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  With the parameter values (tau1 = 1. 69; tau2 = 71.8; k1 = 0.689; k2 = 9.07) for fly pho-
toreceptor, the output of the model did not match with the actual data from photoreceptors. 
The actual response of a locust photoreceptor and that of the van Hateren model with default 
parameters is shown above.  

Goal
  The goal of this project was to adapt existing models of early visual processing in flies, 
the van Hateren photoreceptor model and the NLN cascade LMC model, to fit the responses of 
locust photoreceptors.  This will allow the Gabbiani laboratory to run large-scale simulations 
of higher order visual processing in the locust visual system using the outputs of these models 
as realistic neural inputs. 

  The van Hateren model was developed using data that was not calibrated with regards to 
the absolute light intensity.   Thus, we needed to find the best linear transform to match the light 
intensities used during the photoreceptor recordings (Iexp) to the corresponding range of model 
input values (Imodel).  Since all we had to use were photoreceptor responses, we decided to fit 
the linear function
              Imodel = A•Ilux + B
  
by minimizing steady state response magnitudes of the van Hateren model and the data for 3 dif-
ferent stimulus intensities. The fitted values of A and B returned to be 16.1738 and 186.6813 re-
spectively.
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  There were three input values (31.7, 61.2 and 90.4) to observe, and the differences between 
the model response and locust response were 1.2801, 0.0020, and 1.1096 respectively.

Locust Photoreceptor Responses to Luminance Changes 

   Above is an example of the locust photoreceptor responses that we used to fit the model.  
Luminance pulses that increased and decreased at different speeds were presented while recording 
the membrane potential of a single photoreceptor.  Stimulus traces are shown on the top, and 
recordings below.  One can see that the response speed of photoreceptor tracks that of the stimu-
lus change.  One stimulus frame equals 1/60 sec. 

Fitting the Model
  After finding the best fit luminance transform while keeping model parameters constant, we 
needed to fit the 4 model parameters (tau1, tau2, k1, k2).  We first tried to freely vary all 6 param-
eter values (model parameters plus A, B), but that didn't converge to a solution, and the end pa-
rameter values didn't yield good fits to the data (red line).  We also tried to hold the parameters k1 
and k2 constant, thinking that these govern responses over longer timecourses than the stimuli 
were presented, but the solution arrived at was clearly not a good fit (green line).  After limiting 
the algorithms iterations to 300, but changing start conditions, we found a reasonable solution, 
shown in blue. It took 7 hours on average to obtain each set of parameters in panel A. These fits 
are shown for multiple stimulus brightnesses (panel B) and speeds (panel C) to show that they fit 
the range of experimental data well.

Conclusions
  We were able to adapt a nonlinear model of fly photoreceptors to locust photoreceptor re-
sponses.
  We began implementing a model to describe the filtering properties of Large Monopolar 
Cells (LMCs).
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Sum of square of residuals: Red 2.6475e+04 mV²  Green 2.5749e+04 mV²  Blue 1.4135e+04 mV²

  The visual systems of animals have long been studied as models of how the neural circuits 
process information.  This is because individual cells throughout the system can be recorded and 
their responses related to the light input presented.  Photoreceptors, the cells responsible for 
transducing incident light energy into neural signals are the first stage of this system.  A sche-
matic drawing of the insect visual system is shown in A, and a detailed sketch of a photoreceptor 
is shown in B.  How insect photoreceptors respond to a wide range of light intensities and pat-
terns has been well characterized over the years, and detailed models describing these responses 
have been developed.  One particularly successful model was developed by Hans van Hateren 
and colleagues (van Hateren and Snippe 2001) based on responses from fly photoreceptors.  This 
model describes the membrane potential fluctuations resulting from external luminance changes 
over 3 orders of magnitude using several sequential nonlinear filtering steps.  The second stage 
of processing, Large Monopolar Cells (LMCs) in the lamina have also been well studied, and 
have also been successfully modeled using nonlinear-linear-nonlinear (NLN) cascade model 
(Juusola et al, 1995).  The structure of the photoreceptor model and the response produced by the 
model are presented above in figure C.   LP stands for Low-Pass filter, and NL stands for Non-
Linear filter. LP1 and LP2  has tau1 and tau2 as its parameter respectively. LP3 has a two param-
eters k1 and k2. The output of  LP3 is k1exp(k2*input).  
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Parameter values
A      8.743      0.0368      0.2001   
B      340.8      0.8146      6.793
tau1  4.955e-6  3.630e-6  1.301e-6
tau2 153.4       300.5        611.9
k1    1.406       1.4061      3.521
k2    7.351       11.1719    8.447
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  We also started to implement the NLN model of LMCs, but were limited by time and 
lack of quality recordings against which to fit the model.  We implemented the linear filter 
stage of the model, which produces responses that are inverted and emphasize transient por-
tions of the response when compared to photoreceptor output.  This is shown in panel D.
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