞(v(t)) at

the (voltage dependent) rate τn(v(t)) is to ask that

n′(t) =
n∞(v(t)) − n(t)

τn(v(t))
(2.2)dn

Hodgkin and Huxley determined the exponent, 4, and the functional forms

of n∞ and τn via an ingenious combination of theory and experiment. Re-
garding the latter, they could chemically and electrically rig their (squid
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giant axon) preparation in such a way that IK was the only current. This
meant doctoring the bath to eliminate other ions, inserting a long con-

ductor to thwart spatial effects and, most importantly, using a voltage

clamp to simultaneously thwart the capacitive current and so measure

the K+ current over a range of physiological voltages. More precisely, they
could clamp the voltage to Vc and record the current necessary to main-

tain the clamp (fig. 2.4). As IK was the only uninterrupted current their
measured current was indeed IK .

hhschem

Figure 2.4. Schematic illustration of the voltage clamp setup of Hogdkin

and Huxley. The giant axon is sealed at one end. Both the intra- and
extracellular fluids and ionic concentrations are controlled. An electrode

is placed inside the giant axon to measure potential with respect to the
extracellular fluid (top, E ′). The potential is read on a voltmeter (E).

An amplifier (FBA) is used to compare the measured potential with the
desired one (command pulse), the difference determines the injected cur-
rent (I ′) necessary to compensate any changes. The resulting membrane

current is measured using an ampmeter (I).

If we denote by {t1, t2, . . . , tN} the times at which the current was measured
then we can invert Ohm’s law and find

gK(tj; vc) = IK(tj)/(Vc − VK) j = 1, . . . , N

Now, in order to reconcile this with Eq. (2.1) we note that with v(t) = vc

in Eq. (2.2) that

n(t; vc) = n∞(vc) + exp(−t/τn(vc))(n∞(0) − n∞(vc)). (2.3)nc
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They first eye-ball

gK = 24.31 and gK(0; vc) = 0.24

and then argue that

n∞(0) = (gK(0; vc)/gK)1/4 and n∞(vc) = (gK(tN ; vc)/gK)1/4 .

This leaves only τn(vc) remaining. They determine it by minimizing

Φ(τ ; vc) =
1

N

N
∑

j=1

(gK(n∞(vc) + exp(−tj/τ)(n∞(0)− n∞(vc))
4 − gK(tj; vc))

2

over τ at each vc. They then parametrize these functionals in terms of

τn(v) =
1

αn(v) + βn(v)
and n∞(v) = αn(v)τn(v)

where

αn(v) =
.01(10− v)

exp(1 − v/10)− 1
and βn(v) = exp(−v/80)/8
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Figure 2.5. The gating functions that govern the potassium channel.
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2.gNa 2. The Sodium Channel

With sodium back in the bath the response is considerably different. The
conductance rises and falls (fig. 2.3, left). Hodgkin and Huxley chose

to model this via two, independent, voltage driven processes. At a fixed
voltage however Hodgkin and Huxley observed that the conductance grows

and then decays. They therefore postulated a sodium conductance of the
form

gNa = gNam
3(t; v)h(t; v) (2.4)gna

where the activation (growth) variable, m, and inactivation (decay) vari-
able, h, obey, as in (2.2)

m′(t) =
m∞(v(t)) − m(t)

τm(v(t))
and h′(t) =

h∞(v(t))− h(t)

τh(v(t))

As above if the membrane potential is held at vc (with respect to rest)

then we may solve these for m(t; vc) and h(t; vc) and fit Eq. (2.4) to the
measured clamp current and arrive at

τm(v) =
1

αm(v) + βm(v)
and m∞(v) = αm(v)τm(v)

τh(v) =
1

αh(v) + βh(v)
and h∞(v) = αh(v)τh(v)

where

αm(v) = .1(25− v)/(exp(2.5− v/10) − 1) and βm(v) = 4 exp(−v/18)

αh(v) = 0.07 exp(−v/20) and βh(v) = 1/(exp(3 − v/10) + 1)
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mhfig

Figure 2.6. The gating functions that govern the sodium channel.

2.HHE 3. The Hodgkin–Huxley Equations

Adopting the squid parameters from Hodgkin and Huxley,

VK = −77 mV, gK = 36mS/cm2, VNa = 56 mV and gNa = 120mS/cm2

we may know calculate the rest potential. For, at rest, membrane current

gKn4(0)(Vr − VK) + gNam
3(0)h(0)(Vr − VNa) + gCl(Vr − VCl)

must vanish and so

Vr =
gKn4(0)VK + gNam

3(0)h(0)VNa + gClVCl

gKn4(0) + gNam
3(0)h(0) + gCl

≈ −71 mV.

It follows that

vK = −6, vNa = 127, and vCl = 2.8417 (2.5)newnernst

We now have all of the components of the (isopotential) Hodgkin-Huxley

system,

Cmv′(t) = −gNam
3h(v − vNa) − gKn4(v − vK)

− gCl(v − vCl) + Istim/A (2.6)iHHv

n′(t) = αn(v)(1 − n) − βn(v)n (2.7)iHHn

m′(t) = αm(v)(1 − m) − βm(v)m (2.8)iHHm

h′(t) = αh(v)(1 − h) − βh(v)h (2.9)iHHh

With vj ≈ v(jdt) the backward Euler scheme produces

Cm(vj − vj−1)/dt = −gNam
3
jhj(vj − vNa) − gKn

4
j(vj − vK) − gCl(vj − vCl) + Ij/A

(nj − nj−1)/dt = αn(vj)(1 − nj) − βn(vj)nj

(mj − mj−1)/dt = αm(vj)(1 − mj) − βm(vj)mj

(hj − hj−1)/dt = αh(vj)(1 − hj) − βh(vj)hj
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One must solve this nonlinear system to move from (j−1)dt to jdt. This
can be relaxed by a seemingly small change, namely, “evaluate the gating

functions at the previous, rather than present, voltage.” This produces

(mj − mj−1)/dt = αm(vj−1)(1 − mj) − βm(vj−1)mj

and so each gating variable may be explicitly represented

mj =
mj−1 + αm(vj−1)dt

1 + (αm(vj−1) + βm(vj−1))dt
(2.10)mexact

and so finally

vj =
Cmvj−1 + (gNam

3
jhjvNa + gKn

4
jvK + gClvCl + Ij/A)dt

Cm + (gNam
3
jhj + gKn

4
j + gCl)dt

We have code this mixed, or hybrid, Euler in heas.m. If we deliver a 20
pA current for a few milliseconds it reveals
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Figure 2.7. The action potential and its gating variables.

This v is indeed the one foreshadowed in Figure 2.1. Its upstroke is facili-

tated by m while its downstroke comes thanks to n and h. These variables
are fundamental components of the individual ionic currents.
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Figure 2.8. The associated membrane currents.
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2.aex 4. Exercises

1. Let us attempt to simulate the voltage–clamp experiments of Hodgkin

and Huxley. More precisely, suppose

v(t) = (t > 2)(t < 15)vc,

where vc is the desired clamp potential, and modify heas.m to solve
for the associated gating variables and plot (as below) v and

gK(t) = gKn4(t) and gNa(t) = gNam
3(t)h(t)

for a range of clamp potentials. Submit your code and your figure.

0 5 10 15
0

50

100

v

0 5 10 15
0

10

20

30

g K

0 5 10 15
0

20

40

t  (ms)

g N
a

2. The next two exercises will help us understand the rate at which our
cell may fire. To begin, modify heas.m to deliver two brief current

pulses. In particular, take I0 = 30 pA, deliver a 4 ms pulse beginning
at 2 ms and deliver the second 4 ms beginning at t2 ms. Find (to
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2 digits of accuracy) the time threshold tR for which the cell spikes
twice when t2 > tR. We call this time span, during which the cell is

insensitive to further input, its refractory period. Submit your code,
your value of tR, and two voltage plots (corresponding to t2 on either

side of tR).

3. We notice that for sustained current input that our cell enters a regime
of periodic firing. For example, if Istim = 100(t > 2) pA we observe

the response below (left).
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Your task is to modify heas.m to deliver sustained currents and to
count the number of spikes per second. Submit your code and figure
of the form above (right).

4. The firing rate diagram of the previous exercise may be modified by
the inclusion of additional channel types. There are multiple types of
K channels. We proceed by studying one that inactivates,

IA = gAa3b(V − VA), a′(t) =
a∞(V ) − a

τa(V )
b′(t) =

b∞(V ) − b

τb(V )

where

a
∞

(V ) =

(

0.0761 exp(0.0314(V + 94.22))

1 + exp(0.0346(V + 1.17))

)1/3

τa(V ) = 0.3632 +
1.158

1 + exp(0.0497(V + 55.96))

b
∞

(V ) =
1

(1 + exp(0.0688(V + 53.3)))4
τb(V ) = 1.24 +

2.678

1 + exp(0.0624(V + 50))
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We also consider modified Na and K functionals

αn(V ) =
.02(v + 45.7)

1 − exp(−(v + 45.7)/10))
βn(V ) = .25 exp(−0.0125(v + 55.7))

αm(V ) =
0.38(v + 29.7)

1 − exp(−(v + 29.7)/10))
βm(V ) = 15.2 exp(−0.0556(v + 54.7))

αh(V ) = 0.266 exp(−0.05(v + 48)) βh(V ) =
3.8

1 + exp(−(v + 18)/10))

With absolute reversal potentials, (mV ), VK = −72, VA = −75, VNa =

55, VL = −17 and maximal conductances, (mS/cm2), gK = 20, gNa =
120, gA = 47.7 and gL = 0.3 we find rest at Vr = −68.

5. Returning to Figure 2.8 we pursue a pair of simple observations. First,
m, the gating variable of sodium activation is so fast that perhaps we

can simply presume that it instantaneously reaches its steady state
level, m∞(v(t)). That is

m(t) ≈ m∞(v(t)).

Second, we observe that n + h is fairly flat. In, particular.

h(t) ≈ 0.87 − n(t).

With these approximation, the Hodgkin-Huxley system (2.6)–(2.9) re-

duces to

Cmv′(t) = −gNam
3
∞(v)(0.87− n)(v − vNa) − gKn4(v − vK)

− gCl(v − vCl∗) + Istim/A

n′(t) = αn(v)(1− n) − βn(v)n

where vCl∗ = 3.1716 has been chosen so that rest remains at v = 0, n =
n∞(0). Modify heas.m to solve this two–variable reduced system and

graph its response to Istim = 50(t > 2) pA in the ‘phase plane’ as
depicted below.
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Submit your code and the resulting figure.
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