
1. Matrix Methods for Neuroscience

1.1. Nerve Fibers and the Strang Quartet

In our first such example we investigate the response of a nerve fiber
to a constant current stimulus. Ideally, a nerve fiber is simply a cylinder
of radius a and length ` that conducts electricity both along its length and
across its lateral membrane. We denote by ρi the resistivity in Ωcm of the
cytoplasm that fills the cell, and by ρm, the resistivity in Ωcm2 of the cell’s
lateral membrane.
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Figure 1.1. A 3 compartment model of a nerve cell.

Although current surely varies from point to point along the fiber it is hoped
that these variations are regular enough to be captured by a multicompart-
ment model. By that we mean that we choose a number N and divide the fiber
into N segments each of length `/N . Denoting a segment’s axial resistance
by

Ri =
ρi`/N

πa2

and membrane resistance by

Rm =
ρm

2πa`/N

we arrive at the lumped circuit model of figure 1.1. For a fiber in culture we
may assume a constant extracellular potential, e.g., zero. We accomplish this
by connecting and grounding the extracellular nodes, see figure 1.2.
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Figure 1.2. A rudimentary circuit model.

This figure also incorporates the exogeneous disturbance, a current stimulus
between ground and the left end of the fiber. Our immediate goal is to
compute the resulting currents through each resistor and the potential at
each of the nodes. Our long–range goal is to provide a modeling methodology
that can be used across the engineering and science disciplines. As an aid to
computing the desired quantities we give them names. With respect to figure
1.3 we label the vector of potentials x = [x1 x2 x3 x4] and vector of currents
y = [y1 y2 y3 y4 y5 y6]. We have also (arbitrarily) assigned directions to the
currents as a graphical aid in the consistent application of the basic circuit
laws.
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Figure 1.3. The fully dressed circuit model.

We incorporate the circuit laws in a modeling methodology that takes
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the form of a Strang* Quartet

(S1) Express the voltage drops via e = −Ax.

(S2) Express Ohm’s Law via y = Ge.

(S3) Express Kirchhoff’s Current Law via AT y = −f .

(S4) Combine the above into AT GAx = f .

The A in (S1) is the node–edge adjacency matrix – it encodes the net-
work’s connectivity. The G in (S2) is the diagonal matrix of edge conductances
– it encodes the physics of the network. The f in (S3) is the vector of current
sources – it encodes the network’s stimuli. The culminating AT GA in (S4)
is the symmetric matrix whose inverse, when applied to f , reveals the vector
of potentials, x. In order to make these ideas our own we must work many,
many examples.

1.2. Example 1

With respect to the circuit of figure 1.3, in accordance with step (S1), we
express the six potentials differences (always tail minus head)

e1 = x1 − x2

e2 = x2

e3 = x2 − x3

e4 = x3

e5 = x3 − x4

e6 = x4

Such long, tedious lists cry out for matrix representation, to wit

e = −Ax where A =















−1 1 0 0
0 −1 0 0
0 −1 1 0
0 0 −1 0
0 0 −1 1
0 0 0 −1















* G. Strang, Introduction to Applied Mathematics, Wellesley-Cambridge
Press, 1986
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Step (S2), Ohm’s law, states that the current along an edge is equal to the
potential drop across the edge divided by the resistance of the edge. In our
case,

yj = ej/Ri, j = 1, 3, 5 and yj = ej/Rm, j = 2, 4, 6

or, in matrix notation,
y = Ge

where

G =















1/Ri 0 0 0 0 0
0 1/Rm 0 0 0 0
0 0 1/Ri 0 0 0
0 0 0 1/Rm 0 0
0 0 0 0 1/Ri 0
0 0 0 0 0 1/Rm















Step (S3), Kirchhoff’s Current Law, states that the sum of the currents into
each node must be zero. In our case

i0 − y1 = 0

y1 − y2 − y3 = 0

y3 − y4 − y5 = 0

y5 − y6 = 0

or, in matrix terms
By = −f

where

B =







−1 0 0 0 0 0
1 −1 −1 0 0 0
0 0 1 −1 −1 0
0 0 0 0 1 −1






and f =







i0
0
0
0






.

Turning back the page we recognize in B the transpose of A. Calling it such,
we recall our main steps

e = −Ax, y = Ge, and AT y = −f.

On substitution of the first two into the third we arrive, in accordance with
(S4), at

AT GAx = f. (1.1)
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This is a system of four equations for the 4 unknown potentials, x1 through
x4. Such systems are solved by Gaussian Elimination. We leave this task to
MATLAB’s backslash command (see fib1.m)
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Figure 1.4. Results of a 64 compartment simulation.
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Figure 1.5. Results of a 64 compartment simulation.

This program is a bit more ambitious than the above in that it allows us to
specify the number of compartments and that rather than just spewing the x
and y values it plots them as a function of distance along the fiber. We note
that, as expected, everything tapers off with distance from the source and
that the axial current is significantly greater than the membrane, or leakage,
current.

1.3. Example 2

We have seen in the previous section how a current source may produce
a potential difference across a cell’s membrane. We note that, even in the
absence of electrical stimuli, there is always a difference in potential between
the inside and outside of a living cell. In fact, this difference is the biologist’s
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definition of ‘living.’ Life is maintained by the fact that the cell’s interior
is rich in potassium ions, K+, and poor in sodium ions, Na+, while in the
exterior medium it is just the opposite. These concentration differences beget
potential differences under the guise of the Nernst potentials

ENa =
RT

F
log

(

[Na]o
[Na]i

)

and EK =
RT

F
log

(

[K]o
[K]i

)

where R is the gas constant, T is temperature, and F is the Faraday constant.
Associated with these potentials are membrane resistances

ρm,Na and ρm,K

that together produce the ρm above via

1/ρm = 1/ρm,Na + 1/ρm,K ,

and produce the aforementioned rest potential

Em = ρm(ENa/ρm,Na + EK/ρm,K).

With respect to our old circuit model, each compartment now sports a battery
in series with its membrane resistance.
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Figure 1.6. Circuit model with resting potentials.

Revisiting steps (S1–4) we note that in (S1) the even numbered voltage
drops are now

e2 = x2 − Em, e4 = x3 − Em and e6 = x4 − Em.
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We accommodate such things by generalizing (S1) to

(S1’) Express the voltage drops as e = b−Ax where b is the vector of batteries.

No changes are necessary for (S2) and (S3). The final step now reads,

(S4’) Combine (S1’), (S2) and (S3) to produce AT GAx = AT Gb + f .

Returning to figure 1.6 we note that

b = −Em[0 1 0 1 0 1]T and AT Gb = (Em/Rm)[0 1 1 1]T .

This requires only minor changes to our old code. The new program is called
fib2.m and results of its use are indicated in the next two figures.
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Figure 1.7. Results of a 64 compartment simulation with batteries.
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Figure 1.8. Results of a 64 compartment simulation with batteries.

1.4. Nerve Fibers and the Dynamic Strang Quartet

A nerve fiber’s natural electrical stimulus is not direct current but rather
a short burst of current, the so–called nervous impulse. In such a dynamic
environment the cell’s membrane behaves not only like a leaky conductor but
also like a charge separator, or capacitor.
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Figure 1.9. An RC model of a nerve fiber.

The typical value of a cell’s membrane capacitance is

c = 1 (µF/cm2)

where µF denotes micro–Farad. The capacitance of a single compartment is
therefore

Cm = 2πa(`/N)c

and runs parallel to each Rm, see figure 1.9. This figure also differs from
figure 1.4 in that it possesses two edges to the left of the stimuli. These edges
serve to mimic that portion of the stimulus current that is shunted by the cell
body. If Acb denotes the surface area of the cell body then its capacitance
and resistance are

Ccb = Acbc and Rcb = Acbρm

respectively. We ask now how the static Strang Quartet should be augmented.
Regarding (S1’) we proceed as before. The voltage drops are

e1 = x1, e2 = x1 − Em, e3 = x1 − x2, e4 = x2,

e5 = x2 − Em, e6 = x2 − x3, e7 = x3, e8 = x3 − Em,

and so

e = b − Ax where b = −Em























0
1
0
0
1
0
0
1























and A =























−1 0 0
−1 0 0
−1 1 0
0 −1 0
0 −1 0
0 −1 1
0 0 −1
0 0 −1






















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In (S2) we must now augment Ohm’s law with voltage–current law obeyed by
a capacitor, namely – the current through a capacitor is proportional to the
time rate of change of the potential across it. This yields, (denoting d/dt by
′),

y1 = Ccbe
′

1, y2 = e2/Rcb, y3 = e3/Ri, y4 = Cme′4,

y5 = e5/Rm, y6 = e6/Ri, y7 = Cme′7, y8 = e8/Rm,

or, in matrix terms,
y = Ge + Ce′

where

G =























0 0 0 0 0 0 0 0
0 1/Rcb 0 0 0 0 0 0
0 0 1/Ri 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1/Rm 0 0 0
0 0 0 0 0 1/Ri 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1/Rm























and

C =























Ccb 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 Cm 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 Cm 0
0 0 0 0 0 0 0 0























.

are the conductance and capacitance matrices.
As Kirchhoff’s Current law is insensitive to the type of device occupying

an edge step (S3) proceeds exactly as above.

i0 − y1 − y2 − y3 = 0 y3 − y4 − y5 − y6 = 0 y6 − y7 − y8 = 0,

or, in matrix terms,

AT y = −f where f = [i0 0 0]T .
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Step (S4) remains one of assembling,

AT y = −f ⇒ AT (Ge + Ce′) = −f ⇒ AT (G(b − Ax) + C(b′ − Ax′)) = −f,

becomes
AT CAx′ + AT GAx = AT Gb + f + AT Cb′. (1.2)

This is the general form of the potential equations for an RC circuit. Regard-
ing the circuit of figure 1.9 we find

AT CA =





Ccb 0 0
0 C 0
0 0 C



 AT GA =





Gcb + Gi −Gi 0
−Gi 2Gi + Gm −Gi

0 −Gi Gi + Gm





AT Gb = Em





Gcb

Gm

Gm



 and AT Cb′ =





0
0
0



 .

and an initial (rest) potential of x(0) = Em[1 1 1]T .
It is customary to write such systems in the form

x′ = Bx + g. (1.3)

where, with respect to our fiber problem

B = −(AT CA)−1AT GA

=





−(Gcb + Gi)/Ccb Gi/Ccb 0
Gi/Cm −(2Gi + Gm)/Cm Gi/Cm

0 Gi/Cm −(Gi + Gm)/Cm





(1.4)

and

g = (AT CA)−1(AT Gb + f) =





(GcbEm + i0)/Ccb

EmGm/Cm

EmGm/Cm



 .

1.5. The Backward–Euler Method

We “solve” this system of differential equations by replacing the deriva-
tive with a finite difference quotient. That is, one chooses a small dt and
‘replaces’ (1.3) with

x(t) − x(t − dt)

dt
= Bx(t) + g(t). (1.5)
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The utility of (1.5) is that it gives a means of solving for x at the present
time, t, from knowledge of x in the immediate past, t − dt. For example, as
x(0) is supposed known we write (1.5) as

(I/dt − B)x(dt) = x(0)/dt + g(dt).

Solving this for x(dt) we return to (1.5) and find

(I/dt − B)x(2dt) = x(dt)/dt + g(2dt)

and solve for x(2dt). The general step from past to present,

x(jdt) = (I/dt − B)\(x((j − 1)dt)/dt + g(jdt)), (1.6)

is repeated until some desired final time, Tdt, is reached. This equation has
been implemented in fib3.m with dt = 1 and B and g as above.

1.6. Exercises

[1] In order to refresh your matrix-vector multiply skills please calculate, by
hand, the product AT GA in the 3 compartment case and write out the
4 equations in (1.1). The second equation should read

(−x1 + 2x2 − x3)/Ri + x2/Rm = 0. (1.7)

[2] We began our discussion with the ‘hope’ that a multicompartment model
could indeed adequately capture the fiber’s true potential and current
profiles. In order to check this one should run fib1.m with increasing
values of N until one can no longer detect changes in the computed
potentials.
(a) Please run fib1.m with N = 8, 16, 32 and 64. Plot all of the po-

tentials on the same (use hold) graph, using different line types for
each. (You may wish to alter fib1.m so that it accepts N as an
argument).

Let us now interpret this convergence. The main observation is that the
difference equation, (1.7), approaches a differential equation. We can see
this by noting that

dz ≡ `/N
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acts as a spatial ‘step’ size and that xk, the potential at (k − 1)dz, is
approximately the value of the true potential at (k − 1)dz. In a slight
abuse of notation, we denote the latter

x((k − 1)dz).

Applying these conventions to (1.7) and recalling the definitions of Ri

and Rm we see (1.7) become

πa2

ρi

−x(0) + 2x(dz) − x(2dz)

dz
+

2πadz

ρm

x(dz) = 0,

or, after multiplying through by ρm/(πadz),

aρm

ρi

−x(0) + 2x(dz) − x(2dz)

dz2
+ 2x(dz) = 0.

We note that a similar equation holds at each node (save the ends) and
that as N → ∞ and therefore dz → 0 we arrive at

d2x(z)

dz2
− 2ρi

aρm

x(z) = 0. (1.8)

(b) With µ ≡ 2ρi/(aρm) show that

x(z) = α sinh(
√

µz) + β cosh(
√

µz) (1.9)

satisfies (1.8) regardless of α and β.
We shall determine α and β by paying attention to the ends of the fiber.
At the near end we find

πa2

ρi

x(0) − x(dz)

dz
= i0,

which, as dz → 0 becomes

dx(0)

dz
= −ρii0

πa2
. (1.10)

At the far end, we interpret the condition that no axial current may leave
the last node to mean

dx(`)

dz
= 0. (1.11)
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(c) Substitute (1.9) into (1.10) and (1.11) and solve for α and β and
write out the final x(z).

(d) Substitute into x the `, a, ρi and ρm values used in fib1.m, plot the
resulting function (using, e.g., ezplot) and compare this to the plot
achieved in part (a).

[3] Adapt the Backward Euler portion of fib3.m so that one may specify
an arbitrary number of compartments, as in fib1.m. Submit your well
documented M-file along with a plot of x1 and x10 versus time (on the
same well labeled graph) for a nine compartment fiber of length ` = 1 cm.

[4] We expect that the Backward Euler solution should approach the true
solution as the time step, dt, approaches zero. To see this let us return
to (1.6) and assume, for now, that g ≡ 0. In this case, one can reverse
the above steps and arrive at the representation

x(jdt) = ((I − dtB)−1)jx(0). (1.12)

Now, for a fixed time t suppose that dt = t/j and show (at least when B
is one-by-one) that

lim
j→∞

((I − (t/j)B)−1)jx(0) = exp(Bt)x(0).
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