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Isoclines

Nonlinear neurodynamics and 
bifurcations 

We have completed our survey of linear dynamical systems and have developed simu-
lation methods suitable for application to either linear or nonlinear systems. This chapter 
begins our exploration of nonlinear dynamics in neural systems. The chapter will develop 
the basic approach, which relates the local properties of nonlinear systems to those of 
associated linear systems. Three different ways in which two neurons can interact will be 
discussed next: (1) negative feedback in a divisive gain control, (2) mutual excitation in 
short-term memory, and (3) mutual inhibition in neural decision making. It will also be 
shown that neural adaptation can lead to memory loss, a topic that will introduce 
bifurcation theory. 

Neurons will be described by the temporal variation of their spike rates in this chapter 
rather than at the level of individual spikes. There are several reasons for this. First, many 
principles of neurodynamics can be effectively studied at the spike rate level of descrip-
tion, and the mathematics is considerably simplified. Second, spike trains are examples of 
nonlinear oscillations mathematically, and so this level of description must await 
development of that topic in Chapter 8. Finally, experimental data reported as histograms 
and many theoretical problems in neuroscience are in fact described as spike rates. 

6.1 Steady states and isoclines 
Let us begin with a general mathematical description of a two interacting neurons: 

dx, 
- T 7 = F(X,,.Y2) 
H (6.1) 
dx-i -77 = G(xux2) d? 

Fand G can be any of a wide range of nonlinear functions of x; and x2, but they must have 
certain properties to insure that (6.1) will have unique solutions. It will be sufficient to 
require that in the region of physiological interest Fand G are both finite and continuous. 
We can even tolerate a finite number of finite discontinuities in For G or their derivatives 
(as was the case in our piecewise linear approximation to an EPSP in Chapter 2). These 
requirements do not limit us to any significant extent, as all physiologically plausible 
systems satisfy these constraints. 

The dynamical behavior of (6.1) will generally be quite complex and will require 
Runge Kutta simulation in order to follow the temporal evolution in detail. However, we 

For a system:

isoclines are defined by 
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can learn an enormous amount about the solutions by studying the nature of the equili-
brium points or steady states of the system. As dxi/d? = Oanddx2/d? = Oat a steady state, 
the steady states of (6.1) must satisfy the equations: 

F(*„x2)=0 
G(x , ,x 2 )=0 ' ' 

If this were a linear system, these would be simultaneous linear equations. For a nonlinear 
system, however, each of the equations in (6.2) will describe some curve in the (xi, x2) state 
space of the system, and the intersections of these curves will determine the equilibrium 
points. Equations (6.2) describe the isoclines of the system, a term which literally means 
'equal slope'. Thus, F = 0 describes the locus of points in state space where dxi /dt = 0, so 
all trajectories must cross this isocline parallel to the x2 axis. Similarly, on the isocline 
where G = 0,dx2/d? = 0, and trajectories will parallel the X| axis. Fand G are simulta-
neously zero where the isoclines intersect, and this defines an equilibrium point. It should 
be noted here that some authors use the term nullcline instead of isocline to emphasize that 
the slope is null or zero along these particular isoclines. However, isoclines are almost 
never discussed today except for the zero slope case, so the term isocline will only be used 
here in the restrictive sense defined by (6.2). 

6.2 A divisive gain control 
To fix these ideas, let us consider a nonlinear gain control network that employs feedback 
inhibition. This network was originally developed as a cortical divisive gain control to 
explain certain aspects of psychophysics related to orientation selective cells in the visual 
cortex (Wilson and Humanski, 1993). More recently, a similar feedback circuit has been 
used to describe amacrine cell feedback onto bipolar cells in primate and human retinas 
(Wilson, 1997; see Chapter 7). The simple negative feedback network to be described here 
is like the cone, horizontal cell feedback network discussed in Chapter 3, except that the 
inhibition divides the stimulus to the first neuron. As pointed out in Chapter 2, shunting 
inhibitory synapses are well approximated by division. 

Letting B represent the bipolar cell response to light level L and A the amacrine cell 
response, the equations are: 

dB 1 / 
d? ~ TB V 
dA 1 
7 7 " rA

 (" 

L 
B+l+A 

-A+2B) 
(6.3) 

This equation has well-behaved solutions in all regions that exclude A = -\, where the 
right-hand side of the first equation becomes infinite and the solution is not defined. As 
the light inputs L can only be positive or zero, however, it is easy to show that if the initial 
conditions lie in the first quadrant or at the origin, then the system must stay in the first 
quadrant for all future times. That is, if ,4(0) > 0,5(0) > 0,andL > 0 solutions can never 
leave the first quadrant. To prove this, note that whenever B = 0, dB/dt > 0 because A, 
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Negative feedback in visual cortex

The following is a model of divisive gain control
originally developed in visual cortex, and applied to the response of 
a bipolar cell interacting with an amacrine cell in the retina.
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inhibition divides the stimulus to the first neuron. As pointed out in Chapter 2, shunting 
inhibitory synapses are well approximated by division. 

Letting B represent the bipolar cell response to light level L and A the amacrine cell 
response, the equations are: 

dB 1 / 
d? ~ TB V 
dA 1 
7 7 " rA

 (" 
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B+l+A 

-A+2B) 
(6.3) 

This equation has well-behaved solutions in all regions that exclude A = -\, where the 
right-hand side of the first equation becomes infinite and the solution is not defined. As 
the light inputs L can only be positive or zero, however, it is easy to show that if the initial 
conditions lie in the first quadrant or at the origin, then the system must stay in the first 
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This equation is potentially undefined at A=-1.  Why does this not 
matter?
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Fig. 6.1 Phase plane and isoclines (6.4) for eqn (6.3) plotted for L= 10. The unique steady state in the first 
quadrant is located where the isoclines intersect. 

L > 0. Therefore Bmust become positive (or remain zero), but it cannot become negative. 
Similarly, dA/dt > 0 whenever A = 0, so A can never become negative. Thus, all trajec-
tories starting in the first quadrant must remain there. 

The isoclines are now obtained by setting the derivatives in (6.3) equal to zero, 
giving: 

L 
B 

1 + A 
and A IB (6.4) 

These are plotted in the state space of this system in Fig. 6.1. The one intersection of the 
isoclines in the first quadrant defines the steady state, which can be obtained analytically 
in this case by solving (6.4): 

2B, B -1 + 71771 (6.5) 

Note that the second root or equilibrium point does not lie in the first quadrant, so it is 
irrelevant to the neurobiology of the problem. Neural systems with multiple steady states 
in the first quadrant will be considered shortly. In the example plotted in Fig. 6.1, L—10, 
so the steady state is at: B = 2; A = 4. 

6.3 Stability of steady states 

Having found the equilibrium point of (6.3), let us now determine its nature (node, spiral 
point, etc.) and stability characteristics. For a linear system this simply requires obtaining 
the eigenvalues from the characteristic equation, but how should we proceed with a 
nonlinear system? The answer turns out to be simple: expand the nonlinear functions in 
(6.1) or (6.3) in a Taylor series evaluated at the equilibrium point and retain only the 
linear terms. This produces an associated linear equation in the vicinity of the equilibrium 

isoclines:
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Stability of fixed point
We can find the fixed point by computing where the nulclines 
intersect.   How do we determine its stability?
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state: 

dt Vx2 

/ dF 
dxi 
dG 

\cTx 

Eq 

1 'Eq 

dF_ 
dx2 

dG 
dx2 

Eq 

Eq 

(6.6) 

where the partial derivatives in the matrix are evaluated at the equilibrium point and xj 
and x2 are the values of the variables relative to the equilibrium values. This matrix of first 
partial derivatives is called the Jacobian or Jacobian matrix. The Jacobian for any non-
linear system of A equations will always be Ax N in size. 

The higher order Taylor series terms in the expansion of F and G will be at least 
quadratic in X| and x2, so the linear terms in the Jacobian will dominate when Xj and x2 are 
sufficiently close to equilibrium. Therefore, you might expect that the linear stability 
analysis of (6.6) would also apply to (6.1) near equilibrium. This is basically correct and is 
captured in the following theorem, which applies to nonlinear systems of any order: 

Theorem 8: Given the nonlinear system described by the equation: 

dX 
d? F(X) 

and an equilibrium point at XEq, which is a solution to: 

i ^Ea ) = 0 

calculate the Jacobian to produce an associated linear equation: 

dx 

where 

A = 

d? 

(m 
dx\ 
dF2 
5x7 

Ax 

dFi 
dx-) 
dF2 

dx2 

V 
dFN 

dxN J 

where all partial derivatives are evaluated at XEq. Then sufficiently near XEq: (a) if all 
eigenvalues of the linear system have negative real parts, the nonlinear system is 
asymptotically stable; and (b) if the linear system has at least one eigenvalue with a 
positive real part, the nonlinear system is unstable. In addition, the type of equili-
brium point for the nonlinear system, i.e. spiral point, node, or saddle point, will be 
the same as that for the associated linear equation. 
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When L = 10 we find
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Two special cases are explicitly excluded by Theorem 8. First, if A has a pair of pure 
imaginary roots and therefore is a stable center (but not asymptotically stable), the the-
orem does not apply. Second, if any root of A is zero, the theorem again fails to apply. The 
higher order terms in the Taylor expansion of Fbecome critical when the associated linear 
system has any roots with zero real part. It is also important to note that Theorem 8 does 
not specify just how close to equilibrium one must be for the theorem to apply. 
Determining this requires the use of Lyapunov functions, which will be introduced in 
Chapter 14. 

Let us apply Theorem 8 to the divisive gain control in (6.3). For L = 10, the steady state 
occurs at B = 2; A = 4. Let time constants be 10 ms. Calculation of the Jacobian now 
gives: 

A = 
( 

\ 

1 

"To 
l 
5 

(i + ^r 
\ 

i 

io / \ 

I 

10 

(6.7) 

where the right-hand equality results from evaluation of the Jacobian at the steady state. 
Using LinearOrder2.m, the eigenvalues are A = —0.1 ± 0.089i. Thus, the equilibrium is 
an asymptotically stable spiral point for both the associated linear system and for the 
nonlinear system in (6.3). Given this analysis of (6.3), it is now appropriate to simulate the 
solution using Runge-Kutta methods. Results of simulations using the MatLab script 
DivFB.m are plotted in Fig. 6.2. As can be seen, the solution with initial conditions A = 0, 
B = 0 asymptotically approaches the unique steady state in the first quadrant with a 
damped oscillation, as was predicted by analysis of (6.7). The simulation suggests that 
trajectories starting far from the steady state will approach it asymptotically, although 
this cannot be determined using Theorem 8. Figure 6.2 also shows that the transient 
overshoot of the response is relatively larger when the light intensity L= 100 than it is 
when L= 10. This is a manifestation of the nonlinear dynamics. 
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Fig. 6.2 Responses B(t) in (6.3) to two stimulus levels, L= 10 and L= 100. 
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A short term memory circuit

Short term memory is frequently examined by delayed 
matching tasks
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Fig. 6.3 Responses of a neuron in monkey inferiortemporal cortex during a short-term memory task 
(reproduced with permission, Fuster, 1995). Following a 1.0 s presentation of a red sample, this neuron fires 
at more than twice its resting level for 16 s until the signal to make a match appears and the monkey makes a 
choice to receive a reward. The same neuron did not increase its response when the sample was green. 
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Fig. 6.4 Isoclines of (6.8) intersect at three points, thus producing steady states at (0. 0), (20. 20) and (80, 80). 

so 

9E 900F2+ 120-F, = 0 (6.9) 

Although this is a cubic equation, one can see that E\ = 0 is one solution, so the origin 
must be one equilibrium point. The other two are found by solving the quadratic equation 
that results after factoring E| out of (6.9), which produces the result: 

900 ± J (900)" -36(120)-
= 50 ± 30 

So the remaining two equilibria are at (20, 20) and (80, 80) as shown in Fig. 6.4. 
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6.4 A short-term memory circuit 

In the previous example, we analyzed a nonlinear, two-neuron network that had a single 
equilibrium point in the first quadrant. However, many nonlinear systems are interesting 
precisely because they have multiple equilibria, so let us examine such a system now. To 
motivate the mathematical discussion, we shall examine a physiological example invol-
ving short-term memory. Consider an experiment in which a monkey is first presented 
with a briefly flashed stimulus, a red or green light in this case. The stimulus then dis-
appears, but the monkey is required to wait during a delay until it receives a second signal 
indicating that it is time to respond. The monkey must then make one of two responses 
indicating whether it remembers a red or green stimulus, and it is rewarded if the response 
is correct. This is known as a delayed matching task, because the monkey must remember 
the stimulus during the delay in order to be rewarded. Fuster (1995) has shown that single 
neurons in the temporal and prefrontal cortex of monkeys can be switched on by the brief 
stimulus presentation, and these neurons will then continue to fire at a higher rate for 20 s 
or more after the stimulus disappears. For example, the neuron shown in Fig. 6.3 
increased its firing rate following presentation of a red stimulus and maintained its 
increased firing rate for 16 s after the stimulus vanished, when the monkey made a correct 
choice and was rewarded. This particular neuron was selective for the red stimulus, as it 
never responded to the green one. 

Let us examine a very simple neural network with responses like those of prefrontal 
neurons during this delayed response task. The system consists of just two neurons which 
are mutually excitatory and whose spike rates are described by the Naka-Rushton 
function in (2.11) and Fig. 2.3 with a maximum spike rate of 100/s and N = 2. Assuming 
that the neurons have identical properties and connection strengths for simplicity, they 
will be described by the equations: 

dF, 1 / 100(3F 
-Ei + d? T\ 1202 + (3F2)2

; 
(6.: 

dF2 1 [ 100(3F,) 
-E2 + -d? T \ ' 1202 + (3F, 

This problem can be tackled in the same fashion as the previous one: first plot the isoclines 
and find the equilibrium points, then use Theorem 8 to determine the stability char-
acteristics of the equilibria. 

The state space and isoclines of (6.8) are plotted in Fig. 6.4. The isoclines intersect at 
three points rather than just one, so this system must have three steady states. Solving the 
isocline equations for steady states will generally require numerical approximations 
using MatLab. However, in this case the symmetry of the problem simplifies things 
considerably. From the symmetry of (6.8), it can be inferred that E\ = F2 at equilibrium, 
so the steady states will obey the simplified equation: 

100(3F,)2 

1202 + (3F,)2 

The interaction between the cells is given by the Naka Rushton function
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Fig. 2.4 Naka-Rushton function (2.11) plotted for three values of N with u = 50 and A?= 100 (top panel). 
The bottom panel shows spike rates of four different neurons along with fits of (2.11) to the response rate of 
each (reproduced with permission, Albrecht and Hamilton. 1982). 

Similarly, Albrecht and Hamilton (1982) reported average values of N = 3.4 and 
M = 120. Representative data from the Albrecht and Hamilton (1982) study are plotted 
in Fig. 2.4 for comparison. In this book, we shall usually let M = 100 and N = 2 
for mathematical convenience. This means that our Naka Rushton function will have 
an accelerating nonlinearity near x = 0 and will have a maximum response rate of 
100 spike/s. However, none of our conclusions depend on these particular choices. The 
semi-saturation constant o will be varied to suit particular mathematical or physiological 
contexts. It is important to be aware that (2.11) represents the asymptotic or steady state 
firing rate of a neuron. As we shall see, neural responses will generally vary over time as 
they approach the rate determined by (2.11). Note that the general form of S{ P) involves a 
threshold for P near zero followed by a roughly linear region in which S(P) increases 
proportionally to P. Finally, the spike rate saturates for large P. Many mathematically 
similar functions have been used in describing neurons, particularly the hyperbolic tan-
gent, tanh. However, all of these functions have the same general sigmoidal, or S-like 

First order linear systems 19 

As shown by the solid line, the rod ERG response has an initial slope of 2.0, so there are 
three stages in the rod biochemical response to light as described in (2.6) and solved in 
(2.9). This shows that a neuroscientist can sometimes infer aspects of the underlying 
biochemistry or circuitry from a theoretical analysis of the measured response. 

We can generalize our treatment of cascades to N stages, each with time constant r and 
amplification A: to yield: 

j.N-1 / , \ A?-1 

(N~- 1)! VT = A ' ( 0 = 7 T 7 - T T T ( 1 ) Z~"T (2-10) 

where zs{t) is the response of the Mh stage of the reaction cascade. Note that we can allow 
different values of the amplification k so long as r remains constant for all stages. 

2.3 Responses of a simple model neuron 

Let us now see how (2.3) can be modified to describe the response of a simple neuron to an 
external stimulus. This neuron will be represented by its spike rate as a function of time 
without describing the shape and timing of each individual spike. Before diving into the 
mathematics, however, a brief discussion of neural responses as a function of stimulus 
intensity is in order. 

The particular physiological example I shall choose is from the visual system, but 
similar functional relationships with slightly different parameter values are common in 
the nervous system. Sclar, Maunsell, and Lennie (1990) measured the spike rate of visual 
neurons in response to stimuli of varying contrast or intensity. Recordings from several 
different levels of the visual system (lateral geniculate, striate cortex, middle temporal 
cortex) showed that all neurons could be described by a single equation in which only the 
parameters differed among visual areas. Albrecht and Hamilton (1982) have also found 
that this same equation provided a better fit to their data than several other candidate 
equations. The equation is known as the Naka-Rushton (1966) function in vision 
research and as the Michelis-Menton equation in chemical kinetics. This equation relates 
a stimulus intensity P, which may be thought of as the net postsynaptic potential reaching 
the site of spike generation, to response or spike rate S(P) as follows: 

( MPN 

1 " f o r P > 0 S(P)= < oN + PN (2.11) 
I 0 for P < 0 

In this equation M is the maximum spike rate for very intense stimuli, and a determines 
the point at which S(P) reaches half of its maximum. Hence, o is termed the semi-
saturation constant. Finally, N determines the maximum slope of the function, or how 
sharp the transition is between threshold and saturation. These points will become evident 
by inspection of Fig. 2.4, where M = 100, a = 50, and N assumes several values within the 
range reported for visual neurons. In particular, Sclar et al. (1990) reported that lateral 
geniculate neurons were best fit by values of N averaging 1.4, visual cortical neurons 
had lvalues around 2.4, and middle temporal cortex neurons had lvalues around 3.0. 
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Fig. 6.3 Responses of a neuron in monkey inferiortemporal cortex during a short-term memory task 
(reproduced with permission, Fuster, 1995). Following a 1.0 s presentation of a red sample, this neuron fires 
at more than twice its resting level for 16 s until the signal to make a match appears and the monkey makes a 
choice to receive a reward. The same neuron did not increase its response when the sample was green. 

100 

90 

80 

70 

60 

50 

40 

30 

20 

10 

0 

• 

y, 
y / 

/ / 

dE2?dt = 0 

\ 

/ S 

(20, 20) 

r 
i 

(80, 80) ' ^ 

jy>^ 1 
y/ r 

/ 
y 

y \ / \ / \ 
dE-|/dt = 0 

' 

0 20 40 60 80 100 

Fig. 6.4 Isoclines of (6.8) intersect at three points, thus producing steady states at (0. 0), (20. 20) and (80, 80). 

so 

9E 900F2+ 120-F, = 0 (6.9) 

Although this is a cubic equation, one can see that E\ = 0 is one solution, so the origin 
must be one equilibrium point. The other two are found by solving the quadratic equation 
that results after factoring E| out of (6.9), which produces the result: 

900 ± J (900)" -36(120)-
= 50 ± 30 

So the remaining two equilibria are at (20, 20) and (80, 80) as shown in Fig. 6.4. 
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The next task is to apply Theorem 8 to each of the three steady states of (6.8) in turn. To 
do this we shall need to know the derivative of the Naka-Rushton function S(x) from 
(2.11), where N = 2. From basic calculus: 

so 

S(x) 

dS 

M(ax)2 

o2 + (ax) 

2Mo1a1x 
(6.10) 

dx (a2 + (ax)2)2 

Letting r = 20 ms, the Jacobian matrix for (6.8) will therefore have the following form: 

/ 

1 
20 

1 
~20 

200(120)29F, 

_1_ 
20 

200(120)'9F2 

(120)-+(3£i 

(120)2+(3F2) 

1 
~20 

\ 

(6.11) 

/ 

The Jacobian must be evaluated at each equilibrium point, after which Linear Order2.m 
can be used to obtain the eigenvalues. This produces the following matrices and stability 
characteristics at the three singular points: 

A = 

A = 

A = 

-0.05 0 
0 -0.05 

-0.05 0.08 
0.08 -0.05 

-0.05 0.02 
0.02 -0.05 

, A = —0.05, -0 .05 Asymptotically stable node. 

,A =+0.03, -0.13 Unstable saddle point. (6.12) 

, A = —0.07, —0.03 Asymptotically stable node. 

Therefore, all trajectories must diverge from (20,20) and trajectories near either (0,0) or 
(80, 80) will approach these steady states asymptotically. Try running MatLab script 
STMemory.m with a range of different initial conditions to convince yourself that tra-
jectories will indeed converge to either (0,0) or (80,80). 

6.5 Hysteresis, bifurcation, and memory 

This short-term memory network exhibits an important nonlinear phenomenon known 
as hysteresis. The term hysteresis is derived from a Greek term meaning 'to lag behind'. In 
the present context, this means that the present state of our neural network is determined 
not just by the present state of stimulation but also by the history of stimulation. Hys-
teresis is most easily exhibited if (6.8) is modified to include an external stimulus K, 

Friday, June 4, 2010



Bifurcations
so Spikes, decisions, and actions 

assumed to be the same for each of the two neurons. Now (6.9), which defines the steady 
states, becomes: 

F, 
100(3F, +K)'+ 

I202 + (3F, +A')2 (6.13) 

where the subscripted plus sign indicates that the expressions in parentheses evaluate to 
zero for negative arguments. The steady state values of E i now depend on K, and MatLab 
has been used to solve (6.13) with the results plotted in Fig. 6.5. There is a range of lvalues 
between A and B for which three steady states exist. Two are asymptotically stable (solid 
lines), and they are separated by an unstable saddle point (dashed line), as was found in 
(6.12) and Fig. 6.4. If we begin stimulating the network with K< A and increase K, the 
network will remain in the lower or resting steady state throughout the AB range. If, 
however, we begin stimulation with K> B and decrease K, the network will stay in the 
upper asymptotically stable state as K traverses the region AB. Thus, over the stimulus 
range A < K < B, the equilibrium state that the system is in depends on the previous history 
of stimulation. Furthermore, if Kis varied slowly back and forth across the range shown in 
the diagram, the neural response will trace out the loop shown by the arrows in the figure. 
This is known as a hysteresis loop. 

Let us consider in more detail the reasons that this memory network exhibits hysteresis. 
When K=A. the unstable saddle point coalesces with the upper asymptotically stable 
equilibrium, and the two vanish when K< A. Similarly, when K= B, the lower asymp-
totically stable state and the saddle point state coalesce, and both vanish when K>B. 
This appearance or disappearance of a pair of equilibria is known as a bifurcation, 
which literally means a splitting in two. At a bifurcation point two equilibrium points (or 
one equilibrium and one nonlinear oscillation, see Chapter 8) are either created together, 
or else they merge and vanish together. The mathematical reason that a bifurcation 
always involves the creation or disappearance of a pair of steady states is that two roots of 
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Let’s add an external input, K, to both cells, so that the fixed points are 
determined by

so Spikes, decisions, and actions 

assumed to be the same for each of the two neurons. Now (6.9), which defines the steady 
states, becomes: 
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100(3F, +K)'+ 

I202 + (3F, +A')2 (6.13) 

where the subscripted plus sign indicates that the expressions in parentheses evaluate to 
zero for negative arguments. The steady state values of E i now depend on K, and MatLab 
has been used to solve (6.13) with the results plotted in Fig. 6.5. There is a range of lvalues 
between A and B for which three steady states exist. Two are asymptotically stable (solid 
lines), and they are separated by an unstable saddle point (dashed line), as was found in 
(6.12) and Fig. 6.4. If we begin stimulating the network with K< A and increase K, the 
network will remain in the lower or resting steady state throughout the AB range. If, 
however, we begin stimulation with K> B and decrease K, the network will stay in the 
upper asymptotically stable state as K traverses the region AB. Thus, over the stimulus 
range A < K < B, the equilibrium state that the system is in depends on the previous history 
of stimulation. Furthermore, if Kis varied slowly back and forth across the range shown in 
the diagram, the neural response will trace out the loop shown by the arrows in the figure. 
This is known as a hysteresis loop. 

Let us consider in more detail the reasons that this memory network exhibits hysteresis. 
When K=A. the unstable saddle point coalesces with the upper asymptotically stable 
equilibrium, and the two vanish when K< A. Similarly, when K= B, the lower asymp-
totically stable state and the saddle point state coalesce, and both vanish when K>B. 
This appearance or disappearance of a pair of equilibria is known as a bifurcation, 
which literally means a splitting in two. At a bifurcation point two equilibrium points (or 
one equilibrium and one nonlinear oscillation, see Chapter 8) are either created together, 
or else they merge and vanish together. The mathematical reason that a bifurcation 
always involves the creation or disappearance of a pair of steady states is that two roots of 
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A stimulus can cause a switch between two stable states
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(6.13) become complex valued at the bifurcation point and therefore no longer exist on the 
real plane. Although bifurcations involving two equilibrium points always occur in an 
asymptotically stable-unstable pair, we shall see in Chapter 8 that there are bifurcations 
of oscillatory solutions from steady states as well. 

Hysteresis is the mathematical basis of the short-term memory capacity of this two-
neuron network. The system will remain in the lower asymptotically stable equilibrium 
where neither neuron is firing until there is a stimulus K> B, after which the neural 
response will rapidly jump to the upper asymptotically stable state as depicted by the 
vertical arrow at B in Fig. 6.5. This constitutes triggering of the network's short-term 
memory. If the stimulus is now turned off, so K = 0, the neurons will remain in the upper 
asymptotically stable state and thus continue to fire, because the upper state exists and is 
asymptotically stable for K = 0. Thus, the network 'remembers' via hysteresis that a 
relevant stimulus has occurred. To shut the network off, there must be a negative or 
inhibitory stimulus (K < A < 0) to erase the short-term memory activity once triggered. 
This is hysteresis in short-term memory. 

6.6 Adaptation, forgetting, and catastrophe theory 

The short-term memory network in (6.8) has a physiological shortcoming: after the 
network has been triggered to its active state, both E neurons will continue to fire at a rate 
of 80 spikes/s until the response is actively inhibited. In the absence of such inhibition, 
activity will continue forever. So, the network does not incorporate the physiological fact 
that neurons (like muscles) slowly adapt or fatigue when they continue to fire at high rates 
for long periods of time. As will be seen in a moment, the consequence for the animal is 
forgetting. Let us extend our analysis of short-term memory by incorporating neural 
adaptation into the network. 

The ionic mechanisms underlying neural adaptation will be explored in Chapter 10, but 
the reduction of spike rates caused by adaptation can be easily incorporated here. Studies 
of both single neurons in visual cortex (Bonds, 1991) and the perceptual consequences of 
visual pattern adaptation (Wilson and Humanski, 1993) indicate that adaptation causes a 
slow increase in the constant a of the Naka-Rushton function (2.11). This in turn reduces 
the firing rate of the neurons. So, in addition to the two neural activity equations in (6.8), 
adaptation requires the introduction of two variables, A \ and A2. The resulting system of 
four equations is: 

dEy = [(_E | 100(3F2); 
d? T[ ' (\20 + A{)2 + (3E2)2

+ 

dE2 1 / r 100(3F,); 
-E2 + • d? ry - (120 + /t2)- + (3F,);y (6.14) 

< ^ = i ( - ^ l + 0 . 7 F 1 ) 
d? Ta

v 

- ^ = I(-^2 +0.7F2) 
d? ra 

Adaptation

Over time, neurons that are firing will tend to adapt.
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Fig. 6.6 Isoclines (6.17) for system (6.14) plotted for two values of A\. On the left there are three steady 
states, but only the steady state at the origin remains on the right. 

IsoclineMovie.m, which produces an animation showing the gradual change of the iso-
clines in (6.17) as Ai increases from 0 to 40. 

Thus, the adaptation variables Ai and A2 slowly move the equilibrium point corre-
sponding to short-term memory activity toward the saddle point until they meet and 
vanish from the phase plane. To corroborate this analysis, let us simulate (6.14) using the 
script STMadapt.m. In this simulation, a stimulus K= 50 is presented for 200 ms and is 
then turned off. As illustrated in Fig. 6.7, however, the ensuing neural activity outlasts the 
stimulus for about 5000 ms until adaptation results in loss of stimulus memory, at which 
point neural activity rapidly ceases. A larger adaptation time constant ra in (6.14) would 
increase the duration of short-term memory but would also increase the simulation time. 
Thus, neural adaptation can lead to forgetting in short-term memory tasks, and indeed 
monkeys do forget and make mistakes in delayed response tasks when the delay lasts too 
many seconds. Correlated with this behavioral change, firing rates of prefrontal neurons 
drop back to baseline levels (Fuster, 1995). 

This short-term memory network with adaptation is a very important example of the 
insights that can be gained by using arguments from symmetry and taking advantage of 
widely different time constants. Doubtless, no two neurons ever have exactly the same 
characteristics, but just as obviously, there is only enough genetic information to specify 
classes of neurons, so it is reasonable to assume that different members of the same class 
will be very similar. By letting Fi = F2 and Ai = A2, analysis of (6.14) was reduced from 
four to two dimensions. 

In (6.14) there is an extreme difference in time scales, because fluctuations in neural 
spike rates are much more rapid than neural adaptation. When there is an extreme dif-
ference in time scales, the rapidly changing variables are almost always very near equi-
librium, but the positions of the equilibria change very slowly. In this example, the spike 
rates Fi and E2 vary rapidly and hence arrive at an equilibrium point determined by the 

Adaptation can cause loss of 
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Fig. 6.7 Response of (6.14) to a brief. 200ms stimulus coinciding with the narrow peak on the upper left. 
Recurrent excitation maintains activity of both E(t) cells at a high level, but activity slowly decays as neural 
adaptation A{t) builds up. After 5000 ms a sudden loss of neural activity occurs at a bifurcation. 

current value of the adaptation variables A\ and A2. These adaptation variables change 
200 times more slowly than the spike rates, so they can be viewed as parameters that 
slowly change the structure of the equilibrium points of the system. As illustrated in Fig. 
6.7, the response of the system follows the slowly changing equilibrium points for more 
than 5000ms. Then a catastrophe occurs: one asymptotically stable equilibrium joins with 
the unstable saddle point and vanishes, so the neural response rapidly drops to zero. 
Reference to Fig. 6.5 shows that the adaptation variable functions like a slowly varying 
input driving the system, once excited, back through the bifurcation point at A. 

The mathematical notion of a catastrophe or bifurcation also underlies the geology of 
plate tectonics and earthquakes. As pressure builds up on tectonic plates, they compress 
only slightly for a long time, so the distance between points on opposite sides of a fault line 
changes little. At some point, however, the pressure becomes great enough to overcome 
frictional forces, and the plates rapidly slip to a new equilibrium position, thus producing 
an earthquake, which can be a true catastrophe in the vernacular sense! The mathematical 
concepts analogous to those in this neural short-term memory example underlie geo-
physical catastrophes as well. 

6.7 Competition and neural decisions 

So far we have analyzed two nonlinear neural networks: one for divisive gain control and 
one for short-term memory. The former involved a negative feedback loop, while the 
latter incorporated mutual excitation. A further possible interaction between two neu-
rons is mutual inhibition, which will be examined here. As we shall see, the state space of 
two mutually inhibitory neurons is similar to that of the memory network in having two 
asymptotically stable steady states separated by an unstable saddle point. However, each 
steady state in this case is defined by activity in one neuron and complete inhibition of the 
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