

Color is perceived as changing before motion

This illusion is observed only for correspondence judgments in which a subject must bind the color
and direction of and direction of motion. Temporal order judgments are (Nishida \& Johnston, 2002)

3. Prediction suppression

Manipulations of stimulus predictability have been shown to manipulate the perceived duration of a stimulus (Pariyadath \& Eagleman 2007,
Pariyadath \& Eagleman, under review) Pariyadath \& Eagleman, under review).

Repetition, a strong case of predictability, leads to diminished neural responses as measured by fMRI BOLD signal, ERP, and single cell firing rates (Grill-Spector et al, 2006)

4. Can predictability change the color/motion asynchrony?

By alternating between gray and either a repeated or random isoluminant color we can determine the effect of predictability on can determine the effect of predictability on the color/motion asynchrony

Repeated:

Random:

(Moutoussis \& Zeki, 1997)
5. Behavioral results

"Which direction are the colored squares moving?"

Color/motion asynchrony is reduced when the stimulus is less predictable.
6. What explains the reduction in asynchrony?

We have shown that increasing the predictability of a stimulus changes its perceptual binding properties. Is the neural response similarly affected?

${ }^{\text {time }}$
Hypothesis: Color/motion asynchrony is in part caused by neural repetition suppression, which can be tested using functional neuroimaging (fMRI)

7. Imaging methods

1. Find isoluminant colors

Heterochromatic flicker fusion $(30 \mathrm{~Hz})$ - a color is rapidly alternated with a gray square so that luminance, but not color, flicker is readily visible

time	Participant adjusts luminance of color to minimize perception of flicker	\square
\square	\square	

2. Color-responsive regions Color localizer - subjects passively view isoluminant colored and grayscale patterns.

Regions which show greater BOLD signal in response to the colored stimulus than to the grayscale stimulus will be used for later region of interest analysis.
3. Color/motion asynchrony task

- Conditions: Repeated and Random colors
- Color/motion offsets: $0,100,200,300$, and $400 \mathrm{~ms}(T=800 \mathrm{~ms})$ - Repetitions: 5 per phase offset per condtion - 2 conditions $\times 5$ color/motion offsets $\times 5$ reps $=50$ trials - Hemodynamic response is slow - must allow ~ 6 seconds for - Hemodynamic res
return to baseline
- trials presented in random order with random wait time
before response given $(2-6 \mathrm{~s})$ and after response before before response given $(2-6 \mathrm{~s})$ and after response before nex
trial ($6-10 \mathrm{~s}$)

Example Trial:

EPI sequence $(T R=2$ s, 37 slices
voxel size $=4 \times 4 \times 4 m$) using 3

Subject pool and behavioral testing
Subjects were drawn from the local Twas Center and Rice University communities. Currently 15 subjects (6 female) have participated. Technical difficulties were experienced with 4 of these subjects which resulted in a loss of color localizer data.
All subjects also ran the original behavioral version All subjects also ran the original behavioral version
of the task (Panel 4 \& 5), randomly either before or after the scanning session. This data may be used for correlation with the fMRI BOLD signal amplitude.

9. Plans for fMRI analysis

 We will use the color functional localizer to determine whichregions showed a graeter BBLD response for the colored
retions thon patterns than for the uncolored patterns. These regions will be
defined as our regions of interest (ROIs).

We will then plot \& compare the time couse of BOLD response in these regions to the Repeated and BOLD response in these regions to the Repeated and
Random conditions of the color/motion asynchrony task. If our stimulus leads to repetition suppression in the Repeated condition, the BOLD response may look like the following:

Conclusions

We have shown that a common perceptual illusion can be modulated through the careful adjustment of stimulus predictability
We have designed and are currently running an fMRI experiment to determine whether repetition suppression plays a role in this illusion
This paradigm provides an opportunity to link a particular change in neural response to a specific, quantifiable change in the perception of a stimulus

References

D.M. Eagleman, Nature Reviews Neurosesici. 2.220 (2001). \qquad

