Week 5 — Summary — Inner Products, Equivalent Norms, Complete Normed Vector Spaces

48. An inner product \(\langle \cdot, \cdot \rangle \) satisfies the following axioms for all \(u, v, w \in V \):

 (a) \(\langle v, w \rangle = \langle w, v \rangle \)

 (b) \(\langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle \)

 (c) If \(c \in \mathbb{R} \), \(\langle cv, w \rangle = c\langle v, w \rangle = \langle v, cw \rangle \)

 (d) \(\langle v, v \rangle \geq 0 \) \(\forall v \) and \(\langle v, v \rangle = 0 \Rightarrow v = 0 \).

49. Inner products induce a norm \(\| v \| = \sqrt{\langle v, v \rangle} \).

50. *Inner products satisfy the Cauchy-Schwarz inequality \(\langle v, w \rangle \leq \| v \| \| w \| \).

51. *Notes from Bill Symes on Dimension Theory (linear independence, basis, dimension). See website.

52. *Definition: Two norms \(\| \cdot \|_a \) and \(\| \cdot \|_b \) are equivalent on a vector space \(V \) if there exists \(c, C > 0 \) such that

\[
c \| x \|_b \leq \| x \|_a \leq C \| x \|_b \forall x \in V.
\]

53. *All norms on finite dimensional vectors spaces, e.g. \(\mathbb{R}^n \), are equivalent.

54. *In infinite dimensional vector spaces, some pairs of norms are not equivalent.

55. *Definition: A sequence \(x_n \) in a normed vector space is Cauchy if

\[
\forall \varepsilon \exists N \text{ such that } n, m \geq N \Rightarrow \| x_n - x_m \| < \varepsilon.
\]

56. *In a normed vector space, we say that \(x_n \) converges to \(x \) if \(\forall \varepsilon \exists N \) such that \(n \geq N \Rightarrow \| x_n - x \| < \varepsilon \). We write this as \(\lim_{n \to \infty} x_n = x \).

57. *Definition: A vector space is complete if any Cauchy sequence converges to an element in the set.

58. *Definition: A Banach space is a complete normed vector space.

59. *Definition: \(\mathbb{R}^n \) is a Banach space under the \(\ell_\infty \) norm. By equivalence of norms on finite dimensional spaces, it is a Banach space under any norm.