| Research Interests |
- Krylov subspace methods for linear systems and eigenvalue problems;
- Nonnormal operators and spectral perturbation theory;
-See the Pseudospectra Gateway and the EigTool package
- Toeplitz matrices, random matrices, damped wave operators
|
Teaching |
|
Ph.D. Students, past and present |
|
Book |
|
| Slides |
|
Papers and technical reports
|
- "Spectral properties of Schrödinger operators arising in the study of quasicrystals"
D. Damanik, M. Embree, A. Gorodetski
Rice University
CAAM Department Technical Report TR12-21 (October 2012)
- "Ritz value localization for non-Hermitian matrices"
R. Carden and M. Embree
SIAM J. Matrix Anal. Appl.
33 (2012) 1320-1338. (Copyright SIAM, 2012)
- "Short-term recurrence Krylov subspace methods for nearly Hermitian matrices"
M. Embree , J. A. Sifuentes, K. M. Soodhalter, D. B. Szyld, and F. Xue
SIAM J. Matrix Anal. Appl.
33 (2012) 480-500. (Copyright SIAM, 2012)
- "The stability of GMRES convergence, with application to approximate deflation preconditioning"
J. A. Sifuentes, M. Embree, and R. B. Morgan
Rice University
CAAM Department Technical Report TR11-13 (revised January 2013)
- "Reconstructing an even damping from a single spectrum"
S. J. Cox and M. Embree
Inverse Problems
27 (2011) 035012 (18pp).
- "One can hear the composition of a string: experiments with an inverse eigenvalue problem"
S. J. Cox, M. Embree, and J. Hokanson
SIAM Review
54 (2012) 157-178. (Copyright SIAM, 2012)
Additional data sets are available at
www.caam.rice.edu/~beads.
- "Dynamical systems and non-Hermitian iterative eigensolvers"
M. Embree and R. B. Lehoucq
SIAM J. Num. Anal.
47 (2009) 1445-1473. (Copyright SIAM, 2009)
- "The fractal dimension of the spectrum of the Fibonacci Hamiltonian"
D. Damanik, M. Embree, A. Gorodetski, and S. Tcheremchantsev
Commun. Math. Phys. 280 (2008) 499-516.
- "The Arnoldi eigenvalue iteration with exact shifts can fail"
SIAM J. Matrix Anal. Appl.
31 (2009) 1-10. (Copyright SIAM, 2009)
- "Parallel solution of large-scale free surface viscoelastic flows
via sparse approximate inverse preconditioning"
Z. Castillo, X. Xie, D. C. Sorensen, M. Embree, and M. Pasquali
J. Non-Newtonian Fluid Mech. 157 (2009) 44-54.
- "The role of the penalty in the local discontinuous Galerkin method for
Maxwell's eigenvalue problem"
T. Warburton and Mark Embree
Comp. Methods Appl. Mech. Eng. 195 (2006) 3205-3323.
- "Convergence of polynomial restart Krylov methods for eigenvalue computation
Christopher A. Beattie, Mark Embree, D. C. Sorensen
SIAM Review
47 (2005) 492-515. (Copyright SIAM, 2005)
- "Convergence of restarted Krylov subspaces to invariant subspaces"
Christopher Beattie, Mark Embree, John Rossi
SIAM J. Matrix Anal. Appl.
25 (2004) 1074-1109. (Copyright SIAM, 2004)
- "The tortoise and the hare restart GMRES"
SIAM Review
45 (2003) 259-266. (Copyright SIAM, 2003)
- "The spectra of large Toeplitz band matrices with a randomly perturbed entry"
Albrecht Böttcher, Mark Embree, V. I. Sokolov
Math. Comp. 72 (2003), 1329-1348.
- "On large Toeplitz band matrices with an uncertain block"
Albrecht Böttcher, Mark Embree, V. I. Sokolov
Linear Algebra Appl. 366 (2003), 87-97.
- "Spectral approximation of banded Laurent matrices with localized random perturbations"
Albrecht Böttcher, Mark Embree, Marko Lindner
Integral Equations Operator Theory 42 (2002), 142-165.
(Copyright Birkhäuser, 2002)
gzipped postscript (833 KBytes),
pdf (1.0 MBytes).
- "Piecewise continuous Toeplitz matrices and operators:
slow approach to infinity
Albrecht Böttcher, Mark Embree, Lloyd N. Trefethen
SIAM J. Matrix Anal. Appl.
24 (2002) 484-489. (Copyright SIAM, 2002)
- "Infinite Toeplitz and Laurent matrices with localized impurities"
Albrecht Böttcher, Mark Embree, V. I. Sokolov
Linear Algebra Appl. 343-344 (2002), 101-118.
- "Generalizing eigenvalue theorems to pseudospectra theorems"
Mark Embree and Lloyd N. Trefethen
SIAM J. Sci. Comp.
23 (2001) 583-590. (Copyright SIAM, 2001)
- "Spectra, pseudospectra, and localization for random bidiagonal matrices"
Lloyd N. Trefethen, Marco Contedini, Mark Embree
Comm.
Pure Applied Math. 54 (2001) 595-623.
- "How descriptive are GMRES convergence bounds?"
Oxford University Computing Laboratory Numerical Analysis Report 99/08, June 1999.
- "Green's functions for multiply connected domains via conformal mapping"
Mark Embree and Lloyd N. Trefethen
SIAM Review
41 (1999) 745-761.
- "Growth and decay of random Fibonacci sequences"
Mark Embree and Lloyd N. Trefethen
Proc. Roy. Soc. London Series A
455 (1999) 2471-2485.
|
|