25 August 2016
Analysis I
Paul E. Hand
hand@rice.edu

Week 2 — Summary — Differentiation, Mean Value Theorem, Taylor Series

23. The derivative of \(f \) at \(x \) is \(\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \), if this limit exists. A function is differentiable on a set if it is differentiable at every point in that set.

24. Product rule, quotient rule, chain rule.

25. Differentiability implies continuity.

26. *Let \(C^p([a,b]) \) be the set of functions defined on \([a,b]\) that are differentiable \(p \) times, and the \(p \)-th derivative is continuous. Let \(C^\infty \) be the set of functions that are in \(C^p \) for all \(p \).

27. At a local maximum (or minimum) of a differentiable function, the derivative is zero (provided that this max or min occurs in the interior of the function’s domain).

28. *Mean value theorem: If \(f \) is continuous on \([a,b]\) and is differentiable on \((a,b)\), then for some \(c \in (a,b) \),
 \[f'(c) = \frac{f(b) - f(a)}{b-a}. \]

29. Big oh and Little oh notation:
 (a) \(f(x) = o(g(x)) \) as \(x \to x_0 \) means that \(f(x)/g(x) \to 0 \) as \(x \to x_0 \)
 (b) \(f(x) = O(g(x)) \) as \(x \to x_0 \) means that there exists \(C \) such that \(|f(x)| \leq Cg(x) \)

30. *A Taylor series is a local approximation of a function, and it is obtained by matching the value and a given number of derivatives of that function at a particular point.

31. *The \(n \)th order Taylor series of \(f(x) \) about \(x = a \) is given by
 \[f(x) \approx f(a) + f'(a)(x-a) + \frac{f''(a)}{2}(x-a)^2 + \cdots + \frac{f^{(n)}(a)}{n!}(x-a)^n. \]

32. The \(n \)th Taylor remainder term is
 \[R_n(x) = f(x) - \left(f(a) + f'(a)(x-a) + \frac{f''(a)}{2}(x-a)^2 + \cdots + \frac{f^{(n)}(a)}{n!}(x-a)^n \right). \]

33. *The \(n \)th order Taylor series is accurate to the \(n + 1 \)st order in the neighborhood of the point of expansion. The constant factor of the error term is controlled by the maximum value of the \(n + 1 \)st derivative of the function.

 If \(f \in C^{n+1} \) in a neighborhood of \(a \), then \(R_n(x) = O(|x-a|^{n+1}) \) as \(x \to a \). More precisely,
 \[R_n(x) \leq \max |f^{(n+1)}| \cdot \frac{|x-a|^{n+1}}{(n+1)!}. \]

 The max is taken over the neighborhood and the inequality holds for all points in the neighborhood.