1. Let $Z \sim \mathcal{N}(0, 1)$. Are the following random variables subgaussian? Are they subexponential? Prove your answer.

 (a) Z^2

 (b) Z^4

 (c) $Z^4 1_{|Z| \leq 4}$ (Here 1_E is the indicator of the event E)

 (d) Geometric distribution with probability p

2. Let A be an $N \times n$ real valued matrix. Show that the minimum singular value of A is Lipschitz continuous with Lipschitz constant 1 as a function of A (with respect to the ℓ^2 norm if A is considered as an Nn dimensional vector).

3. Let $x_1, x_2, x_3 \sim \mathcal{N}(0, I_n)$ be independent. The goal of this problem is to argue that the triangle formed by these three points is close to being equilateral.

 (a) By using a union bound, state and prove a high probability concentration result that the lengths of the three edges are all within a factor of 1.01 of each other. Your bound should have a probability that approaches 1 as n approaches ∞.

 (b) By using a union bound, state and prove a high probability concentration result that each of the triangle’s interior angles are between $0.99 \cdot \pi/3$ and $1.01 \cdot \pi/3$. Your bound should have a probability that approaches 1 as n approaches ∞.

4. (Revised) Let a_1, \ldots, a_N be i.i.d. $\mathcal{N}(0, I_n)$ vectors. Let $\sigma_i \sim \begin{cases} 1 & \text{with prob. } 1/2 \\ -1 & \text{with prob. } 1/2 \end{cases}$ be independent from a_i and each other. Let $A = \sum_{i=1}^N \sigma_i a_i a_i^T$.

 (a) Prove that there exists constants c, C such that with probability at least $1 - 2e^{-cn}$,

 $$\|A\| \leq C(\sqrt{Nn} + n).$$

 Here, $\|A\|$ is the spectral norm of A.

 (b) Provide a qualitative explanation of the form of this bound on the spectral norm. As part of your answer: why would bound be false without the \sqrt{Nn} term? Why would the bound be false without the n term? Can you provide an intuitive explanation of why the \sqrt{Nn} has the structure it does? That is, if you hadn’t been told this upper bound on the spectral norm of A, how could you have reasonably guessed it?