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Abstract

Translation efficiency of certain mRNAs is regulated through a cytoplasmic 
polyadenylation process at pre-initiation phase. A translation factor regulates the 
polyadenylation process through its posttranscriptional modification e.g., 
phosphorylation. The cytoplasmic polyadenylation binding protein (CPEB1) is one 
such translation factor which regulates the translation of mRNAs through 
cytoplasmic polyadenylation element (CPE). The cytoplasmic polyadenylation 
process can be turned on or off by the phosphorylation or dephosphorylation 
state of CPEB1. The phosphorylated form of CPEB1 increases the translational 
activity of an otherwise dormant mRNA. A physiological instantiation could be the 
regulation of αCaMKII mRNA stability through the phosphorylation
- dephosphorylation cycle of CPEB1. Here, we show that CPEB1 mediated 
translation of αCaMKII mRNA through polyadenylation is regulated through a 
bistable switching mechanism. The simple translation switch for regulating the 
polyadenylation is based on two state model αCaMKII-CPEB1 molecular pair. 
Here, the de-novo synthesis of αCaMKII is modeled through an active/inactive 
form of αCaMKII mRNA. Based on elementary biochemical kinetics a high
dimensional system of non-linear ordinary differential equations can describe the 
dynamic characteristics of the polyadenylation loop. We used deterministic and 
stochastic approaches to analyze the feasibility of CaMKII translation switching 
mechanism. We also developed the one parameter bifurcation diagram to show 
the numerical robustness of proposed switching mechanism.
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CPEB Deterministic Dynamics Curves   (   = .16) 
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Discussion
This work proposes the general hypothesis that a feedback loop between a 
plasticity related kinase and its translation factor can act as a bistable switch that
stabilizes long term memory. The one parameter bifurcation diagram proves the 
existence of such a bistable switching system. In the deterministic dynamics
graph, with a set of appropriate parameter, we also see two clearly separated 
steady states. However, because the concentration of translation machinery is 
extremely low in necks of spines and spines, it is more reasonable to assume that 
the translation process happens stochastically. Here, we observed differences 
between results from deterministic and stochastic approaches. The initial 
condition that merged to the lower steady state in deterministic approach seems 
to rise to the upper  steady state in stochastic approach, and does so faster than 
the other condition that rose to the upper steady state in deterministic approach. 
This discrepancy happened either because there was an error in the 
implementation of Gillespie Algorithm or because stochasticity disturbs the 
system to an extent that bistability is impossible and so do the systems in nature
behave. Further investigations are needed to arrive at a more detailed conclusion.
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