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Summary 

This report summarizes work done as part of the Rice/TMC/UH Computational 
Neuroscience REU. Rice/TMC/UH Computational Neuroscience REU is a program of research 
investigating neurobiology through math and computer science. This work was done in the 
Gabbiani laboratory at Baylor College of Medicine.  

Introduction 

  

 

 
The visual systems of animals have long been studied as models of how the neural 

circuits process information. This is because individual cells throughout the system can be 
recorded and their responses related to the light input presented. Photoreceptors, the cells 
responsible for transducing incident light energy into neural signals, are the first stage of this 
system. A schematic drawing of the insect visual system is shown in Figure 1A, and a  sketch of a 
photoreceptor is shown in Figure1B. How photoreceptors respond to a wide range of light 
intensities and patterns has been well characterized over the years, and detailed models 
describing these responses have been developed. One particularly successful model was 
developed by Hans van Hateren and colleagues (van Hateren and Snippe 2001) based on 
responses from fly photoreceptors. This model describes the membrane potential fluctuations 
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Figure 1B

Figure 1C

Figure 1A



resulting from external luminance changes over 3 orders of magnitude using several sequential 
nonlinear filtering steps. The second stage of processing, Large Monopolar Cells (LMCs) in the 
lamina have also been well studied, and have also been successfully modeled using nonlinear-
linear-nonlinear (NLN) cascade model (Juusola et al, 1995). The structure of the photoreceptor 
model and the response produced by the model are presented above in figure C. LP stands for 
Low-Pass filter, and NL stands for Non-Linear filter. LP1 and LP2 has tau1 and tau2 as its 
parameter respectively. LP3 has two parameters: k1 and k2. The output of LP3 is 
k1exp(k2*input).  
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With the parameter values (tau1 = 1. 69; tau2 = 71.8; k1 = 0.689; k2 = 9.07) for fly 
photoreceptor, the output of the model did not match with the actual data from photoreceptors. 
The actual response of a locust photoreceptor and that of the van Hateren model with default 
parameters is shown above. The model and the actual response show significant difference in 
steady state mV value. Since the van Hateren model is designed for fly photoreceptors, we need 
to find a new set of parameters of the model that can simulate the response of actual locust 
photoreceptors.   
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Figure 2



Goal

The goal of this project was to adapt existing models of early visual processing in flies, 
the van Hateren photoreceptor model and the NLN cascade LMC model, to fit the responses of 
locust photoreceptors.  This will allow the Gabbiani laboratory to run large-scale simulations of 
higher order visual processing in the locust visual system using the outputs of these models as 
realistic neural inputs. 
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Two Important Factors of Stimuli: Light Intensity and Luminance Change Speed 

1) Light Intensity 

Locust photoreceptors change their membrane potential in response to changes in light 
intensity incident on the eye. When light intensity increases, photoreceptors depolarize; and 
when intensity decreases, they hyperpolarize. Shown below are photoreceptor  responses to light 
pulses of two different intensities, with the stimulus pulses on the top and the recordings below. 
The data I worked with contained steps to three different lux values: 47.1, 77.5 and 90.4. 

Figure 3
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The Gabbiani Laboratory, in total, collected 18 different trial types of data: 3 different 
colors * 6 different transition time frames. I tried to find an optimized model that can simulate 
the responses of these 18 stimulus conditions.  
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2) Luminance Change Speed  

Stimulus pulses whose brightness increased and decreased at different speeds were 
presented while recording the membrane potential of a single photoreceptor.  Stimulus traces are 
shown on the top, and recordings below.  The response speed of photoreceptor tracks that of the 
stimulus change.  One stimulus frame equals 1/60 sec. The Gabbiani Laboratory collected data 
after giving stimuli with six different transition speeds: 2, 4, 8, 13, 23, and 33 frames.   

Figure 4



Fitting the Model 

1) Finding the Best Model Input

The van Hateren model was developed using data that was not calibrated with regards to 
the absolute light intensity.   Thus, we needed to find the best linear transform to match the light 
intensities used during the photoreceptor recordings (Iexp) to the corresponding range of model 
input values (Imodel).  Since all we had to use were photoreceptor responses, we decided to fit the 
linear function 

                                                        Imodel = A•Ilux + B                                                    (1) 

by minimizing steady state response magnitudes of the van Hateren model and the data 
for 3 different stimulus intensities.  

Methodology: I implemented GUI in MATLAB to measure ∆mV value of each 
photoreceptor’s response.  
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The four vertical lines (red, green, purple, blue) are all movable.  

To get an average value for the baseline, I calculate the mean value for all the data that 
are between red and green vertical lines; to get an average value for the steady state, I calculate 
the mean value for all the data that are between purple and blue vertical lines.  The length of time 
windows of baseline and those of steady state were kept the same for each trial type. The range 
of time windows was from 1 to 3 seconds.  

The “Begin” button initializes the GUI experiment. The “Next Data” button prepares to 
load the next data file (another stimulus presentation), and the “Load” button actually loads the 
data. The “Baseline” button calculates the mean value for the baseline. The “Steady State” button 
calculates the mean value for the steady state. 
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function y = to_minimize_return(m,n)

data_delta_vm = [7.7948 9.4390 10.1634];
% mean delta vm from actual data set.

rint = zeros(1,8000);
% rint is input to the van Hateren Model
st_start = 2001; st_end = 5000; end_point = 8000;
lux = [31.7 61.2 90.4];
vm_tocompare = zeros(1,3);
rint(1:st_start-1) = 2.35*m+n; rint(st_end:end_point) = 2.35*m+n;

for i = 1:3
rint(st_start:st_end) = lux(i)*m+n;
[x_a x_b x_c x_d x_e x_f x_g x_h] = fly_phot9(rint);
%fly_phot9 executes the van Hateren model, and x_h is the final output of
%the model.
initial_vm = mean(x_h(1:1000));
upper_vm = mean(x_h(st_end-1000:st_end));
vm_tocompare(i) = upper_vm - initial_vm;
% storing delta vm of the model 
end

to_minimize = zeros(1,3);
for i = 1:3
    error = vm_tocompare(i) - data_delta_vm(i);
    to_minimize(i) = abs(error);
end

num_to_minimize = sum(to_minimize);

y = num_to_minimize;
end
 

MATLAB code for searching minimum error 

function [a b] = minsearch(x)
to_minimize = @(x)to_minimize_return(x(1),x(2));

After going through the 60 data sets that the Gabbiani laboratory previously collected, I 
finally got the average values with different lux input values (31.7, 61.2 and 90.4). The final 
average ∆mV were 7.7948, 9.4390, and 10.1634 for each lux input value respectively.  

For finding the parameters A and B in (1), I fit the model to the data using two methods 
of calculating error: least-square method and minimizing sum of the absolute value of the errors. 
Yet, the least-square method did not converge to a solution. Minimizing the sum of the absolute 
value of the errors, on the other hand, returned a reasonable solution. The fitted values of A and 
B were 16.1738 and 186.6813 respectively.  

MATLAB code for calculating the sum of the absolute value of the errors for given values of A 
and B 



[answer fval] = fminsearch(to_minimize, [16.1738 186.6813]);

a = answer(1);
b = answer(2);

end
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For the three input values (31.7, 61.2 and 90.4) to observe, the differences between the 
model response and locust response were 1.2801, 0.0020, and 1.1096 respectively. 

2) Finding the Best Model Parameters
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Figure 6

After finding the best fit luminance transform while keeping the model’s parameters 
constant, we needed to fit the 4 model parameters (tau1, tau2, k1, and k2).  We first tried to 
freely vary all 6 parameter values (model parameters plus A, B), but that didn't converge to a 
solution, and the end parameter values didn't yield good fits to the data (Figure 7A, red line).  We 
also tried to hold the parameters k1 and k2 constant, thinking that these govern responses over 
longer time courses than the stimuli were presented, but the solution arrived at was clearly not a 
good fit (Figure 7A, green line).  After limiting the algorithms iterations to 300, but changing 
start conditions, we found a reasonable solution shown in blue. It took 7 hours on average to 
obtain each set of parameters in Figure 7A. These fits are shown for multiple stimulus values 
Figure 7B and speeds Figure 7C to show that they fit the range of experimental data well. All 
data analysis and stimulations were done in MATLAB.  
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Parameter values 

                                              A           8.743             0.0368           0.2001 

                                              B           340.8             0.8146           6.793 

     tau1     4.955e-6 ms  3.630e-6 ms  1.301e-6 ms 

            tau2        153.4 ms       300.5 ms       611.9 ms 

                                             k1           1.406             1.4061           3.521 

                                             k2           7.351             11.1719         8.447 
                    

Summary of procedures 

minsearch(a,b,c,d,e,f) is a function implementing fminsearch to find minimum error; it 
finds optimal values of the model’s parameters by executing the model with the six variables 
(A=a, B=b, tau1=c, tau2=d, k1=e, k2=f).   
 

                                                                  18       1500 

Error = ∑   ∑ (data(i,t) – model(i,t))² 
                                                           i=1       t=0 

i is an index designating the data set. There were 18 different data types with different lux 
input and transition time frames. Stimulus in the data last for 1500 ms, and t is a time index of 
stimulus. Error is calculated through sumreturn(a,b,c,d,e,f). How sumreturn(a,b,c,d,e,f) works is 
explained below.  

 

Red: Free variation of all six parameters.  

sumreturn(a,b,c,d,e,f) takes all six parameters. Before executing the van Hateren Model, I 
first transfer experimental stimulus values (lux) to the model input (parameters a and b are used 
in here). The input values are stored in matrix 'rint.' fly_phot10(rint,c,d,e,f) executes the van 
Hateren model with four variables (tau1=c, tau2=d, k1=e, k2=f). 

 
Green: Variation of four parameters (A, B, tau1, tau2) and holding k1 and k2 constant 
 
I used the function sumreturn(a,b,c,d,e,f) in here as well. Yet, I used a different 

implementation of the van Hateren model. fly_phot11(rint, c, d) executes the van Hateren model 
with four variables with constant value for k1 and k2 (tau1=c, tau2=d, k1 and k2 are held 
constant). 

 
Blue: Limiting the number of iterations to 300. 
 
The process of Blue is exactly the same with that of Red, but minsearch function 

(explained above) limits the number of iterations to 300.  
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Figure 7A

Figure 7B

Red 2.6475e+04 mV²   

Green 2.5749e+04 mV²   

Blue 1.4135e+04 mV² 

Sum of square of residuals:  
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Figure 7C

We also started to implement the NLN model of LMCs, but were limited by time and 
lack of quality recordings against which to fit the model.  We implemented the linear filter stage 
of the model, which produces responses that are inverted and emphasize transient portions of the 
response when compared to photoreceptor output. The response of LMC is produced by a 
convolution of LMC Kernel and a photoreceptor response. The LMC Kernel has a brief negative 
pulse so the convolution with a photoreceptor response produces a trace similar to an inverted 
photoreceptor trace yet emphasizing the fast changing portions. This is shown in Figure 8.  



Conclusion 

We were able to adapt a nonlinear model of fly photoreceptors to locust photoreceptor 
responses. We began implementing a model to describe the filtering properties of Large 
Monopolar Cells (LMCs). As of now, however, the Gabbiani Laboratory does not have enough 
data for analyzing the LMC model.  
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