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Introduction

Neurons communicate largely via spikes (action potentials) which are stereotyped, rapid tran-

sients of their membrane potentials. To simplify the statistical analysis of neuronal data and

simulations of neuronal populations, the exact shape of each spike is sometimes disregarded,

and only the times of their occurrences are recorded. Therefore, the activity of a neuron

is sometimes described by a sequence of times at which the neuron has emitted a spike,

s = {t0, t1, . . .}. An abstract representation of a sequence of spikes, also referred to as a spike

train, can therefore take the form of a collection of vertical bars1:

Time
tt t t t t
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This is an example of what statisticians call a point process. Typically, there is some

randomness in the spike times. This may be due to the “noisiness” in the response of a cell,

or due to other factors that we cannot control or do not know. The goal of the following is to

describe the basics of spike train analysis, and give some notion of how neural response can

encode information, despite their random appearance.

Basic characterization of a spike train

Modern experimental techniques allow us to record from dozens or more neurons simultane-

ously, each of which may spike thousands of time. For this data to be meaningful we can

look at different statistical descriptions, or try to represent it in a way that tells us about the

dynamics and interdependencies between the recorded cells. Let us start with the statistics.

The data consisting of many measurements (shoe sizes of all students at your university,

for instance), is usually summarized by its average value. Equally important, however, is the

1At this point you may ask how to go from the recording of the cell’s membrane voltage to a point process.
Since spikes do have a width which ranges from somewhere between .5 ms to 2 ms or more, there is no unique
way of doing this. One way is to mark the time at which the membrane voltage exceeds a given threshold as
the time of the spike. Since spikes are rapid membrane voltage transients, it is also possible to mark the times
at which the derivative of the membrane voltage is high.
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variance, since it tells you how variable the measurements are. Similar statistics are used to

characterize spike trains.

Typical spike trains you may observe in computer simulation or an experiment may look

something like this:

those measured in vivo7,8,11. In this range r(c) was approximately
linear (Fig. 2a, b), allowing us to use perturbation techniques26 to
obtain an expression for r(c) (see Supplementary Information):

r<S m,sð Þc~
s2 dn

dm

! "2

CV2n
c ð3Þ

Wedefine the slope S(m,s) relating r to c as correlation susceptibility.
Here dn/dm is the derivative of the spike-rate transfer function (that
is, the relationship between firing rate, n(m,s), and the mean injected
current). Equation (3) accurately predicts the transformation r(c)
obtained via simulations (Fig. 2a, b, dashed lines).

As with the experiments, we varied m or s while keeping c fixed to
obtain different values of n. A plot of r versus n when m (or s) was
increased while keeping s (or m) fixed (inset of Fig. 2c) shows that r
rapidly increased in the physiological range of 0–50 spikes s21 and
asymptoted to c at high rates (Fig. 2c). Notably, the correlation–rate
curves obtained by increasing m or s were nearly identical, even
though voltage traces, correlation functions and CVs were very dif-
ferent (Fig. 2c). To show that these results did not depend on specific
m and s values, we used equation (3) to sweep a large region of the
m–s parameter space. The resultant r–n values were confined to a
narrow band around the stereotyped curve (Fig. 2c, shaded areas).
This allowed us to rewrite equation (3) in an approximate form in
which the susceptibility, S, depends only on the output rate and not
on the input variables m and s:

r<S nð Þc ð4Þ
The empirically measured rT also increased with n for all T
examined; however, the approximation that S depends only on n
(equation (4)) becomes progressively less accurate as T decreases
(see Supplementary Information).

To determine whether the correlation–rate relationship emerges in
a less controlled andmore biologically relevant setting, we performed
simulations of a two-layer network where neurons from layer 1 were
randomly connected to neurons in layer 2 (Fig. 3a). Layer 1 consisted
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Figure 1 | Relationship between output spike correlation and rate in in vitro
cells. a, Twenty neurons from cortical slices (n5 11) were stimulated with
gaussian currents (filtered with a time constant of 5ms), with both common
and independent components. b, Fluctuating current injection (bottom)
often evoked nearly synchronous spikes (top arrowheads). Red and black
traces are membrane potentials from cells 1 and 2, respectively. c, Typical
cross- (left) and auto-correlation (right) functions from a pair of cells firing
at low (blue), medium (red) and high (green) rate. d, A typical rT versus c for
a pair of cells. e, The correlation rT in a population (n5 123 pairwise
comparisons) increases with

ffiffiffiffiffiffiffi
ninj

p
and does not co-vary with

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CViCVj

p

(inset, linear regression, r5 0.13); cwas fixed at 0.5. Squares represent mean
and s.d. of the population, and coloured circles the examples shown in c. f, A
simple cell model that generates an output spike for every input spike. The
correlation rT is fixed at c, and is independent of n. Throughout we used
T5 40ms.
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Figure 2 | The correlation–rate relationship in an integrate-and-fire neuron
model. a, b, r versus c from simulations (solid line) and theory (dashed line,
from equation (3)). Increases in either m (a) or s (b) increase the slope of
r(c). Grey lines are the diagonal r5 c. Inset shows r(c) for all c. c, As m (red)
or s (blue) were varied following the paths drawn in the inset, r and n co-
varied as shown. Note that this relationship holds only when r(c) is linear
(a and b). Simulations (dots) and theory (solid line) show a dependence of r
and n along a stereotyped curve. The shaded area shown in m–s space (inset)
was swept using equation (3) and yielded the shaded area around the r–n
curves. Voltage traces, cross- and auto-correlation functions (upper and
lower panels, respectively) are illustrated for two sets of (m, s) values (see1
and3 in inset). We used tm5 10ms.
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those measured in vivo7,8,11. In this range r(c) was approximately
linear (Fig. 2a, b), allowing us to use perturbation techniques26 to
obtain an expression for r(c) (see Supplementary Information):

r<S m,sð Þc~
s2 dn

dm

! "2

CV2n
c ð3Þ

Wedefine the slope S(m,s) relating r to c as correlation susceptibility.
Here dn/dm is the derivative of the spike-rate transfer function (that
is, the relationship between firing rate, n(m,s), and the mean injected
current). Equation (3) accurately predicts the transformation r(c)
obtained via simulations (Fig. 2a, b, dashed lines).

As with the experiments, we varied m or s while keeping c fixed to
obtain different values of n. A plot of r versus n when m (or s) was
increased while keeping s (or m) fixed (inset of Fig. 2c) shows that r
rapidly increased in the physiological range of 0–50 spikes s21 and
asymptoted to c at high rates (Fig. 2c). Notably, the correlation–rate
curves obtained by increasing m or s were nearly identical, even
though voltage traces, correlation functions and CVs were very dif-
ferent (Fig. 2c). To show that these results did not depend on specific
m and s values, we used equation (3) to sweep a large region of the
m–s parameter space. The resultant r–n values were confined to a
narrow band around the stereotyped curve (Fig. 2c, shaded areas).
This allowed us to rewrite equation (3) in an approximate form in
which the susceptibility, S, depends only on the output rate and not
on the input variables m and s:

r<S nð Þc ð4Þ
The empirically measured rT also increased with n for all T
examined; however, the approximation that S depends only on n
(equation (4)) becomes progressively less accurate as T decreases
(see Supplementary Information).

To determine whether the correlation–rate relationship emerges in
a less controlled andmore biologically relevant setting, we performed
simulations of a two-layer network where neurons from layer 1 were
randomly connected to neurons in layer 2 (Fig. 3a). Layer 1 consisted
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Figure 1 | Relationship between output spike correlation and rate in in vitro
cells. a, Twenty neurons from cortical slices (n5 11) were stimulated with
gaussian currents (filtered with a time constant of 5ms), with both common
and independent components. b, Fluctuating current injection (bottom)
often evoked nearly synchronous spikes (top arrowheads). Red and black
traces are membrane potentials from cells 1 and 2, respectively. c, Typical
cross- (left) and auto-correlation (right) functions from a pair of cells firing
at low (blue), medium (red) and high (green) rate. d, A typical rT versus c for
a pair of cells. e, The correlation rT in a population (n5 123 pairwise
comparisons) increases with
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and does not co-vary with
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CViCVj
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(inset, linear regression, r5 0.13); cwas fixed at 0.5. Squares represent mean
and s.d. of the population, and coloured circles the examples shown in c. f, A
simple cell model that generates an output spike for every input spike. The
correlation rT is fixed at c, and is independent of n. Throughout we used
T5 40ms.
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Figure 2 | The correlation–rate relationship in an integrate-and-fire neuron
model. a, b, r versus c from simulations (solid line) and theory (dashed line,
from equation (3)). Increases in either m (a) or s (b) increase the slope of
r(c). Grey lines are the diagonal r5 c. Inset shows r(c) for all c. c, As m (red)
or s (blue) were varied following the paths drawn in the inset, r and n co-
varied as shown. Note that this relationship holds only when r(c) is linear
(a and b). Simulations (dots) and theory (solid line) show a dependence of r
and n along a stereotyped curve. The shaded area shown in m–s space (inset)
was swept using equation (3) and yielded the shaded area around the r–n
curves. Voltage traces, cross- and auto-correlation functions (upper and
lower panels, respectively) are illustrated for two sets of (m, s) values (see1
and3 in inset). We used tm5 10ms.
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The intensity of the process can be characterized by the spiking rate, which we denote r. This

can be done by simply counting the number of spikes in a given time window and dividing by

the length of the window. The rate tells you how many spikes per unit time are generated, on

average, and is typically recorded in spikes/s = Hz. Given a constant rate r, the expected

number of spikes during a window of length T is simply rT .

Exercise: Approximate the rate of the two processes in the figure above.

The rate, may not be constant over time. This makes the estimation more difficult.

However, we start by assuming that the rate is fixed, so that the expected number of spikes

in a window of size T is independent of whether this window is at the beginning, middle or

end of the spike train. More generally, if the statistics of the process do not change over time,

it is called stationary.

Another way to get the rate of the process is to start with the intervals between each

adjacent pair of spikes in the sequence, {Ti}. These are called inter-spike intervals or ISIs.

The average ISI, T̄ , and the rate are inverses of each other (Convince yourself that this is

true). Each Ti can be thought of as a realizations of a radom variable T , if the process is

stationary.

Note that the two processes in the figure above have approximately equal rates. However,

the spikes in the left process appear to be spaced more regularly than on the right. There

are a couple of ways to measure the irregularity of the spike train, that is, the variability of

the ISIs. The simples measure of variability is the coefficient of variation or CV of the ISI

distribution. This is defined as the ratio of the standard deviation of the ISIs and their mean2:

CV =

√
1
N

∑
i(Ti − T̄ )2

T̄
.

This may not be the best measure of variability, since it does not take into account depen-

dencies between successive ISIs. The Fano factor provides an alternative: Let N(T ) be the

2For technical reasons, one actually uses
√

1
N−1

∑
i(Ti − T̄ )2 to estimate the standard deviation from a

sample of ISIs. This is due to the fact that we think of the measured Ti’s as samples from an underlying
distribution. To make sure that we have an unbiased estimate of the standard deviation, we use N − 1 in the
denominator.

The reason we divide by the mean interspike interval is the following: Think of two stocks, say Google,
valued at about $450 per share and General Electric at $32 per share. A fluctuation of $1 in the Google stock
is much smaller than a fluctuation of $1 in the GE stock. To compare the two we therefore need to normalize.
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number of spikes in a window of width T for a stationary process. The Fano Factor is defined

as

F =
var[N(T )]

〈N(T )〉
.

Exercise: Show that both F and CV are 1 for the Poisson process.

For theoretical purposes, we think of the ISI as a random variable with probability density

p(t). In other words the probability that a spike at t0 is followed by a spike between t0 + T

and t0 + T + ∆t is3 p(t)∆t + o(∆t). Note that p(t) is zero for negative values of t.

Exercise: Neurons have a limit to how fast they can fire action potentials. A

spike is typically followed by a short period during which another spike is less

likely to occur. In an ideal situation we talk of an absolute refractory period – an

interval of time following a spike during which another spike is impossible.

Compare a neuron with ISI probability density p(t) with a neuron with refractory

period tr by comparing the CV of the distribution p(t) and p(t− tr). In particular

find an expression for CVr, the coefficient of variation for the second distribution,

in terms of CV , the coefficient of variation of the first. What happens as tr →∞?

Explain this intuitively.

Frequently one is interested in how a neuron, or collection of neurons, respond to a stim-

ulus which may be brief or ongoing, but variable. In such cases (which are, probably, more

representative of what is going on in neural tissue), the rate is not constant. We can define the

instantaneous firing rate, r(t), indirectly by requiring that the probability of a spike occurring

between t and t + ∆t is approximately r(t)∆t for small ∆t.

The Poisson process and renewal processes

In this section we turn to the question of how to simulate some simple point processes. If

the ISIs are independent of each other, the point process is called renewal. After the previous

section you probably already know how to simulate such a process: Take a distribution p(t)

such that p(t) > 0 only when t > 0. Start with a spike at time t = 0, and choose a number t1
from the distribution p(t). Place, the second spike at t1, and repeat the process4.

The above is a perfectly valid way of generating a spike train. The following alternative

is computationally more expensive, but offers a completely different view of point processes.

Let us assume that we have a process such that

1. The probabilities of a spike occurring during an interval [t1, t1 + s1] and [t2, t2 + s2] are

independent, if the intervals are not overlapping.

3It will be useful to review “little-oh” and “big-oh” notation at this point.
4If you don’t put a spike at 0, it is a bit more difficult to decide where to put the first spike. This is

equivalent to the following problem: suppose you start observing a neuron that has been active for a while.
You don’t know how long it has been since the last spike. The time at which you observe the first spike is a
random variable – What is the corresponding distribution?
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2. The probability that a spike occurs during a brief interval of time interval of length ∆t

is r∆t + o(∆t).

3. The probability of more than one spike occurring during a time interval of length ∆t is

o(∆t).

Here r is the rate of the process – you can check that the expected number of spikes during

an interval T is exactly rT .

Such a process is very easy to simulate approximately. Just split the timeline into bins of

some small width ∆t, and place a spike into each bin with probability r∆t. It doesn’t even

matter in which order you fill the bins, as long as you visit every bin only once.

Time

We can derive the ISI probability density for a Poisson process directly from this definition.

Note that if a spike occurred at time 0, then the probability that no spike occurred between 0

and t is the probability that no spike occurred in any of the t/∆t bins of size ∆t subdividing

[0, t]. This probability is approximately

p0(t) ≈ (1− r∆t)t/∆t.

The approximation becomes better as ∆t → 0, and in this limit we obtain p0(t) = exp(−rt).

The probability that the next spike occurs between t and t + ∆t is p(t)∆t, where p(t) is

the probability density of the ISI. This is the product of the probability r∆t of a spike in this

interval, and the probability that no spike occurred up to time t. Therefore

p(t)∆t = e−rtr∆t, and so p(t) = re−rt.

Exercise: Use this fact to prove that the Poisson process is memoryless. This

means that the probability of a spike happening during an interval [t, t + ∆t] is

independent of the time of any previous spike.

Exercise: Show that the probability of k spikes in a time interval T is given by the

Poisson distribution. In particular, let NT be the number of spikes in an interval

of length T , then

P (NT = k) =
e−rT (rT )k

k!
.

While simulating a Poisson process in this way is not very efficient, it has the advantage

that it is easily generalized. Sometimes the probability r(t)∆t of a spike during a short time

interval ∆t is known (at least approximately). In this case, the process can be simulated using

the 3 steps discussed above. If this probability depends on other spike trains (other neurons

in a network), it may be impossible to find a corresponding ISI distribution.
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Figure 1: An illustration of a PIF (namely, PIF4) driven by a spike train A. The output spike train
may be computed by producing a spike each time the membrane potential V (t) reaches threshold
(bottom). This is equivalent to the much simpler process of simply retaining every fourth spike of
the input spike train (top).

3 The Perfect Integrate and Fire Model

The perfect integrate and fire model (PIF) is the simplest neuron model we shall consider. The
membrane potential of a PIF is raised the same amount by each input spike and remains at that
level until receiving another spike. When an input spike raises the membrane potential above
threshold, an output spike is produced and the potential is reset to rest.

A PIF can be completely specified by the number of input spikes required to bring it to threshold
[4]. We will denote the PIF requiring n spikes to reach threshold as PIFn. The mapping can be
defined as a simple counting process as follows: Given an input spike train A = {t1, t2, t3 . . .} where
tj < tj+1, the output of the integrator PIFn is

PIFn(A) = {tn, t2n, t3n . . .}. (4)

See Figure 1.
The definition of PIFn above assumes that the membrane potential of the cell is at rest imme-

diately preceding t1. Since we are concerned only with long term behavior, under certain ergodicity
assumptions the initial state of the cell does not affect our results. See Appendix B for a discussion
of ergodicity in PIFs.

Let B = PIFn(A). The following identity is important in the discussion that follows:

NB(T ) =
⌊

NA(T )
n

⌋
(5)

where ! · " denotes the integer part.

3.1 Correlation Propagation in PIFs

Theorem 1. SupposeA1 and A2 are spike trains that are ergodic to second order with respect to the
PIFs PIFn1 and PIFn2 in the sense defined in Appendix B. Suppose also that cov(NAi(t), NAi(t)) ∼
O(t) as t →∞. If Cin = CA1A2 exists then

Cin = CB1B2 = Cout.

3

3

A very simple model of a neuron is provided by the perfect integrate and fire model. Such

a neuron is described by a membrane potential V (t). When this membrane potential reaches

a threshold voltage Vth, the neuron fires an action potential and is reset to some voltage Vr.

In the simplest case, the input to such a neuron is a point process itself, and each spike raises

the membrane potential V (t) by a fixed amount5. If N inputs will cause the neuron to spike,

we denote this model PIFN . In particular, we can think of this as an operation on spike

trains. In the figure above you can see the effet of an input (spike train A) on the membrane

voltage V (t), and the output spike train PIF4(A).

Exercise: If the input to a perfect integrate and fire neuron is a Poisson spike

train, show that the ISI of the output is a gamma function. Hint: What is the

distribution of the sum of i.i.d. random variables that follow the Poisson distribu-

tion.

Autocorrelation and the spectral density

The coefficient of variation is a single number, and thus cannot fully capture the statistics

even of stationary random processes. It is sometimes more useful to consider a function that

gives the probability of a spike at time t + T given that a spike has occurred at time t. As we

will see below, this function is closely related to the variance of spike counts Nt.

Assume that we are looking at a stationary process and denote by N(t, t + T ) the number

of spikes in the interval (t, t+T ). Since the process is stationary, we can start our observation

at any time, and call that time t = 0. We can now make the notion of a conditional spike

probability more precise by defining [1]

h(t) = lim
∆t→0+

Pr[N(t, t + ∆t) = 1|N(−∆t, 0) > 0]

∆t

.

Note that this is normalized so that h(t)∆t can be interpreted as the probability of a spike

in the interval [t, t + ∆t] given that there is a spike at time 0. Also, you can check that

h(t) = h(−t). By stationarity, this is the same as the probability of a spike in the interval

[T + t, T + t + ∆t] given a spike at time T .

The conditional intensity h(t) is very useful by itself, since it provides very useful informa-

tion about several aspects of the spike train. A refractory period is reflected in a small value

of h(t) around t = 0. Oscillations in the output of a neuron are also easier to see using h(t)

(or its Fourier transform) rather than the original spike train.

5This is a simple model of a neuron with excitatory inputs. Inhibitory inputs can be modeled by a fixed
decrease in the membrane potential.
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To relate the function h(t) to the variance of a function, first note that

var[N(t, t + ∆t)] = E[N(t, t + ∆t)2]− (E[N [t, t + ∆t])2 (1)

= Pr[N(t, t + ∆t) = 1]− (Pr[N(t, t + ∆t) = 1)2 + o(∆t) (2)

= r∆t + o(∆t). (3)

The equalities follow from the fact that the probability of having a spike in an interval of

length ∆t is r∆t, and the probability of having more than one spike is o(∆t). Similarly, we

find that

cov[N(t, t + ∆t), N(t + T, t + T + ∆t)] = rh(T )(∆t)2 − r2(∆t)2 + o(∆t2) (4)

Exercise: Check this relation.

Let us look at a spike count over an interval (0, t) which we divide into M = t/∆t pieces of

size ∆t. Then

N(0, t) =
M∑
i=0

N(i∆t, (i + 1)∆t).

Using the fact that the variance of a sum of random variables equals to the sum of all their

variances and covariances, we can see that

var[N(0, t)] =
M−1∑
i=0

var[N(i∆t, (i+1)∆t)]+2
M−1∑
i=1

M−i−1∑
j=1

cov[N(i∆t, (i+1)∆t), N((i+j)∆t, (i+j+1)∆t)].

The factor of 2 comes from the symmetry of the covariance matrix. Using the facts we derived

about the covariance and variance, we see that as ∆t approaches zero, this sum approaches6

var[N(0, t)] =

∫ t

0

r dz + 2

∫ t

0

∫ t−z

0

(rh(u)− r2)du dz = rt− r2t2 + 2r

∫ t

0

(t− u)h(u)du. (5)

This is a bit complicated, but we can simplify it a bit by introducing the autocorrelation

function7, c(t). This function is defined by the following requirement

c(t)(∆t)2 + o(∆t2) = cov[N(t, t + ∆t), N(t + T, t + T + ∆t)],

and can thus also be thought as the covariance density. To get the variance of N(t), we just

split up the interval (0, t) into M pieces again and sum up all the variances. Taking the limit

as ∆t → 0 we again get an integral. Note that the expressions Eq. (1–4) imply

c(t) = rδ(t)− r2 + rh(u),

where δ(t) is the Dirac delta function. You will also find the autocorrelation of a spike train

6Remember the definition of a Riemann integral!
7This should really be called the auto-covariance function, but the term autocorrelation is encountered

more frequently.
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ρ(t) expressed as

c(t) =
1

T

∫ T

0

E[(ρ(t)− r)(ρ(t + τ − r)]dt.

Exercise: Compute h(t) and the autocorrelation function for a Poisson process.

Multivariate point processes

Our brains consist of many neurons working together. Therefore, we frequently need to extend

the methods described above to collections of spike trains. If neurons acted independently,

this would be easy since the response of a population of N neurons would be completely

characterized by the individual responses of each group in the population.

Neuronal responses are frequently not independent. A group of cells could be coupled, or

they could receive shared input. In both cases observing a spike in one cell tells us something

about the probability of observing a spike in another. This can again be summarized by using

an intensity function. Suppose we have two cells, A and B. Let NA(s, t) be the number of

spikes in cell A during the interval (s, t). The probability of observing a spike in A in the

interval (t, t + ∆t) given a spike in cell B at time 0 is given in terms of the cross-intensity

function

hA,B(t) = lim
∆t→0+

Pr[NA(t, t + ∆t) = 1|NB(−∆t, 0) > 0]

∆t
.

It is easy to see that hA,B(t) = hB,A(−t) when the rates of the two processes are equal. It is

also easy to see from the definition how to compute hB,A(t): Separate the timeline into bins of

some size. Choose a spike in train A at some time t0 (dashed vertical line in the figure below).

Now compute the relative times between this spike and all spikes in train B (in the figure

below ti stands for the relative time between this and the ith spike following it). Increase the

value in the bin by this amount.

those measured in vivo7,8,11. In this range r(c) was approximately
linear (Fig. 2a, b), allowing us to use perturbation techniques26 to
obtain an expression for r(c) (see Supplementary Information):

r<S m,sð Þc~
s2 dn

dm

! "2

CV2n
c ð3Þ

Wedefine the slope S(m,s) relating r to c as correlation susceptibility.
Here dn/dm is the derivative of the spike-rate transfer function (that
is, the relationship between firing rate, n(m,s), and the mean injected
current). Equation (3) accurately predicts the transformation r(c)
obtained via simulations (Fig. 2a, b, dashed lines).

As with the experiments, we varied m or s while keeping c fixed to
obtain different values of n. A plot of r versus n when m (or s) was
increased while keeping s (or m) fixed (inset of Fig. 2c) shows that r
rapidly increased in the physiological range of 0–50 spikes s21 and
asymptoted to c at high rates (Fig. 2c). Notably, the correlation–rate
curves obtained by increasing m or s were nearly identical, even
though voltage traces, correlation functions and CVs were very dif-
ferent (Fig. 2c). To show that these results did not depend on specific
m and s values, we used equation (3) to sweep a large region of the
m–s parameter space. The resultant r–n values were confined to a
narrow band around the stereotyped curve (Fig. 2c, shaded areas).
This allowed us to rewrite equation (3) in an approximate form in
which the susceptibility, S, depends only on the output rate and not
on the input variables m and s:

r<S nð Þc ð4Þ
The empirically measured rT also increased with n for all T
examined; however, the approximation that S depends only on n
(equation (4)) becomes progressively less accurate as T decreases
(see Supplementary Information).

To determine whether the correlation–rate relationship emerges in
a less controlled andmore biologically relevant setting, we performed
simulations of a two-layer network where neurons from layer 1 were
randomly connected to neurons in layer 2 (Fig. 3a). Layer 1 consisted
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Figure 1 | Relationship between output spike correlation and rate in in vitro
cells. a, Twenty neurons from cortical slices (n5 11) were stimulated with
gaussian currents (filtered with a time constant of 5ms), with both common
and independent components. b, Fluctuating current injection (bottom)
often evoked nearly synchronous spikes (top arrowheads). Red and black
traces are membrane potentials from cells 1 and 2, respectively. c, Typical
cross- (left) and auto-correlation (right) functions from a pair of cells firing
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a pair of cells. e, The correlation rT in a population (n5 123 pairwise
comparisons) increases with

ffiffiffiffiffiffiffi
ninj

p
and does not co-vary with

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CViCVj

p
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and s.d. of the population, and coloured circles the examples shown in c. f, A
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correlation rT is fixed at c, and is independent of n. Throughout we used
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Exercise: How do you need to normalize the resulting histogram to get hB,A(t)?

The argument used in proving relation Eq. (4) can again be used to relate the cross-

intensity function with the cross-covariance density cA,B(t) = rBhA,B(t)− rArB, where rA and

rB are the respective rates of the two processes. Here cA,B(T )(∆t)2 can again be interpreted

as the approximate covariance of NA(t + T, t + T + ∆t) and NB(t, t + ∆t).
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The covariance of the spike counts cov(NA(T ), NB(T ) is again obtained by an integral of

the cross-correlation function cA,B(t)

cov(NA(T ), NB(T )) =

∫ T

−T

(T − |t|)cAB(t)dt.

The correction factor T − |t| appears because the sliding windows over which the count is

performed have an overlap that decreases as they are shifted with respect to each other. A

derivation is provided in the Appendix.

The autocorrelation function discussed in the previous section can be identified as cA,A(t),

and is therefore a special case of the cross-correlation function.

Exercise: Start with a Poisson process and create N daughter processes as follows.

For each process i define a probability ri. Spikes in the process i occur with

probability ri at the same time as those in the mother process (see the Figure

above – this figure comes from [3]). Compute the cross-correlation between any

two daughter spike trains.

Coding and Fisher information

In the following I will briefly discuss how the concepts introduced so far can be used to examine

how information is represented in the collective activity of a population of neurons. I will try

to motivate most concepts, however you can find full justifications and omitted details in most

books on statistics and signal analysis, such as [2].

Let us look at a visual stimulus consisting of moving bars with a certain orientation. Many

neurons in the visual cortex have a preference for certain orientations, and will respond most

vigorously to moving bars of this direction. The situation is illustrated schematically in the

figure below – a stimulus with orientation 135o is presented on the left generating a response

(20 Hz) that is weak compared to the response to the preferred, horizontal stimulus (60 Hz).
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For simplicity we will assume that it is only the rate of the response that carries information

about the stimulus8. That is, we only need to count the number of spikes during a some time

interval of length T to capture all the information about the stimulus available in the response

of this neuron.

A simple encoding model is now provided by r = f(s), where r is the rate of the response,

s is the stimulus. The graph of f is frequently called a tuning curve. The function f could be

a gaussian, or anything else that is bell shaped. In this case if one observes the neuron firing

at 20Hz in the example above, it is immediate that the stimulus s must have been a grating

at angle 135o or 45o. To remove this ambiguity, let us assume that, as long as we discuss

single cells, only stimuli between 0o and 90o are presented.

Unfortunately, things are not really this simple. Neurons are inherently noisy: If the same

stimulus is presented twice, the response will not be exactly the same. If different stimuli are

presented, one sees something that looks more like this (Figure from [4] which I recommend

if you want to get a better overview of this topic.)
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In EQN 2, si is the direction (the preferred direction) that
triggers the strongest response from the cell, ! is the
width of the tuning curve, s – si is the angular difference
(so if s = 359° and si = 2°, then s – si = 3°), and k is a scal-
ing factor. In this case, all the cells in the population
share a common tuning curve shape,but have different
preferred directions, si (FIG. 1a).Many population codes
involve bell-shaped tuning curves like these.

The inclusion of the noise in EQN 1 is important
because neurons are known to be noisy. For example, a
neuron that has an average firing rate of 20 Hz for a
stimulus moving at 90°might fire at only 18 Hz on one
occasion for a particular 90° stimulus, and at 22 Hz on
another occasion for exactly the same stimulus5. Several
factors contribute to this variability, including uncon-
trolled or uncontrollable aspects of the total stimulus
presented to the monkey, and inherent variability in
neuronal responses. In the standard model, these are
collectively considered as random noise. The presence of
this noise causes important problems for information
transmission and processing in cortical circuits, some of
which are solved by population codes. It also means that
we should be concerned not only with how the brain
computes with population codes,but also how it does so
reliably in the presence of such stochasticity.

Decoding population codes
In this section, we shall address the following question:
what information about the direction of a moving
object is available from the response of a population of
neurons? Let us take a hypothetical experiment. Imagine
that we record the activity of 64 neurons from area MT,
and that these neurons have spatially overlapping recep-
tive fields. We assume that all 64 neurons have the same
tuning curve shape with preferred directions that are
uniformly distributed between 0° and 360° (FIG. 1a). We
then present an object moving in an unknown direc-
tion, s, and we assume that the responses are generated
according to EQN 1. If we plot the responses, r, of the 64
neurons as a function of the preferred direction of each
cell, the resulting pattern looks like a noisy hill centred in
the vicinity of s (FIG. 1b). The question can now be
rephrased as follows: what information about the direc-
tion s of the moving object is available from the
observed responses, r?

The presence of noise makes this problem challeng-
ing. To recover the direction of motion from the
observed responses, we would like to assess for each cell,
i, the exact contribution of its tuning curve, fi(s), to its
observed response. However, on a single trial, it is
impossible to apportion signal and noise in the
response. For instance, if a neuron fires at 54 Hz on one
trial, the contribution of the tuning curve could be 30
Hz, with 24 Hz due to noise.However, the contributions
could just as easily be 50 Hz and 4 Hz, respectively.
Nevertheless, given some knowledge of the noise, it is
possible to assess probabilities for these unknowns. If
the noise follows a normal distribution with a mean of
zero and a neuron fires at 54 Hz on a particular trial, it is
more likely that the contribution of the tuning curve in
our example is 50 Hz rather than 30 Hz.

rate.Other aspects of the response, such as the precise
timing of individual spikes, might also have a function
in coding information,but here we shall focus on prop-
erties of response rates,because they are simpler and are
better understood. (For reviews of coding through spike
timing, see REFS 1–3.)

More formally, we can describe the response of a cell
using an encoding model4. In one simple such model,

In EQN 1, fi(s), the average response, is the TUNING CURVE

for the encoded variable s (the direction) and ni is the
noise. The letter i is used as an index for the individual
neuron; it varies from 1 to n, where n is the total number
of neurons under consideration. We use the notation r
to refer to all the activities and f(s) for their means.Here,
r and f(s) are vectors with n components, each of which
corresponds to one neuron. Experimental measure-
ments have shown that the noise term (ni) can typically
be characterized as following a normal distribution
whose variance is proportional to the mean value, fi(s)
(REF. 5). When fi(s) is a gaussian, it can be written as:

fi(s) = ke (2)– (s–si)2/2!2

ri = fi(s) + ni (1)
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Figure 1 | The standard population coding model. a | Bell-shaped tuning curves to direction for

16 neurons. b | A population pattern of activity across 64 neurons with bell-shaped tuning curves in

response to an object moving at –40°. The activity of each cell was generated using EQN 1, and

plotted at the location of the preferred direction of the cell. The overall activity looks like a ‘noisy’ hill

centred around the stimulus direction. c | Population vector decoding fits a cosine function to the

observed activity, and uses the peak of the cosine function, ŝ, as an estimate of the encoded

direction. d | Maximum likelihood fits a template derived from the tuning curves of the cells. More

precisely, the template is obtained from the noiseless (or average) population activity in response to

a stimulus moving in direction s. The peak position of the template with the best fit, ŝ, corresponds

to the maximum likelihood estimate, that is, the value that maximizes P(r |s).

NONLINEAR FUNCTION

A linear function of a one-
dimensional variable (such as
direction of motion) is any
function that looks like a straight
line, that is, any function that
can be written as y = ax + b,
where a and b are constant. Any
other functions are nonlinear. In
two dimensions and above,
linear functions correspond to
planes and hyperplanes. All
other functions are nonlinear.

GAUSSIAN FUNCTION

A bell-shaped curve. Gaussian
tuning curves are extensively
used because their analytical
expression can be easily
manipulated in mathematical
derivations.

TUNING CURVE

A tuning curve to a feature is the
curve describing the average
response of a neuron as a
function of the feature values.

© 2000 Macmillan Magazines Ltd

Since the response is variable, it is far better to model the response as

r = f(s) + ξ,

where ξ is some random variable that may, or may not depend on the stimulus. For instance,

ξ could follow a uniform distribution with mean 0 and with variance that increases with the

8This is called a rate code. If information about a stimulus is provided by the spike times of the individual
spikes in the train we talk about a timing code. It is very likely that, at least in some situations, the timing
of individual spikes is important.

9



intensity of the response.

If we only know the rate of the response, there is a continuum of possibilities for the

value of the stimulus. However, some guesses, or estimates, are clearly better than others. In

statistics one frequently chooses a systematic way of making a guess, and calls it an estimator.

If E[ξ] = 0 then a good estimator of the stimulus9, given a response, r could be sest = f−1(r).

Since the estimator is a function of r, it must itself be a random variable that depends on

the stimulus. If the expected value of the estimator equals the stimulus, that is 〈sest〉 = s,

we say that the estimator is unbiased. An estimator that gives the right answer on average

may still do a bad job. What we really want is that the estimator sest is consistently close to

s. Note that for an unbiased estimator, the variance of the error is just the variance of the

estimator

〈(sest − s)2〉 = 〈(sest − 〈sest〉)2〉 = var(sest)

Therefore, a good unbiased estimator has small variance.

We can say that the response of a cell is as accurate as the best possible unbiased estimate

that we can get about the stimulus from observing the output of the cell. Fortunately, this

bound can actually be computed. Let p[r|s] be the conditional probability density for the

response rate, given a stimulus s. Assuming that P [r|s] is twice differentiable as a function of

s, we can define the Fisher information

IF (s) =

〈
d2

ds2
log P [r|s]

〉
.

The inverse of the Fisher information, 1/IF (s), provides a lower bound on the variance of an

unbiased decoding estimate of s from the response [2].

We have already established that the nervous system of most animals represents informa-

tion with more than one cell. In the visual cortex there will be a number of cells responding to

the stimulus. Each of these cells may have a different preferred orientation. The collection of

tuning curves from a population of cells may look something like this (Figure again from [4])
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In EQN 2, si is the direction (the preferred direction) that
triggers the strongest response from the cell, ! is the
width of the tuning curve, s – si is the angular difference
(so if s = 359° and si = 2°, then s – si = 3°), and k is a scal-
ing factor. In this case, all the cells in the population
share a common tuning curve shape,but have different
preferred directions, si (FIG. 1a).Many population codes
involve bell-shaped tuning curves like these.

The inclusion of the noise in EQN 1 is important
because neurons are known to be noisy. For example, a
neuron that has an average firing rate of 20 Hz for a
stimulus moving at 90°might fire at only 18 Hz on one
occasion for a particular 90° stimulus, and at 22 Hz on
another occasion for exactly the same stimulus5. Several
factors contribute to this variability, including uncon-
trolled or uncontrollable aspects of the total stimulus
presented to the monkey, and inherent variability in
neuronal responses. In the standard model, these are
collectively considered as random noise. The presence of
this noise causes important problems for information
transmission and processing in cortical circuits, some of
which are solved by population codes. It also means that
we should be concerned not only with how the brain
computes with population codes,but also how it does so
reliably in the presence of such stochasticity.

Decoding population codes
In this section, we shall address the following question:
what information about the direction of a moving
object is available from the response of a population of
neurons? Let us take a hypothetical experiment. Imagine
that we record the activity of 64 neurons from area MT,
and that these neurons have spatially overlapping recep-
tive fields. We assume that all 64 neurons have the same
tuning curve shape with preferred directions that are
uniformly distributed between 0° and 360° (FIG. 1a). We
then present an object moving in an unknown direc-
tion, s, and we assume that the responses are generated
according to EQN 1. If we plot the responses, r, of the 64
neurons as a function of the preferred direction of each
cell, the resulting pattern looks like a noisy hill centred in
the vicinity of s (FIG. 1b). The question can now be
rephrased as follows: what information about the direc-
tion s of the moving object is available from the
observed responses, r?

The presence of noise makes this problem challeng-
ing. To recover the direction of motion from the
observed responses, we would like to assess for each cell,
i, the exact contribution of its tuning curve, fi(s), to its
observed response. However, on a single trial, it is
impossible to apportion signal and noise in the
response. For instance, if a neuron fires at 54 Hz on one
trial, the contribution of the tuning curve could be 30
Hz, with 24 Hz due to noise.However, the contributions
could just as easily be 50 Hz and 4 Hz, respectively.
Nevertheless, given some knowledge of the noise, it is
possible to assess probabilities for these unknowns. If
the noise follows a normal distribution with a mean of
zero and a neuron fires at 54 Hz on a particular trial, it is
more likely that the contribution of the tuning curve in
our example is 50 Hz rather than 30 Hz.

rate.Other aspects of the response, such as the precise
timing of individual spikes, might also have a function
in coding information,but here we shall focus on prop-
erties of response rates,because they are simpler and are
better understood. (For reviews of coding through spike
timing, see REFS 1–3.)

More formally, we can describe the response of a cell
using an encoding model4. In one simple such model,

In EQN 1, fi(s), the average response, is the TUNING CURVE

for the encoded variable s (the direction) and ni is the
noise. The letter i is used as an index for the individual
neuron; it varies from 1 to n, where n is the total number
of neurons under consideration. We use the notation r
to refer to all the activities and f(s) for their means.Here,
r and f(s) are vectors with n components, each of which
corresponds to one neuron. Experimental measure-
ments have shown that the noise term (ni) can typically
be characterized as following a normal distribution
whose variance is proportional to the mean value, fi(s)
(REF. 5). When fi(s) is a gaussian, it can be written as:

fi(s) = ke (2)– (s–si)2/2!2

ri = fi(s) + ni (1)
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Figure 1 | The standard population coding model. a | Bell-shaped tuning curves to direction for

16 neurons. b | A population pattern of activity across 64 neurons with bell-shaped tuning curves in

response to an object moving at –40°. The activity of each cell was generated using EQN 1, and

plotted at the location of the preferred direction of the cell. The overall activity looks like a ‘noisy’ hill

centred around the stimulus direction. c | Population vector decoding fits a cosine function to the

observed activity, and uses the peak of the cosine function, ŝ, as an estimate of the encoded

direction. d | Maximum likelihood fits a template derived from the tuning curves of the cells. More

precisely, the template is obtained from the noiseless (or average) population activity in response to

a stimulus moving in direction s. The peak position of the template with the best fit, ŝ, corresponds

to the maximum likelihood estimate, that is, the value that maximizes P(r |s).

NONLINEAR FUNCTION

A linear function of a one-
dimensional variable (such as
direction of motion) is any
function that looks like a straight
line, that is, any function that
can be written as y = ax + b,
where a and b are constant. Any
other functions are nonlinear. In
two dimensions and above,
linear functions correspond to
planes and hyperplanes. All
other functions are nonlinear.

GAUSSIAN FUNCTION

A bell-shaped curve. Gaussian
tuning curves are extensively
used because their analytical
expression can be easily
manipulated in mathematical
derivations.

TUNING CURVE

A tuning curve to a feature is the
curve describing the average
response of a neuron as a
function of the feature values.
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Although this is an idealized model, it does capture one important aspect of the real

situation: the average response of each neuron to the stimulus could be different. We can

9Remember that we are still working under the assumption that only stimuli between 0o and 90o are
presented
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therefore model the response of a population of neurons to a stimulus s as

ri = fi(s) + ξi, i = 1, . . . N, or, using vector notation, r = f(s) + ξ.

We can again try to estimate the stimulus from the reponse r of the entire population.

The information about the stimulus captured in this response can again be quantified by the

minimal variance of an unbiased estimator sest. As above, this bounded below by the inverse

of the Fisher information

IF (s) =

〈
d2

ds2
log P [r|s]

〉
.

Here P [r|s] is the conditional probability density for the population response, given a stimulus.

This is only the beginning of the story, and I will talk about several possible further

directions during my introductory lecture. In particular, one can ask about the impact of

correlations between the responses ri of the different neurons on the information encoded by

the population. We will also discuss how uncertainty about a stimulus can be represented by

a population, and why it is better to have many neurons rather than one.

Appendix: Cross-correlation and covariance relation

By a slight abuse of notation, the spike train generated by neuron A will be called A as well.

Therefore, A is a sequence of times. This spike train is somtimes represented as a sum of delta

functions

N ′
A(t) =

∑
ti∈A

δ(t− ti).

Note that NA(T ) =
∫ t

s
N ′

A(τ)dτ , since the integral of each delta function gives a contribution

of 1. We therefore have

cov(NA(T ), NB(T )) = cov

(∫ T

0

N ′
A(t)dt,

∫ T

0

N ′
B(s)ds

)
=

∫ T

0

∫ T−t

−t

cov (N ′
A(t), N ′

B(t + τ)) dτdt

=

∫ 0

−T

∫ T

−τ

cov (N ′
A(t), N ′

B(t + τ)) dtdτ

+

∫ T

0

∫ T−τ

0

cov (N ′
A(t), N ′

B(t + τ)) dtdτ

=

∫ T

−T

∫ min(T,T−τ)

max(0,−τ)

cov (N ′
A(t), N ′

B(t + τ)) dtdτ

=

∫ T

−T

∫ min(T,T−τ)

max(0,−τ)

cov (N ′
A(0), N ′

B(τ)) dtdτ
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=

∫ T

−T

cov (N ′
A(0), N ′

B(τ))

(∫ min(T,T−τ)

max(0,−τ)

dt

)
dτ

=

∫ T

−T

cov (N ′
A(0), N ′

B(τ)) (T − |τ |)dτ

=

∫ T

−T

(T − |t|)cAB(t)dt

It is frequently more useful to normalize the covariance by the variances.

CT (A, B) =
cov(NA(T ), NB(T ))

var(NA(T ))var(NB(T ))
(6)

By positive definiteness of the covariance matrix, −1 ≤ CT (A, B) ≤ 1. By the derivation

above we have

CT (A, B) =
T
∫ T

−T

(
1− |t|

T

)
RAB(t)dt√

T 2
∫ T

−T

(
1− |t|

T

)
RAA(t)dt

∫ T

−T

(
1− |t|

T

)
RBB(t)dt

=

∫ T

−T

(
1− |t|

T

)
RAB(t)dt√∫ T

−T

(
1− |t|

T

)
RAA(t)dt

∫ T

−T

(
1− |t|

T

)
RBB(t)dt

.

In the limit as T →∞ we obtain the correlation coefficient between the two spike trains

CAB =

∫∞
−∞ RAB(s)ds√∫∞

−∞ RAA(s)ds
∫∞
−∞ RBB(s)ds

,

Thanks go to Robert Rosenbaum who simplified this derivation.
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