
Ordinary Differential Equations in 

Neuroscience with Matlab examples.

• Aim 1- Gain understanding of how to set up 

and solve ODE’s

• Aim 2 – Understand how to set up an solve 

a simple example of the Hebb rule in 2D



Ear

Tongue

Nose

AAAA

BBBB

Classical Conditioning and Hebb’s rule

“When an axon in cell AAAA is near enough to excite cell BBBB and 

repeatedly and persistently  takes part in firing it, some 

growth process or metabolic change takes place in one 
or both cells such that AAAA’s efficacy in firing BBBB is increased”

D. O. Hebb (1949)

Our goal at end of class – understand Hebbian

plasticity mathematically



The generalized Hebb rule:

where xi are the inputs

and y the output is assumed linear:

Results in 2D
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Example of Hebb in 2D

w

(Note: here inputs have a mean of zero)

The + symbols represent randomly chosen input pairs (x1,x2) 

and the red circles the evolution of the synaptic weights 

(w1=w2). 



Part I: examples of ODE’s how to set them up and how to 

solve them.

Example 1: Radioactive decay:

This is the canonical example for a simple 1D ODE, it is also a 

good example for a random statistical processes, like you saw 

yesterday

Assume there is a given amount or radioactive material defined 

by the variable X.  X(t) is the amount at time t.

The probability that each atom will decay in a small time period

∆t is independent of what the other molecules do, and only 

radioactive molecules can decay to a non radioactive state.  The

probability of decay over a small period ∆t is defined as γ·∆t.The

amount remaining at time t+∆t is:

Lets run the following simple matlab program to see what will 

happen to x(t).

ttxtxttx ∆−=∆+ γ)()()(



>> x=zeros(1,1001);

>> dt=1/1000;

>> t=0:dt:1000*dt;

>>

>> x(1)=10;

>> gamma=2;

>>for jj=1:(length(t)-1)

x(jj+1)=x(jj)-dt*gamma*x(jj);

end

>> plot(t,x)

What is the shape of these curves?

How do they depend on the parameter γ?



This is a difference equation:

A little simple math:

Now assume that the time step ∆t approached 0 (is very small)

This is now a differential equation:
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x
dt

dx
γ−= How do we solve this ODE?

Make a guess, assume that:

)exp()( tBAtx ⋅⋅=

Note for this choice of x(t):

Insert this back into the ODE above, get:

Which is a solution if B=-γ.

So:

)()exp( txBBtAB
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⋅=⋅⋅=
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Solution:

Where τ the time constant is

τ =1/γ, and the initial condition 
determines the other 

Free constant x(0)=A

Terminology, this is a first order (only first derivatives) linear 

differential equation. The dynamical variable x depends on 

only one  parameter, t.  If it depends on additional paramerters

we might obtain partial differential equations, which we will 

not discuss here.

)/1exp()0()( τ−= xtx



Example 2: Chemical reactions. Assume that when a 

molecule

Of type A binds to a molecule of type B they can form a 

product of type C.   Denote as A+B       C.

A represents the concentration of type A etc.

Assume now that the probability that type A will bind with 

be depends on their concentration. Then:

Where γ is a rate constant.
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These are three coupled ordinary

differential equations}
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Note that there are 

conservation equations: 

A+C=Atot and B+C=Btot

len=1000

dt=1/len;

A=zeros(1,1000);

B=zeros(1,1000);

C=zeros(1,1000);

gamma=2;

A(1)=2;

B(1)=10;

timeline=0:dt:dt*len;

for ii=1:len

A(ii+1)=A(ii)-dt*gamma*A(ii)*B(ii);

B(ii+1)=B(ii)-dt*gamma*A(ii)*B(ii);

C(ii+1)=C(ii)+dt*gamma*A(ii)*B(ii);

end

plot(timeline,A,'b'); hold on;

plot(timeline,B,'r-.');plot(timeline,C,'k');

Matlab program
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)1( Simplification. 

Lets assume a case where B>>A.

The smallest value on B possible is 

B(0)-A(0) which is close to B(0).

Replace then the dynamical variable B 

with the parameter B=B0=B(0). Use 

conservation A+C=A(0), get:
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Obtain solution:
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−= + signs represent  

the approximate 

analytical solutions

A(0)=1, B(0)=10, γ=2

Play with the program 

parameters and initial 

conditions and 

compare to the 

analytical solution, see 

when the approximate 

solutions are no longer 

a good approximation. 



Fixed points when:

Is this fixed point stable, that is when we slightly move away 

from the FP will the dynamics return us to the FP or take us 

away from it?
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Fixed points and their stability: 

The problems until now are very simple and exactly, most 

problems are not.  Lets take a simple problem and pretend it is 

not to see what we would do in such a case. Same problem 

rewritten:  
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the FP, and the FP is 

stable.  If the line had a 

positive slope, at the FP 

it would be unstable.
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Terms used:

1. First order, only first derivatives 

The equation                                         is second order.  It too has 

a simple solution try inserting                                 .

2. This equation is linear because it does not have terms of the

form                .  

Non linear equation are usually hard to solve exactly, and we 

usually resort to finding their fixed points and the stability of these

fixed points.
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3. An equation of the form

Is non-homogeneous we have methods for solving such equations.

Textbooks for differential equations:

1. Elementary differential equations and boundary value problems. 

Boyce and DiPrima.  This has mostly analytical solutions and 

background on fixed points and their stability.

To see examples of equations for specific problems solved in terms 

of the fixed points and their stability you can look at:

2. Nonlinear Dynamics and Chaos: With Applications to Physics,

Biology, Chemistry and Engineering. S. Stogatz.

This is not a differntial equations textbook, but the methods used and

examples are very useful and it is an easy read.
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Recap – what did we learn until now?  



Part II: The Hebb rule, an example of learning dynamics and 

how we can solve a 2D example.

The Hebb rule:

Where:

If we insert into equation above we get:  
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Simple 1D example (x1=x).

a. The input is constant over time: x=a

b. The input has a probability of ½ of being 1 and a probability of 

½ of being -1. Assume learning is slow so that can take average 

over input distribution:
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2D example.

The Hebb rule:

Average:

Matrix notation:

Assume:  
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where:

Assume











=








=








=








5.0
0.1

5.0

5.0
5.0

0.1

2

1

pwith

pwith

x

x

ij

j

j
i Qw

dt

dw ∑= jiij xxQ =









=









⋅

⋅
+








⋅

⋅
=

625.05.0

5.0625.0

15.01

15.05.0
5.0

5.015.0

5.011
5.0

2

2

2

2

Q

wQ
w

η=
dt

d

x1

x2

wQ
w

η=
dt

dLets pretend now 

that we can simply 

drop this average 

symbol



Qw
w

η=
dt

d

iii uuQ λ=⋅Find the eigen vectors of Q:

>> Q=[0.625, 0.5

0.5, 0.625];

>> [U,lam]=eig(Q)

U =

-0.7071    0.7071

0.7071    0.7071

lam =

0.1250         0

0    1.1250

Matlab code
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iii uuQ λ=⋅Find the eigen-vectors of Q:

These form a complete orthonormal basis

Rewrite:

So 
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‘Hebbian’ ODE:
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iii uuQ λ=⋅Find the eigen-vectors of Q:

If Q has the common form:

Then:

What happens if λ1>> λ2 ?

21 uuw(t) )exp()0()exp()0( 2211 tata λλ +=

The averaged 

‘Hebbian’ ODE:









=

ab

ba
Q









−

+
=−=









+

+
=+=

1

1

2

1

1

1

2

1

11

11

uba

uba

λ

λ



General comments about the form of correlation matrixes.

• They are symmetric Qij=Qji., and therefore all of their eigen-

values are real. 

• All of their eigen-values are positive (Try to prove this yourself)

HW- For the general form of a correlation matrix in 2D:

1. Learn how to find analytically the eigen-vectors and 

eigen-values.

2. Show that in this case all eigen-values are positive

3. Show that in the higer dimnstional case all eigen-values 

are positive
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What did we learn today?

HW-

What would happen with the learning rule:

Oja (1982)

Where are the F.P, how does this relate to the eigen-

vectors, and why
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