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A. Abstract

 Neuronal calcium handling machinery both sculpts and is sculpted 
by synaptic input. This interplay is known to take place in a highly 
nonuniform fashion, with distinct types of  voltage-gated calcium 
channels found in distinct regions of the dendritic tree and distinct 
types of Ca sensitive receptors likewise partitioned along the ER. To 
date, this Ca channel/receptor map has been too crude to  contribute 
to predictive models of synaptic integration and neuromodulation. 
The recent development of novel fluorescent microscopy techniques 
enable high resolution spatial-temporal measurement of buffered 
intracellular calcium to be made in single cells of rodent hippocam-
pal slices. We exploit this imaging capability and, utilizing two experi-
mental protocols of differing time-scales, implement methods to infer 
from the dye-buffered data
 • Intracellular calcium concentrations and associated currents
 • Density of membrane-bound voltage-gated calcium 
   channels and density of ER bound Ca sensitive receptors

A. Overall assumptions
 • We account for intracellular calcium, Ca, fluorescent-dye-bound 
   calcium, CaB, and protein-buffered calcium CaE.
 • Ca, CaB, and CaE  are diffusible within the cell.
 • Extracellular and ER calcium levels are constant.
 • Through experiment, we can measure CaB.

B. Simplified calcium dynamics
• We denote the 
total concentration 
of fluorescent dye, 
Btot, and native 
buffers, Etot.

• From the law of mass action, we derive a system of reaction-
diffusion equations for [Ca]: (c), [CaB]: (b), and [CaE]: (e):

• To denote no-flux conditions at the dendrite terminals, we 
impose homogeneous Neumann boundary conditions.

1.   Introduction 

2.   Single-Cell Model

3.  c from b following uncaging 4.  gCa from b during AP volley

A. Define the error function

• Data, b#, are time series from N measurement sites on the cell.
• Minimize error function over all possible calcium profiles c(x,t).
• b must satisfy the aforementioned reaction-diffusion equation.

B. Define Lagrangian with adjoint variable, B

C. Derive the gradient of the error function
• Write the error function in terms 
  of the Lagrangian:
• Derive the directional gradient of the error function, assuming 
  that L is at a critical point:

• For L to be at this critical point, the following must hold:

Objective: Recover c from measurements of b

D. Use computed gradient to find optimal c
• Thus, B must satisfy an ‘adjoint’ reaction-diffusion equation.

Ca2+ + B
k±
b↔ CaB

Ca2+ + E
k±e↔ CaE

Btot = Bunb + b

Etot = Eunb + e

bt = Dbbxx + k+b c(Btot − b)− k−b b

et = Deexx + k+e c(Etot − e)− k−e e

ct = Dccxx + k−b b+ k
−
e e

−k+b (Btot − b)− k+e (Etot − e)

bx(0, t) = bx(L, t) = 0

ex(0, t) = ex(L, t) = 0

cx(0, t) = cx(L, t) = 0
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Objective: Recover gCa from measurements of b
A. Define calcium flux from calcium channels

• Add calcium channel-flux to calcium reaction-diffusion equation
• Inward flux is defined by a scaled calcium channel current

Jin = ICa/γ ct = Dccxx + k−b b+ k
−
e e− k+b (Btot − b)− k+e (Etot − e) + Jin

B. Invert and differentiate twice to find ICa

ICa = [ct − (k−b + k+b )b− (k−e + k+e )e + k+b Btot + k+e Etot]γ c =
bt + k

−
b b

k+b (Btot − b)

• Due to the relative slowness of diffusion in the context of the brief 
  data-collection intervals, the diffusion terms can be ignored.
• The measurements are de-noised with smoothing splines.

C. Solve for membrane potentials
• Using the computed ICa as a driving term in the active cable 
  model, obtain the membrane potential profile, v(x,t).
• Duplicate the initiating stimulus I(t) applied in the experimental 
  setup (current injection at the cell-body).
• We assume prior knowledge of the other membrane currents, 
  ICa, INa, and IK.

1

Rar
(r2vx)x = Cmvt + IL + INa + IK + ICa

vx(0, t) =
Ra
πr2

I(t), vx(i, t) = 0, i = 1, . . . , Nleaf

• Ra : axial resistivity
• Cm : membrane 
          capacitance
• r : dendritic radius

D. Compute gCa for arbitary channel types
• The gating variables m and n have 
  explicit dependence upon v and c.
• Directly compute m and n.
• Directly compute gCa.

ICa = gCam
anb(V − VCa)

mt = (m∞(V )−m)/τ(V )

n = k/(k + c)

Our intial guess was a constant concentration across 
space and time based on our measurement data.  Our 
relative 2-norm and inf-norm errors were 0.0029 and 
0.0174, respectively.  Using the adjoint gradient gives 
over a hundred-fold speed increase when compared to 
using Matlab’s fminunc without a user-inputed gradient.
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5.   Discussion

 ‘Exact’ maximal calcium 
channel conductances (a 
linear function of distance 
from the cell body) from 
synthetic hippocampal 
pyramidal neuron com-
pared with recovered con-
ductances. The indirect 
method reproduces the in-
crease in calcium channel 
conductance as distance 
increases from cell body.

 We have shown that the adjoint method  significantly accelerates 
the gradient computation required of steepest descent algorithms for 
calcium identification.  These descent algorithms however choose their 
steps by applying the inverse of the Hessian of the misfit to its gradient. 
We are in the process of constructing and coding the relevant Hessian 
and expect a further significant speedup.  Although published values 
exist for the (un)binding rate and diffusivities appearing in (2B) these 
were culled from multiple experiments at disparate temperatures in mul-
tiple cell types and as such we are working to infer these along with the 
inference of calcium. We are also pursuing the natural extension of pro-
voking CICR via uncaging and the subsequent inference of RyR den-
sity.

A. Adjoint method for intracellular calcium

6.  Acknowledgements and References

B. Indirect method for channel densities
 This method allows inference of membrane potentials, and thus 
calcium channel densities, from sufficiently fine measurements of 
fluorescent-dye-buffered-calcium. The main advantage of this method 
is that the step for inferring the calcium channel density is indepen-
dent of the choice of the theoretical model used to describe the cal-
cium channel, as well as the number of different types of calcium 
channels that are present in the actual cell.  The rub is that we require 
measurements with high temporal and spatial resolution, and due to 
the inherent limitations of the experimental setup, one must be traded 
for the other.  Future work involves altering the method to only require 
local information about membrane potentials so that only local mea-
surements of buffered calcium are required (high temporal resolution 
at fewer recording sites).

We injected a constant current pulse of 2 ms to elicit a single 
action potential.  Left to right: synthetic buffered calcium data (b), 
calcium (c), and recovered calcium current (ICa) at five sites. 
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