3 November 2015 Analysis I Paul E. Hand hand@rice.edu

Day 18 — Summary — Compactness

- 99. The function spaces L^p can be defined as the completion of continuous functions under the L^p norm (for $1 \le p < \infty$).
- 100. Definition: A subset S of a normed vector space is (sequentially) compact if every sequence within the set has a subsequence that converges to an element of S.
- 101. A compact subset of a normed vector space is closed and bounded.
- 102. A closed subset of a compact set is compact.
- 103. A subset of \mathbb{R}^k is compact if and only if it is closed and bounded
- 104. Let S be a compact subset of a normed vector space V, and let f be a continuous function from S to the normed vector space F. Then the image of S under f is compact.
- 105. A continuous function over a compact set in a normed vector space achieves its maximum and minimum.
- 106. A continuous function from a compact subset of a normed vector space to a normed vector space is uniformly continuous.
- 107. Consider a subset S of a normed vector space. S is sequentially compact if and only if any open cover of S has a finite subcover. This provides an alternative definition of compactness.

107) why is this defr of compactness difterent.

Thm: If V is a normed vector space

(or a metric space)

Sequential compactness => open cover computeness

In a general space,

Sequential compactness open cover compactness

Eg Let I = [0, 1].

All functions on

Let $V = \mathcal{U}([0,1]) = \mathcal{T} \mathbb{R}$ Let $S = \mathcal{T} \mathbb{I}$ $\alpha \in [0,1]$

S is open cover compact but not sequentially compact (urt a certain detr of open sets)

See Wikipedia Page on Tychonoft's Thm