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1. Neuronal Networks

1.netint 1. Introduction

Each human brain is comprised of over 100 billion neurons, each of which receives on average 10 thousand “inputs”
from neighboring neurons. To tackle such complexity we naturally restrict ourselves to well defined sub-networks
of the brain. Even then however we are far from constructing (for lack of data as well as computational resources)
detailed models that capture network architecture, cell morphology and biophysics. Existing strategies fall into 2
large camps, Attractor Neural Networks and Conductance Based Networks.

In the former, network activity of N cells is abstracted to discrete dynamics on the the vertices of the N dimensional
cube. For each cell, at a given instant, can take on but two values, e.g., ±1. One marches from one vertex to the
next by applying a threshold to a weighted sum of inputs at each cell. This permits experimentation, and often
analytical treatment, with relatively large networks, but suffers in translation to biology.

The modeling of Conductance Based Networks retains biological time, conductance and potential but typically
sacrifices ionic machinery and/or cell morphology. The simplest approach adopts the Integrate and Fire (IaF) cell
model of Chapter ?? and so sacrifices both but in a way that makes it relatively straightforward to generalize. We
therefore follow that course. In particular, in §1.2 we carefully formulate and illustrate the full set of conductance
and voltage equations for small networks of excitatory IaF cells. We then recognize, in §1.3, that this approach scales
easily to large networks of both excitattory and inhibitory cells. Finally, in §??, we formulate and illustrate a simple
rule for evolving the weights between cells.

1.smalliafnet 2. Small Integrate and Fire Networks

We begin with the simple two cell network below
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Figure 1.1. The smallest network

There are 2 cells, with respective membrane potentials V1 and V2, and 2 conductances, gE,1 and gE,2. The circuit is
driven by an excitatory input train that spikes at Tinp ≡ {T n

inp : n = 1, 2, . . .}. Each such spike increments, gE,1, the

excitatory conductance at cell 1, by a fixed amount, winp/τE . Between such spikes we assume that gE,1 returns to
zeros at the fixed rate τE . In other words, we suppose that gE,1 is governed by

τE

dgE,1(t)

dt
= −gE,1(t) + winpδ(t − Tinp). (1.1)ge1

Similarly, the excitatory conductance at cell 2 is driven by the spikes of cell 1, at times T1 ≡ {T n
1 : n = 1, 2, . . .}. In

particular

τE

dgE,2(t)

dt
= −gE,2(t) + w21δ(t − T1). (1.2)ge2

These conductances in turn supply synaptic current via the potential equations

CmV ′

i (t) = gL(VL − Vi(t)) + gE,i(V
syn
E − Vi(t)), while Vi(t) < Vthr (1.3)Viaf

and cell i is not refractory. When Vi(t) exceeds Vthr we augment the spike time sequence, Ti, and we reset Vi(t) to a
fixed reset potential, Vres for a set refractory period, tref . These spike times couple the conductance and potential
equations. We decouple this system by specifying an order of operation. In particular, we adopt the marching scheme

(1) check for an input spike

(2) update conductances based on input spikes and networks spike from previous time step

(3) update potentials and record spikes
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2cellhilo

Figure 1.2. Response of the two cell net to low frequency, P = 5, and high frequency, P = 2, stimulus. In each case
we see that cell one fires following every second input spike. In the low frequency case the resultant spike rate of cell
1 is not sufficient to bring cell 2 to threshold. twocell

Accordingly, if cell 1 receives an input spike in the interval (jdt, (j + 1)dt) then the trapezoid rule on (1.1), applied
to g

j
E,1 ≈ gE,1((j − 1)dt), requires

τE(gj+1

E,1 − g
j
E,1) = −(gj+1

E,1 + g
j
E,1)dt/2 + winp

which may be rearranged to read

g
j+1

E,1 = aEg
j
E,1 + bEwinp

where

aE =
2τE − dt

2τE + dt
and bE =

2

2τE + dt
.

Similarly, if cell 1 was found to spike in the previous interval, i.e., ((j − 1)dt, jdt) then

g
j+1

E,2 = aEg
j
E,2 + bEw21

Regarding the potentials, when cell i is nonrefractory, i.e., when

(j + 1)dt − Ti > tref (1.4)refcon

the trapezoid rule in (1.3) requires

V
j+1

i =
(2Cm/dt − (gL + g

j
E,i))V

j
i + 2gLVL + (gj+1

E,i + g
j
E,i)V

syn
E

2Cm/dt + gL + g
j+1

E,i

.

If (1.4) is not satisfied we enforce V
j+1

i = Vres. We have coded this update procedure in twocell and illustrate our
findings for periodic input trains that spike at

T n
inp = nP, n = 1, 2, . . . (1.5)Pstim

where P is the period (ms). Throughout we shall use

τE = 2, V syn
E = 0, gL = 0.3, VL = −68, Cm = 1,

winp = 0.5, w21 = 0.5, tref = 3, Vthr = −50, Vres = −70. (1.6)netpar

As most cells receive input from more than one neighbor we move onto the three cell net below. We retain periodic
input and to the parameter set above add w32 = w31 = 0.5.
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Figure 1.3. A three cell network

We have coded the subsequent model in threecell.m. This code is a considerable refinement of the two cell version.
In particular, we have laid the weights in a weight matrix, W and we have ‘vectorized’ the computations of both gE

and V.
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Figure 1.4. Response of the three cell net to low frequency, P = 5, and high frequency, P = 2, stimulus. Observe
in the lower right panel that the third conductance receives a double kick as cell 2 fires just after each second spike
of cell 1.threecell

We next suppose that cell 3 inhibits cell 1. This new conductance is governed by

g
j+1

I,1 = aIg
j
EI + bIwinhs3

where, as above

aI =
2τI − dt

2τI + dt
and bI =

2

2τI + dt
.

The potential at cell 1 now follows

V
j+1

1 =
(2Cm/dt − (gL + g

j
E,1 + g

j
I,1))V

j
1 + 2gLVL + (gj+1

E,1 + g
j
E,1)V

syn
E + (gj+1

I,1 + g
j
I,1)V

syn
I

2Cm/dt + gL + g
j+1

E,1 + g
j+1

I,1

3
input

21

3cellI

Figure 1.5. A three-cell network with feedback inhibition.

We diminish the drive on cell 3 via w31 = w32 = 0.3 and set the new parameters

τI = 2, V syn
I = −70 and winh = 3,

and arrive at
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Figure 1.6. Response of the network in Figure 1.5 to high frequency, P = 2, stimulus. We note that cell 3 now
staggers the firing of cell 1. threecellI

In the simulation of large networks one computes, but does not typically record, the conductances and potentials at
each time step. Rather one records and reports the times at which each cell spikes. We have trimmed threecell

and threecellI down to threecellrast and threecellIrast and illustrated their use below,

5 10 15 20 25 30 35 40 45

1

2

3

t  (ms)

ce
ll

A

10 20 30 40 50 60 70

1

2

3

t  (ms)

ce
ll

B

threecellrast

Figure 1.7. Raster plots of spike times of the three cell net without (A), and with (B) inhibition. threecellrast

and threecellIrast

1.bigiafnet 3. Large Integrate and Fire Networks

If W denotes the matrix of weights between excitatory cells and Winp denotes the weight of input spikes upon
excitatory cells, then, arguing as above, the network equations take the form

g
j+1

E = aEg
j
E + bE(Wsj + Winps

j+1

inp )

Vj+1 =
(2Cm/dt − (gL + g

j
E))Vj + 2gLVL + (gj+1

E + g
j
E)V syn

E

2Cm/dt + gL + g
j+1

E

sj+1 = (Vj+1 > Vthr)
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where all operations in the voltage update are elementwise. We have coded this in Enet with the help of MATLAB’s
sprand function, which generates sparse matrices from the uniform distribution on [0, 1] with a prescribed fraction
of nonzeros.
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Figure 1.8. Weight and spikes in a 20-cell excitatory net with 15% connectivity subject to a periodic train, P = 30,
with Winp = 1, delivered to the first 20% of the cells. Enet

To see the meaning of this W matrix note cells 7 and 13 have no squares in their columns and hence have no impact
on the behavior of the net. Every row has a nonzero and so in fact every cell receives input from at least one neighbor,
although cells 13 and 19 each have only one weight and in each case this weight is not enough to fire the cell. We
have stripped the diagonal clean and hence no cell excites itself. These nets are capable of generating rich patterns.
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Figure 1.9. Weight and spikes in a 40-cell excitatory net with 7% connectivity subject to a periodic train, P = 50,
with Winp = 1, delivered to the first 20% of the cells. Enet

We now introduce a population of inhibitory cells. We note their potentials by VI and those of the excitatory cells
by VE . Now each cell has two conductances; gEE and gIE will denote the excitatory and inhibitory conductances
on an excitatory cell while gEI and gII will denote the excitatory and inhibitory conductances on an inhibitory cell.
Coupling occurs through the weight matrices; WEE which connects E cells to E cells, WEI which connects E cells
to I cells, WIE , which connects I cells to E cells, and WII which connects I cells to I cells. The subsequent network
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equations are

g
j+1

EE = aEg
j
EE + bE(WEEs

j
E + W inp

EE s
j+1

inp,E)

g
j+1

EI = aEg
j
EI + bE(WEIs

j
E + W inp

EI s
j+1

inp,E)

g
j+1

II = aIg
j
II + bI(WIIs

j
I + W inp

II s
j+1

inp,I)

g
j+1

IE = aIg
j
IE + bI(WIEs

j
I + W inp

IE s
j+1

inp,I)

V
j+1

E =
(2Cm/dt − (gL + g

j
EE + g

j
IE))Vj

E + 2gLVL + (gj+1

EE + g
j
EE)V syn

E + (gj+1

IE + g
j
IE)V syn

I

2Cm/dt + gL + g
j+1

EE + g
j+1

IE

V
j+1

I =
(2Cm/dt − (gL + g

j
II + g

j
EI))V

j
I + 2gLVL + (gj+1

II + g
j
II)V

syn
I + (gj+1

EI + g
j
EI)V

syn
E

2Cm/dt + gL + g
j+1

II + g
j+1

EI

s
j+1

E = (Vj+1

E > Vthr)

s
j+1

I = (Vj+1

I > Vthr)

We have coded this system in EInet with

τI = 1 and V syn
I = −70

and illustrate its findings below.
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Figure 1.10. Weight and spikes in an EI-net with 80 E-cells and 20 I-cells subject to a periodic train, P = 40, with
Winp = 1, delivered to the first 20% of the E-cells. WEE , WEI and WIE each have 25% connectivity while WII has
5%. EInet

1.netsyn 4. Integrate and Fire Networks with Plastic Synapses

Spikes not only increment synaptic conductances they also increment the associated elements of the synaptic weights.
If Wi,j is the weight of cell j upon cell i we will implement a Hebbian rule that provides a positive increment when
j spikes before i and a negative increment when i spikes before j. The size of the weight change is a function of the
time between spikes and the current weights. Let us begin with the simple four-cell net below.
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Figure 1.11. A four-cell net.

We excite cell 1 every 40 ms. This activity propagates quickly to fire cells 2 and 4 and eventually cell 3. As 1 fires 4
we expect this weight, W4,1, to increase and as 3 does not fire 4 we expect W4,3 to decrease. To do this, when a cell
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fires we potentiate the weights from presynaptic cells that have recently fired and depress the weights to postsynaptic
cells that have recently fired. We quantify “recent” by adopting a scheme that is in line with the observations of Bi
and Poo that the degree of both potentiation and depression decays exponentially with the interval between the pre-
and post-synaptic spikes.

bipoo

Figure 1.12. Bi and Poo, Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing,
Synaptic Strength, and Postsynaptic Cell Type J. Neurosci. 1998 18: 10464-10472, Figure 7. Here ∆t = Tpost −Tpre

and EPSC denotes Excitatory Post-Synaptic Potential. This data suggests potentiation when ∆t > 0 and depression
when ∆t < 0.

We implement this scheme, with respect to the weight W4,3, via the simple difference

dW4,3(t)

dt
= δ(t − T4)AP exp((T3 − T4)/τP ) − δ(t − T3)AD exp((T4 − T3)/τD) (1.7)heb431

where we emphasize that this expression is indeed causal, for T3 and T4 denote the latest respective spike times prior

to t. To best appreciate this we integrate Eq. (1.7) over each such spike and uncover the increment rules

W4,3(T
+

4 ) = W4,3(T
−

4 ) + AP exp((T3 − T4)/τP )

W4,3(T
+
3 ) = W4,3(T

−

3 ) − AD exp((T4 − T3)/τD).

When called repeatedly these increments may lead to runaway weight loss and gain. There are a number of remedies
for this. The most simple is to return to zero any weights that tend negative and to return to Wmax all weights that
exceed this specified maximum. A smoother way of enforcing these bounds is to replace Eq. (1.7) with

dW4,3(t)

dt
= δ(t − T4)AP exp((T3 − T4)/τP )(Wmax − W4,3(t))

− δ(t − T3)AD exp((T4 − T3)/τD)W4,3(t)

for this leads to self-limiting update rules

W4,3(T
+
4 ) = W4,3(T

−

4 ) + AP exp((T3 − T4)/τP )(Wmax − W4,3(T
−

4 ))

W4,3(T
+

3 ) = W4,3(T
−

3 ) − AD exp((T4 − T3)/τD)W4,3(T
−

3 ).

Another advantage of this procedure is that now the maximum adjustments, AP and AD, are dimensionless. Regard-
ing the implementation of these rules, if our marching scheme determines that cell k fires in the interval (jdt, (j+1)dt)
we potentiate its presynaptic weights via

W
j+1

k,kpre
= W

j
k,kpre

+ AP exp((Tkpre
− (j + 1)dt)/τP )(Wmax − W

j
k,kpre

),
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and depress its postsynaptic weights via

W
j+1

kpost,k
= W

j
kpost,k

− AD exp((Tkpost
− (j + 1)dt)/τD)Wj

kpost,k,

We have coded these rules for the four-cell net, with

AP = AD = 0.3 and τP = τD = 10 (1.8)hebb4p1

and initial weights
W2,1 = W3,2 = W4,1 = 0.75 and W4,3 = 0.7. (1.9)hebb4p2
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Figure 1.13. Spike and weight evolution in the 4-cell net parametrized by (1.8)–(1.9). We see indeed that the direct
connection, w41 is strengthened while the indirect connection, w4,3 is dminished. fourcell

We proceed to illustrate this learning rule on E-to-E connections within a large random net. We consider 80 E-cells
and 20 I-cells with random connectivity and with EE-, IE-, and EI densities of 25% and an II-density of 5%. In
addition, we use

τE = 2, τI = 1, τP = 5, τD = 5, AP = 0.1, AD = 0.3, Wmax = 0.4,

and as aobove drive the first 20% of the E-cells with the same spike pattern with period of P = 50.
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Figure 1.14. Weights before and after learning. The red lines partition the E- and I-cell weights. Note the distinct
weight increase from the cells receiving input (columns 1–16) to the “output cells” (rows 25–75). EInetH
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These gray-scale weight plots are not the best means of tracking weight shifts over time. Rather we compute a
histogram at regular intervals.
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Figure 1.15. Spike and Weight evolution. P = 30. EInetH

1.exe 5. Exercises

1. In the case of periodic input, Eq. (1.5), for the two-cell network we may solve Eq. (1.1) for gE,1 by hand. In
particular, please show that

gE,1(t) =
winp

τE

exp((P − t)/τE)
1 − exp(P ⌊t/P ⌋/τE)

1 − exp(P/τE)
(1.10)ge1ex

where ⌊x⌋ denotes the largest integer less than x. First show that gE,1(P
+) = winp/τE , then gE,1(t) =

exp((P − t)/τE)winp/τE for P ≤ t < 2P , then gE,1(2P+) = (1 + exp(−P/τE)winp/τE and so

gE,1(t) = exp((P − t)/τE)(1 + exp(P/τE))winp/τE , 2P ≤ t < 3P.

Continuing in this fashion you will find a (summable) finite geometric series.

2. Experiment with threecell.m to further delay the spiking of cell 3. In particular, retain P = 2 but set
W3,1 = W3,2 = w and find the smallest w (to two decimal places) such that cell 3 fires once for every two spike
of cell 2. Submit your code and associated figure.
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