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Day 18 — Summary — Compactness

The function spaces L? can be defined as the completion of continuous functions under the LP norm
(for1 < p < o).

Definition: A subset S of a normed vector space is (sequentially) compact if every sequence within the
set has a subsequence that converges to an element of S.

A compact subset of a normed vector space is closed and bounded.
A closed subset of a compact set is compact.
A subset of R¥ is compact if and only if it is closed and bounded

Let S be a compact subset of a normed vector space V/, and let f be a continuous function from S to
the normed vector space F' . Then the image of S under f is compact.

A continuous function over a compact set in a normed vector space achieves its maximum and minimum.

A continuous function from a compact subset of a normed vector space to a normed vector space is
uniformly continuous.

Consider a subset S of a normed vector space. S is sequentially compact if and only if any open cover
of S has a finite subcover. This provides an alternative definition of compactness.
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