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Abstract

We study a class of time-domain decomposition-based methods for the numerical solution of large-scale
linear quadratic optimal control problems. Our methods are based on a multiple shooting reformulation of the
linear quadratic optimal control problem as a discrete-time optimal control (DTOC) problem. The optimality
conditions for this DTOC problem lead to a linear block tridiagonal system. The diagonal blocks are invertible
and are related to the original linear quadratic optimal control problem restricted to smaller time-subintervals.
This motivates the application of block Gauss–Seidel (GS)-type methods for the solution of the block tridi-
agonal systems. Numerical experiments show that the spectral radii of the block GS iteration matrices are
larger than one for typical applications, but that the eigenvalues of the iteration matrices decay to zero fast.
Hence, while the GS method is not expected to convergence for typical applications, it can be e9ective as a
preconditioner for Krylov-subspace methods. This is con;rmed by our numerical tests.
A byproduct of this research is the insight that certain instantaneous control techniques can be viewed as

the application of one step of the forward block GS method applied to the DTOC optimality system.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

This paper is concerned with the numerical solution of linear quadratic optimal control problems
governed by parabolic partial di9erential equations (PDEs). Such problems are diBcult to solve
in practice because of the large storage requirements arising out of the strong coupling in space
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and time of state (solution of the governing PDE), the so-called adjoint, and the control. Several
techniques, including snapshot techniques for storage management and instantaneous control for the
computation of suboptimal solutions, both of which will be discussed in more detail in Section 1.2,
have been proposed to address this diBculty. The goal of this paper is to present another approach
that is related to storage management and instantaneous control techniques.

Our approach is based on time-domain decomposition. More precisely, we will use a multiple
shooting approach to equivalently reformulate our problem as a so-called discrete-time optimal con-
trol (DTOC) problem. For our target problems the operators/matrices arising in the multiple shooting
reformulation of the problem cannot be computed explicitly; only operator/matrix-vector products can
be formed. Therefore, existing multiple shooting implementations for systems of ODEs or ‘small’
PDEs (see, e.g., [1,6,8,9,17,28,29,32,36]), which rely on matrix factorizations are not applicable. Our
approach is matrix free. It is based on the observation that the optimality conditions for DTOC prob-
lem are a block tridiagonal system. For each block operator/matrix-vector products can be formed.
These operations are related to PDE and adjoint PDE solves on time-subdomains. Moreover, the
diagonal blocks are invertible and the application of the inverse of a diagonal block is equivalent
to solving a linear quadratic optimal control problem on a time-subdomain. This time-subdomain
linear quadratic optimal control problem is essentially a smaller copy of the original linear quadratic
optimal control problem. The block tridiagonal structure motivates the application of block Gauss–
Seidel (GS) methods. Numerical experiments show that the spectral radii of the block GS iteration
matrices are larger than one for typical applications, but that the eigenvalues of the iteration matrices
decay to zero fast. Hence, while the GS method is not expected to converge for typical applications,
we propose to use them as preconditioners in Krylov-subspace methods. We will demonstrate that
this approach is e9ective for a class of problems. Moreover, we will show connections between the
block GS iteration and existing approaches.

1.1. Problem formulation

To make the introductory discussion more concrete, we consider problems of the form

min J (u) =
1
2

∫ T

0
‖u(t)‖2U dt +

�1
2

∫ T

0
‖C(t)y(t) − z1(t)‖2Z dt +

�2
2

‖CTy(T ) − z2‖2ZT ; (1)

where y = y(u) is the solution of a PDE, the state equation, which is abstractly written as

9
9t y(t) + A(t)y(t) = B(t)u(t) + f(t); t ∈ (0; T ); (2a)

y(0) = y0: (2b)

The functions u and y are called control and state, respectively. Problem (1), (2) is posed in a
Hilbert space setting which will be made precise in Section 2. One may view A(t), B(t), C(t), CT

to be large sparse matrices, where the square matrix A(t) is obtained from the spatial discretization
of an elliptic PDE. We assume that the state equation (2) admits a unique solution y for every
control u and that the optimal control problem (1), (2) has a solution. This is guaranteed under the
conditions stated in Section 1.1. The solution of (1), (2) is characterized by the optimality conditions
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which consist of the state equations (2), the adjoint equations

− 9
9t p(t) + A(t)∗p(t) = �1C(t)∗(C(t)y(t) − z1(t)); t ∈ (0; T ); (3a)

p(T ) = �2C∗
T (CTy(T ) − z2) (3b)

and the equation

u(t) + B(t)∗p(t) = 0; t ∈ (0; T ): (4)

Here M ∗ denotes the adjoint of the operator M , which is the transpose if M is a real matrix. The
left-hand side of (4) is the gradient of the objective function J . The optimality system (2), (3),
(4) reveals an important structure. While algorithms for the solution of (2) often involve marching
in time, starting from an initial condition, the optimization results in a much stronger coupling in
time. State y information from all times feeds into the adjoint equation (3), which has to be solved
backward in time. The adjoints p determine the controls u (see Eq. (4)), which feed back into
the state equation (2). This coupling in time makes the practical solution of these very large-scale
optimization problems challenging.

1.2. Background

Snapshot techniques, instantaneous control approaches, and reduced basis techniques are used to
cope with the storage and computing time demands for solving distributed optimal control problems.
We review the ;rst two techniques only, because they are related to our approach.

The snapshot technique has been applied in [20] in the context of reverse mode automatic di9er-
entiation and in, e.g., [4,34] to implement gradient-based optimization methods for optimal control
and data assimilation, respectively. Roughly speaking, snapshot techniques only keep a copy of the
state at certain times 0 = T0¡T1¡ · · ·¡TNt . During the adjoint p computation they recompute y
for times t ∈ (Ti; Ti+1) by resolving (2) on (Ti; Ti+1). In [4,20,34] more re;ned storage techniques
are used to balance storage requirements and the computing time for state recomputations. Like the
snapshot technique, our approach only requires permanent storage for states y and adjoints p at times
0=T0¡T1¡ · · ·¡TNt=T . Storage for y(t) and p(t), t ∈ (Ti; Ti+1) needs to be provided temporarily
for subproblem computations and this storage could be shared by di9erent subproblem solvers. In
[4,34] storage management techniques are used within gradient computations to cope with the large
storage requirements; storage management techniques do not alter the gradient based optimization
algorithms for the solution of (1). The time-domain decomposition approach discussed in this paper,
e9ects the optimization algorithm and it may be viewed as an approach to integrate (simple) storage
management techniques into the optimization, rather than using it only as a black-box for gradient
∇J (u) computations.

In their simplest form, instantaneous control strategies split the optimal control problem (1), (2)
into a set of smaller problems of the same type. The smaller problems are obtained by restricting
the original optimal control problem to time intervals (Ti; Ti+1), where 0 = T0¡T1¡ · · ·¡TNt =
T . These problems are then solved sequentially to obtain a ‘suboptimal’ control. (At this point
we use ‘suboptimal’ loosely.) The computation of suboptimal controls proceeds as follows. Sup-
pose suboptimal controls û i and corresponding states ŷ i have been computed on the subintervals
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(Ti; Ti+1), i = 1; : : : ; j − 1. Then the optimal control problem (1), (2) is restricted to [Tj; Tj+1] and
the initial condition is replaced by y(Tj) = ŷ j−1(Tj). If j¡Nt − 1, the last term in the objective
function (1) is dropped. An optimization procedure is applied to compute an approximation of the
optimal control û j for this problem together with the corresponding state ŷ j. The suboptimal control
û for the original problem (1), (2) is de;ned by connecting the piecewise controls, û [Ti;Ti+1] = û i,
i = 0; : : : ; Nt . The instantaneous control strategies found in the literature di9er in the way the parti-
tion 0=T0¡T1¡ · · ·¡TNt =T is chosen, in the objective function chosen for the subproblems, in
the optimization method applied to the subproblems, and in the truncation criteria applied in these
optimization methods. Typically, instantaneous control strategies use a moving horizon, i.e., the ;nal
time T is not ;xed a priori, and they stop moving the horizon T if a certain objective is met at T .
Furthermore, they often use model predictive control approaches, i.e., in the j step they optimize over
a time interval larger than [Tj; Tj+1], but advance control û j and state ŷ j only on [Tj; Tj+1]. Finally,
they may modify the objective function used for the optimization over [Tj; Tj+1]. For the control of
Navier–Stokes Oow and related problems, instantaneous control techniques have been used in, e.g.,
[7,12–15,21–24,27,31,37]. For example, in [14,15,22,23] the partition 0 = T0¡T1¡ · · ·¡TN = T
is identical to the time discretization used for the numerical time integration for (2a). In [7,12,13]
the size PT = Tn − Tn−1 of time intervals for the instantaneous control is bigger than the step
sizes �t used in the numerical time integration. In all papers [7,12–15,22,23] the ;nal time T is
not ;xed, but moved until an overall objective such as drag reduction at T is met. In most cases,
theoretical investigations of the instantaneous control strategies are missing. The papers [21,23,24]
provide some theoretical foundation of instantaneous control techniques. In [21,23], it is shown that,
under certain assumptions, their instantaneous control technique can be interpreted as a suboptimal
closed-loop controller and that the closed-loop dynamical system is stable under appropriate condi-
tions. In particular, for this result to be valid, Tj − Tj−1 has to be suBciently small. Their theory
assumes C = I and CT = 0 in (1). In [24] an in;nite time horizon control problem for Navier–
Stokes Oow with a tracking type objective function and distributed control is considered. It is shown
that, under suitable assumptions, the error between the velocities corresponding to the suboptimal
controls and the desired velocities decays exponentially in time. Again, one of the assumptions is
that Tj − Tj−1 is suBciently small. In [7,12,13], which investigate boundary control of turbulent
Oows using direct numerical simulation (DNS) and large eddy simulation (LES), respectively, the
partitioning 0=T0¡T1¡ · · ·¡TNt =T is independent of the time integration. In these papers it was
found that larger Tj − Tj−1 led to stronger decreases in drag or turbulent kinetic energy at time T ,
the respective objective functions in the optimization. Thus, there is still a signi;cant gap between
theoretical results and numerical observation. Our present work originated from the desire to obtain
a better understanding of instantaneous control techniques and to narrow the gap between theory and
numerics. See Section 4.2.4 for further discussions.

Finally, we mention that for optimal control problems governed by the wave equation, a dif-
ferent time-domain decomposition method has been proposed in [26]. Since the wave equation is
a second order in time equation the time-domain decomposition method in [26] uses transmission
conditions at time-subintervals that involve linear combinations of state and adjoint information at
Ti’s as well as time derivatives of states and adjoints at Ti’s. It is not clear whether the method in
[26] can be extended to general ;rst order in time problems studied in this paper. However, it is
noteworthy that like the approach proposed in this paper, the iteration in [26] requires the solution
of optimal control problems restricted to time subdomains. The paper [26] proves convergence in
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the in;nite-dimensional setting, but no convergence rates are established and no numerical results
are given.

1.3. Notation

Throughout this paper, we use Hilbert space notation which is suitable for linear quadratic dis-
tributed optimal control problems. In particular, given Hilbert spaces X; Y , L(X; Y ) denotes the space
of bounded linear operators from X to Y and L(X ) =L(X; X ). The norm in the Hilbert space X
is denoted by ‖ · ‖X . The dual of a Hilbert space X is denoted by X ∗. The duality pairing between
the Hilbert space X and its dual X ∗ is denoted by 〈·; ·〉X ∗×X . Given an operator M ∈L(X; Y ) its
adjoint is denoted by M ∗.

Readers not familiar with this abstract setting may view A(t), B(t), C(t), CT to be large sparse
matrices, where the square matrix A(t) is obtained from the spatial discretization of an elliptic PDE.
In this case X =Rn, Y =Rm and M ∈L(X; Y ) is a matrix M ∈Rm×n, and M ∗ =MT . Moreover, the
duality pairing 〈y; x〉X ∗×X is simply yTx.

2. Mathematical setting

In this section, we specify our abstract formulation (1), (2), which closely follows [30]. We let
H; V; U be Hilbert spaces with V ,→ H , V dense in H . We identify H ∗ with H . The control space
U and the state space Y are given by

U= L2(0; T ;U ) and Y =
{
v | v∈L2(0; T ;V );

9
9t y∈L2(0; T ;V ∗)

}
;

respectively. We assume that

A(t)∈L(V; V ∗); t ∈ [0; T ]

is a family of continuous linear operators such that

∀v; w∈V; t �→ 〈A(t)v; w〉V∗×V is measurable on (0; T )

and there exist c; $¿ 0, &¿ 0 such that for all t ∈ [0; T ] and for all v; w∈V ,

〈A(t)v; w〉V∗×V 6 c‖v‖V‖w‖V ;

〈A(t)v; v〉V∗×V + &‖v‖2H ¿ $‖v‖2V :
Furthermore, we assume that B(t)∈L(U; V ∗) depends continuously on t ∈ [0; T ] and that f∈
L2(0; T ;V ∗), y0 ∈H . The state equation (2) admits a unique solution y∈Y which depends con-
tinuously on the initial condition and on the right-hand side (see, e.g., [3, Chapter 2]; [30, pp. 102,
103]; [40, Section 23.7]).

To specify the objective function (1), we let Z; ZT be Hilbert spaces and we assume that C(t)∈
L(V; Z) depends continuously on t ∈ [0; T ], CT ∈L(H; ZT ), z1 ∈L2(0; T ;Z), and z2 ∈ZT . Since Y ⊂
C([0; T ];H) (see, e.g., [30, p. 102] or [40, Section 23.6]), the objective function (1) is well de;ned
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for u∈U and y∈Y. With the assumption

�1; �2¿ 0;

the optimal control problem (1), (2) admits a unique solution u (see [30, Chapter III]). The solution
is characterized by the optimality conditions (2)–(4).

3. Temporal decomposition of the problem

We use a multiple shooting approach to reformulate the optimization problem (1), (2). We select
a partition

0 = T0¡T1¡ · · ·¡TNt = T

of [0; T ] and we introduce the auxiliary variables

Qy i ∈H; n= 0; : : : ; Nt;

where

Qy 0
def=y0:

Moreover, we set

Qu i = u|(Ti;Ti+1) ∈L2(Ti; Ti+1;U ); i = 0; : : : ; Nt − 1:

The state equations
9
9t yi + A(t)yi = B(t) Qu i + f; t ∈ (Ti; Ti+1); (5a)

yi(Ti) = Qy i; (5b)

i = 0; : : : ; Nt − 1, together with the continuity conditions

Qy i+1 = yi(Ti+1); i = 0; : : : ; Nt − 1 (6)

are equivalent to the original state equation (2). If y solves (2), then Qy i = y(Ti), yi = y|'×(Ti;Ti+1),
i = 0; : : : ; Nt − 1, solves (5), (6) and vice versa. In this case,

1
2

∫ T

0
‖u(t)‖2U dt +

�1
2

∫ T

0
‖Cy(t) − z1(t)‖2Z dt +

�2
2

‖CTy(T ) − z2‖2ZT

=
Nt−1∑
i=0

{
1
2

∫ Ti+1

Ti

‖ui(t)‖2U dt +
�1
2

∫ Ti+1

Ti

‖Cyi(t) − z1(t)‖2Z dt
}

+
�2
2

‖CTyNt−1(TNt) − z2‖2ZT : (7)

Remark 1. In reformulation (7) of the objective function, we have expressed the terminal observation
y(T ) by yNt−1(TNt). Alternatively, we could have used the continuity condition QyNt =yNt−1(TNt) and
express the terminal observation ‖CTy(T )−z2‖2ZT in (1) as ‖CT QyNt −z2‖2ZT . The following discussions
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remain valid if this alternative formulation of the objective function is chosen. However, in our
numerical experiments (7) was never inferior to the alternative formulation and often signi;cantly
better.

It is clear that the solution of the di9erential equation (5) is a function of Qy i, Qu i and f. Therefore,
the continuity conditions (6) and the objective function (7) can be viewed as functions of Qu i,
i = 0; : : : ; Nt − 1, and Qy i, i = 0; : : : ; Nt . This will be formalized in the following. We de;ne

Ui = L2(Ti; Ti+1;U ) and Yi =
{
y |y∈L2(Ti; Ti+1;V );

9
9t y∈L2(Ti; Ti+1;V ∗)

}
:

To express the continuity condition (6) in terms of Qy i; Qu i, we de;ne

QAi ∈L(H); QBi ∈L(Ui ; H); Qbi ∈H i = 0; : : : ; Nt − 1

and Qbi ∈H , i = 0; : : : ; Nt − 1, as follows:

QAi Qy i = yyi (Ti+1); QBi Qu i = yui (Ti+1); Qbi = yfi (Ti+1); (8)

where yyi is the solution of (5) with Qu i = 0 and f = 0, yui is the solution of (5) with Qy i = 0 and
f=0, and yfi is the solution of (5) with Qy i =0 and Qu i =0. Using (8) the continuity conditions (6)
can be written as

Qy i+1 = QAi Qy i + QBi Qu i + Qbi; i = 0; : : : ; Nt − 1: (9)

To express the objective function (7) in terms of Qy i; Qu i, we de;ne

QEi ∈L(H;Yi); QFi ∈L(Ui;Yi); Qfi ∈Yi ; i = 0; : : : ; Nt − 2

and

QEi ∈L(H;Yi × H); QFi ∈L(Ui ;Yi × H); Qfi ∈Yi × H; i = Nt − 1;

as follows. For i = 0; : : : ; Nt − 1, let yyi be the solution of (5) with Qu i = 0 and f = 0, let yui be the
solution of (5) with Qy i = 0 and f = 0, and let yfi be the solution of (5) with Qy i = 0 and Qu i = 0.
We set

QEi Qy i = yyi ; QFi Qu i = yui ; Qfi = yfi ; i = 0; : : : ; Nt − 2 (10)

and

QEi Qy i =

(
yyi

yyi (T )

)
; QFi Qu i =

(
yui

yui (T )

)
; Qfi =

(
yfi

yfi (T )

)
; i = Nt − 1: (11)

For i = 0; : : : ; Nt − 2, the solution yi of (5) is given by

yi(t) = ( QEi Qy i)(t) + ( QFi Qu i)(t) + Qfi(t); t ∈ (Ti; Ti+1) (12)
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and for i=Nt − 1, yi(t) is the ;rst component of QEi Qy i + QFi Qu i + Qfi evaluated at t. It is clear that QAi,
QBi, Qbi are closely related to QEi, QFi, Qfi. For example QAi Qy i = ( QEi Qy i)(Ti+1).
We also need the operators

QMz
i ∈L(Yi;Y∗

i ); i = 0; : : : ; Nt − 2; QMz
i ∈L(Yi × H;Y∗

i × H); i = Nt − 1;

de;ned by

〈 QMz
i yi; wi〉Y∗

i ×Yi =
∫ Ti+1

Ti

�1〈yi(t); C(t)∗C(t)wi(t)〉V∗×V dt ∀yi; wi ∈Yi ; (13)

i = 0; : : : ; Nt − 2, and〈
QMz
i

(
yi

Qy i

)
;

(
wi

Qwi

)〉
(Y∗

i ×H)×(Yi×H)

=
∫ Ti+1

Ti

�1〈yi(t); C(t)∗C(t)wi(t)〉V∗×V dt

+ �2〈 Qy i; C∗
TCT Qwi〉H dt ∀yi; wi ∈Yi ; Qy i; Qwi ∈H; (14)

i = Nt − 1, and the vectors Qzi = �1C(·)∗z1 ∈Yi, i = 0; : : : ; Nt − 2, and

Qzi =

(
�1C(·)∗z1
�2C∗

T z2

)
∈Yi × H:

We can now express the objective function (7) in terms of Qy i; Qu i:
Nt−1∑
i=0

∫ Ti+1

Ti

1
2

‖ui(t)‖2U +
�1
2

‖C(t)yi(t) − z1(t)‖2Z dt +
�2
2

‖CTyNt−1(TNt) − z2‖2ZT

=
Nt−1∑
i=0

{
1
2

〈 Qu i; (I + QF∗
i
QMz
i
QFi) Qu i〉Ui + 〈 Qy i; QE∗

i
QMz
i
QFi Qu i〉H +

1
2
〈 Qy i; QE∗

i
QMz
i
QEi Qy i〉H

+〈 Qu i; QF∗
i ( QMz

i
Qfi − Qzi)〉Ui + 〈 Qy i; QE∗

i ( QMz
i
Qfi − Qzi)〉H

}
+ const

def=
Nt−1∑
i=0

1
2

〈 Qy i; QQi Qy i〉H + 〈 Qci; Qy i〉H + 〈 Qy i; QRi Qu i〉Ui +
1
2

〈 Qu i; QSi Qu i〉Ui + 〈 Qdi; Qu i〉Ui

+
1
2

〈 QyNt ; QQNt QyNt〉H + 〈 QcNt ; QyNt〉H + const; (15)

where QQNt =0, QcNt =0, and ‘const’ represents all terms which are independent of the Qy i’s, Qu i’s, such
as 1

2�2‖z2‖2ZT .

Remark 2. In the de;nition of operators and vectors we had to distinguish between the cases i =
0; : : : ; Nt − 2 and i = Nt − 1. This was necessary because of our reformulation (7) of the objective
function. See Remark 1. If one uses the continuity condition QyNt = yNt−1(TNt) and express the
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terminal observation ‖CTy(T ) − z2‖2ZT in (7) as ‖CT QyNt − z2‖2ZT , then the distinction between these
two cases is not necessary. One would obtain problem (15) with QQNt = �2C∗

TCT , QcNt = −�2C∗
T z2.

Since we formally include QQNt = 0 and QcNt = 0 in (15), the following discussions remain valid if
this alternative formulation of the objective function is chosen.

We also note that our formalism applied in (7) can be easily translated to the discretized case.

From (9) and (7), (15) we see that the linear quadratic optimal control problem (1), (2) is
equivalent to the problem

min
1
2

〈 QyNt ; QQNt QyNt〉H + 〈 QcNt ; QyNt〉H +
Nt−1∑
i=0

1
2

〈 Qy i; QQi Qy i〉H + 〈 Qci; Qy i〉H + 〈 Qy i; QRi Qu i〉Ui

+
1
2

〈 Qu i; QSi Qu i〉Ui + 〈 Qdi; Qu i〉Ui (16a)

s:t: Qy i+1 = QAi Qy i + QBi Qu i + Qbi; i = 0; : : : ; Nt;

Qy 0 = y0: (16b)

Problem (16) is a discrete-time optimal-control problem in Hilbert space.
From the de;nition of QSi and QQi, 0=1; : : : ; Nt−1, QQNt in (15) we immediately obtain the following

result.

Theorem 3. The operators QSi, i = 0; : : : ; Nt − 1, are strictly positive,

〈 Qu i; QSi Qu i〉Ui ¿ ‖ Qu i‖2Ui
∀ Qu i ∈Ui

and the operators QQi, i = 0; : : : ; Nt , are positive.

The augmented Lagrange function for (16) is given by

L/( Q̃y; Q̃u; Q̃p) = 1
2 〈 QyNt ; QQNt QyNt〉H + 〈 QcNt ; QyNt〉H

+
Nt−1∑
i=0

1
2

〈 Qy i; QQi Qy i〉H + 〈 Qci; Qy i〉H + 〈 Qy i; QRi Qu i〉Ui +
1
2
〈 Qu i; QSi Qu i〉Ui + 〈 Qdi; Qu i〉Ui

+
Nt−1∑
i=0

〈 Qpi+1;− Qy i+1 + QAi Qy i + QBi Qu i + Qbi〉H

+
/
2

Nt−1∑
i=0

‖ QAi Qy i + QBi Qu i + Qbi − Qy i+1‖2H ;

where Q̃y=( Qy 1; : : : ; QyNt), Q̃u=(u0; : : : ; uNt), Q̃p=( Qp1; : : : ; QpNt) and /¿ 0 is the augmentation parameter.

Theorem 4. If Q̃y∈HNt−1 Q̃u∈U0 × · · · × UNt−1 solves (16), then there exists Q̃p∈HNt−1 such that
the following equations are satis<ed.
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State equation:

Qy i+1 = QAi Qy i + QBi Qu i + Qbi; i = 0; : : : ; Nt − 1;

Qy 0 = y0: (17a)

Adjoint equation:

QpNt = QQNt QyNt + cNt − /( QANt−1 QyNt−1 + QBNt−1 QuNt−1 + QbNt−1 − QyNt);

Qpi = QA∗
i Qpi+1 + QQi Qy i + QRi Qu i + Qci + / QA∗

i ( QAi Qy i + QBi Qu i + Qbi − Qy i+1)

− /( QAi−1 Qy i−1 + QBi−1 Qu i−1 + Qbi−1 − Qy i); i = Nt − 1; : : : ; 1: (17a)

Gradient equation:

QSi Qu i + QR∗
i Qy i + QB∗

i Qpi+1 + Qdi + / QB∗
i ( QAi Qy i + QBi Qu i + Qbi − Qy i+1) = 0; i = 0; : : : ; Nt − 1: (17b)

On the other hand, if Q̃y∈HNt−1 Q̃u∈U0×· · ·×UNt−1 and Q̃p∈HNt−1 satisfy (17), then Q̃y∈HNt−1 Q̃u∈
U0 × · · · × UNt−1 solve (16).

Proof. The assertion follows from a straightforward application of the Lagrange multiplier theorem
in Hilbert space [16, Theorem 26.1]; [25]. The lower bidiagonal (in the Qy i’s) structure of the
constraints (16b) immediately implies their surjectivity. The optimality conditions (17) are obtained
by setting the partial gradients of L/ with respect to Qpi+1, Qy i, and Qu i to zero. Since we deal with
convex problems the optimality conditions (17) are necessary and suBcient.

We close this section with an interpretation of the optimality conditions (17). The operators
QAi; : : : ; QSi and the vectors Qbi; : : : ; Qdi, are introduced for theoretical purposes, but they do not have
to be formed in actual computations. This will be indicated by the following remark and it will
be discussed more in future sections. First, we need the adjoints of the operators QAi, QBi, QEi, QFi,
i = 0; : : : ; Nt − 1.
Consider the di9erential equation

− 9
9t pi(t) + A(t)∗pi(t) = g(t); t ∈ [Ti; Ti+1]; (18a)

p(Ti+1) = Qpi+1; (18b)

where g∈L2(Ti; Ti+1;V ∗) and Qpi+1 ∈H .

Lemma 5. (i) The adjoints QA∗
i , QB∗

i , i = 0; : : : ; Nt − 1, of the operators de<ned in (8) are given by

QA∗
i Qpi+1 = pi(Ti); QB∗

i Qpi+1 = B(t)∗pi(t);

where pi is the solution of (18) with g= 0.
(ii) The adjoints QE∗

i , QF∗
i , i = 0; : : : ; Nt − 2, of the operators de<ned in (10) are given by

QE∗
i g= pi(Ti); QF∗

i g= B(t)∗pi(t);

where pi is the solution of (18) with Qpi+1 = 0.
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(iii) The adjoints QE∗
i , QF∗

i , i = Nt − 1, of the operators de<ned in (11) are given by

QE∗
i

(
g

Qpi+1

)
= pi(Ti); QF∗

i

(
g

Qpi+1

)
= B(t)∗pi(t);

where pi is the solution of (18).

Proof. We only prove (iii). All other statements can be shown similarly.
Let i=Nt−1, i.e., Ti+1=T . Furthermore, let yi and pi be the solutions of (5) and (18), respectively.

Then ∫ Ti+1

Ti

〈
9
9t yi(t); pi(t)

〉
H

+ 〈A(t)yi(t); pi(t)〉V∗×V − 〈B(t) Qu i(t) + f(t); pi(t)〉V∗×V dt = 0;

∫ Ti+1

Ti

〈
− 9
9t pi(t); yi(t)

〉
H

+ 〈A(t)∗pi(t); yi(t)〉V∗×V − 〈g(t); yi(t)〉V∗×V dt = 0:

Subtracting both equations and using (5b), (18b) gives

〈yi(Ti+1); Qpi+1〉H − 〈 Qy i; pi(Ti)〉H

=
∫ Ti+1

Ti

〈B(t) Qu i(t) + f(t); pi(t)〉V∗×V − 〈g(t); yi(t)〉V∗×V dt: (19)

Now, let Qy i; Qpi+1 ∈H , g∈L2(Ti; Ti+1;V ∗) be arbitrary, Qu i = 0, f = 0, and let yi, pi solve (5) and
(18), respectively. De;nition (11) of QENt−1 and (19) imply〈(

g

Qpi+1

)
; QEi Qy i

〉
(Y∗

i ×H)×(Yi×H)

=
∫ Ti+1

Ti

〈g(t); yi(t)〉V∗×V dt + 〈yi(Ti+1); Qpi+1〉H

= 〈 Qy i; pi(Ti)〉H =

〈
QE∗
i

(
g

Qpi+1

)
; Qy i

〉
H

:

This proves the ;rst part of (iii).
To prove the second part of (iii), we let Qu i ∈Ui, Qpi+1 ∈H , g∈L2(Ti; Ti+1;V ∗) be arbitrary, Qy i=0,

f = 0, and let yi, pi solve (5) and (18), respectively. De;nition (11) of QFNt−1 and (19) imply〈(
g

Qpi+1

)
; QFi Qu i

〉
(Y∗

i ×H)×(Yi×H)

=
∫ Ti+1

Ti

〈g(t); yi(t)〉V∗×V dt + 〈yi(Ti+1); Qp〉H

=
∫ Ti+1

Ti

〈B(t)∗pi(t); Qu i(t)〉U∗×U dt

=

〈
QF∗
i

(
g

Qpi+1

)
; Qu i

〉
U∗
i ×Yi

:
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Remark 6. Let QAi, QBi, Qbi, i=1; : : : ; Nt −1, be de;ned by (8) and let QQi, QRi, QSi, Qci, Qdi, i=1; : : : ; Nt −1,
QQNt , QcNt be de;ned by (15).

(i) Computation of Qy i+1= QAi Qy i+ QBi Qu i+ Qbi, i=0; : : : ; Nt−1: From (12), (8) we see that Qy i+1=yi(Ti+1),
where yi is the solution of (5). Individual quantities QAi Qy i, QBi Qu i, or Qbi can be computed by setting
the appropriate parts of the input variables Qy i, Qu i, and f to zero.

(ii) Computation of Qpi = QA∗
i Qpi+1 + QQi Qy i + QRi Qu i + Qci, i = 1; : : : ; Nt − 1: From (15) we see that

QA∗
i Qpi+1 + QQi Qy i + QRi Qu i + Qci = QA∗

i Qpi+1 + QE∗
i ( QMz

i ( QEi Qy i + QFi Qu i + Qfi) − Qzi);

= QA∗
i Qpi+1 + QE∗

i ( QMz
iwi − Qzi);

where wi is the solution of (5).
De;nitions (13), (14) of Mz

i and Lemma 5 imply that Qpi = pi(Ti), where pi is the solution
of

− 9
9t pi(t) + A(t)∗pi(t) = �1C(t)∗(C(t)wi(t) − z1); t ∈ [Ti; Ti+1] (20a)

with ;nal condition

pi(Ti+1) =

{
Qpi+1; i = 0; : : : ; Nt − 2;

Qpi+1 + �2C∗
T (CTwi(T ) − z2); i = Nt − 1:

(20b)

(iii) For i = Nt , QpNt = QQNt QyNt + QcNt = 0 since QQNt = 0, QcNt = 0.
(iv) Computation of Qvi = QSi Qu i + QR∗

i Qy i + QB∗
i Qpi+1 + Qdi, i = 0; : : : ; Nt − 1: From (15) we see that

QSi Qu i + QR∗
i Qy i + QB∗

i Qpi+1 + Qdi = QB∗
i Qpi+1 + Qu i + QF∗

i ( QMz
i ( QEi Qy i + QFi Qu i + Qfi) − Qzi)

= QB∗
i Qpi+1 + Qu i + QF∗

i ( QMz
iwi − Qzi);

where wi is the solution of (5).
De;nitions (13), (14) of Mz

i and Lemma 5 imply that

Qvi(t) = B(t)∗pi(t) + Qu i(t);

where pi solves (18).

4. Iterative solution of the optimality system

4.1. Optimality system

We group Eqs. (17) in the following way:

QS0 Qu 0 + QR∗
0 Qy 0 + QB∗

0 Qp1 + Qd0 + / QB∗
0( QA0 Qy 0 + QB0 Qu 0 + Qb0 − Qy 1) = 0;

QA0 Qy 0 + QB0 Qu 0 + Qb0 − Qy 1 = 0; (21a)

− Qpi + QA∗
i Qpi+1 + QQi Qy i + QRi Qu i + Qci + / QA∗

i ( QAi Qy i + QBi Qu i + Qbi − Qy i+1)

−�( QAi−1 Qy i−1 + QBi−1 Qu i−1 + Qbi−1 − Qy i) = 0;
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QSi Qu i + QR∗
i Qy i + QB∗

i Qpi+1 + Qdi + / QB∗
i ( QAi Qy i + QBi Qu i + Qbi − Qy i+1) = 0;

QAi Qy i + QBi Qu i + Qbi − Qy i+1 = 0;

i = 1; : : : ; Nt − 1; (21b)

− QpNt + QQNt QyNt + cNt − �( QANt−1 QyNt−1 + QBNt−1 QuNt−1 + QbNt−1 − QyNt) = 0: (21c)

Systems (17) and (21) are identical if /=�¿ 0. Here we introduce the second parameter � to better
distinguish the terms in (17) corresponding to /; �, respectively. In particular, / is associated with
terms QAi Qy i + QBi Qu i + Qbi − Qy i+1 linking state information from time subdomain [Ti; Ti+1] to the initial
data Qy i+1 for the state in [Ti+1; Ti+2], while � is associated with terms QAi−1 Qy i−1+ QBi−1 Qu i−1+ Qbi−1− Qy i

linking state information from time subdomain [Ti−1; Ti] to the initial data Qy i for the state in [Ti; Ti+1].
We will see later (Theorem 8) that these terms may inOuence the convergence of iterative schemes
for the solution of (21) di9erently. This has motivated the introduction of the second parameter �
at this point. We assume that /; �¿ 0.

Now we arrange Eqs. (21) into a block system

Ax = b; (22)

where the variables x and the right-hand side b are given by

x =




Qy 1

Qu 0

Qy 2

Qu 1

Qp1

Qy 3

Qu 2

Qp2

...

...

QyNt

QuNt−1

QpNt−1

QpNt




; b= −




Qd0 + ( QR∗
0 + / QB∗

0
QA0)y0 + / QB∗

0
Qb0

Qb0 + QA0y0

Qc1 + / QA∗
1
Qb1 − � Qb0

Qd1 + / QB∗
1
Qb1

Qb1

Qc2 + / QA∗
2
Qb2 − � Qb1

Qd2 + / QB∗
2
Qb2

Qb2

...

...

QcNt−1 + / QA∗
Nt−1

QbNt−1 − � QbNt−2

QdNt−1 + / QB∗
Nt−1

QbNt−1

QbNt−1

QcNt



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Fig. 1. The operator A ( QQ/;�
i = QQi + / QA∗

i
QAi + �I , QR/

i = QRi + / QA∗
i QBi, QS/i = QSi + / QB∗

i QBi).

and where A is an operator with one super-blockdiagonal and two sub-blockdiagonals shown
in Fig. 1.

Since the operators QSi, i = 0; : : : ; Nt − 1, are strictly positive (cf. Theorem 3) the diagonal blocks
of A in Fig. 1 are continuously invertible. With this ordering of the equations and unknowns the
operator A in Fig. 1 is nonselfadjoint. As we will discuss in Section 4.2.1, the diagonal blocks are
related to a linear quadratic optimal control problem. This linear quadratic optimal control problem
is essentially given by the restriction of (1), (2) onto the time subdomain [Ti; Ti+1], but with initial
conditions and augmentation of the objective function that tie the states and adjoints of this time
subdomain optimal control problem to linear quadratic optimal control problems on adjacent time
subdomains.

4.2. GS iterations

4.2.1. Solution of the block diagonal systems
We use Remark 6 to examine the diagonal blocks of A in Fig. 1. In particular, we will show

that the diagonal blocks of A are invertible and that the application of the inverse of a diagonal
block corresponds to the solution of a linear quadratic optimal control problem restricted to the time
subdomain [Ti; Ti+1].
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For i∈ {0; : : : ; Nt − 1} let yi be the solution of

9
9t yi(t) + A(t)yi(t) = B(t) Qu i(t) + f(t); t ∈ (Ti; Ti+1); (23a)

yi(Ti) = Qy i: (23b)

Remark 6 shows that

QAi Qy i + QBi Qu i + Qbi = yi(Ti+1):

For i∈ {0; : : : ; Nt − 1} let pi be the solution of

− 9
9t pi(t) + A(t)∗pi(t) = �1C(t)∗(C(t)yi(t) − z1); t ∈ (Ti; Ti+1); (23c)

pi(Ti+1) =

{
Qpi+1 + /(yi(Ti+1) − Qy i+1); i = 0; : : : ; Nt − 2;

Qpi+1 + /(yi(Ti+1) − Qy i+1) + �2C∗
T (CTyi(T ) − z2); i = Nt − 1;

(23d)

where yi solves (23a), (23b). Remark 6 shows that

QA∗
i Qpi+1 + QQi Qy i + QRi Qu i + Qci + / QA∗

i ( QAi Qy i + QBi Qu i + Qbi − Qy i+1) = pi(Ti):

Finally, for i∈ {0; : : : ; Nt − 1} the equation

0 = B(t)∗pi(t) + Qu i(t); t ∈ (Ti; Ti+1); (23e)

where pi solves (23c), (23d), is just the equation

QSi Qu i + QR∗
i Qy i + QB∗

i Qpi+1 + Qdi + / QB∗
i ( QAi Qy i + QBi Qu i + Qbi − Qy i+1) = 0

(see Remark 6).
Now we are able to discuss the solution of the bock diagonal systems. Let i = 0. If y0; Qu 0; p0

solves (23), then the solution ( Qy 1; Qu 0) of (21a) is given by

Qy 1 = y0(T1):

Let i∈ {1; : : : ; Nt − 1}. If yi; Qu i; pi solves (23) and if yi−1 solves (23a) with i replaced by i − 1,
(23b), then the solution ( Qy i+1; Qu i; Qpi) of (21b) is given by

Qy i+1 = yi(Ti+1); Qpi = pi(Ti) + �( Qy i − yi−1(Ti)):

Finally, since QQNt = 0, QcNt = 0 the solution of (21c) is

QpNt = �( QyNt − yNt−1(TNt));

where yNt−1 solves (23a), (23b) with i = Nt − 1.
Notice that system (23) for i=1; : : : ; Nt −1 is the optimality system for the quadratic optimization

problem

min
1
2

∫ Ti+1

Ti

‖ Qu i(t)‖2U dt +
�1
2

∫ Ti+1

Ti

‖C(t)yi(t) − z1(t)‖2Z dt

+ 〈yi(Ti+1); Qpi+1 + /(yi(Ti+1) − Qy i+1)〉H



184 M. Heinkenschloss / Journal of Computational and Applied Mathematics 173 (2005) 169–198

s:t:
9
9t yi(t) + A(t)yi(t) = B(t) Qu i(t) + f(t); t ∈ (Ti; Ti+1);

yi(Ti) = Qy i; (24)

where for i = Nt − 1, the term 〈yi(Ti+1); Qpi+1〉H in the objective function has to be replaced by
〈yi(Ti+1); Qpi+1 + /(yi(Ti+1) − Qy i+1) + �2C∗

T (CTyi(T ) − z2)〉H .

4.2.2. GS iterations
Let D, −L, −U be the block diagonal part, the strictly lower block triangular part, and the strictly

upper block triangular part of A, respectively. Thus,

A =D − L − U:

In the previous section, we have established the invertibility of D. Hence, we can apply block GS
iterations. We will look at three GS iterations (see, e.g., [2,19,35,38]). One iteration of the forward
GS method is given by xk+1 = (D − L)−1(b + Uxk), one iteration of the backward GS method is
given by xk+1=(D−U)−1(b+Lxk), and one iteration of the forward–backward GS method consists
of a forward GS iteration followed by a backward GS iteration:

xk+1=2 = (D − L)−1(b+Uxk);

xk+1 = (D − U)−1(b+ Lxk+1=2):

More generally, we can consider the block SOR method. However, since the block SOR iterates can
be computed from the block GS iterations, we restrict ourselves to the above cases. The GS method
depends on the ordering of the variables and equations. Therefore other orderings might be useful.
We discuss some of those later. First, we study the implementation of the block GS methods.

4.2.3. Interpretation of the GS iterations
Forward GS: One sweep of the forward GS method is given as follows:

Computation of xk+1 = (D − L)−1(b+Uxk):

(a) Solve (21a) for Qy 1; Qu 0:

(b) For i = 1; : : : ; Nt − 1:

Solve (21b) for Qy i+1; Qu i; Qpi:

(c) Compute QpNt from (21c): (25)

In (25) we overwrite the components of xk by those of xk+1 as soon as they become available.
Therefore, we omit the index k in steps (a)–(c) of (25).

Theorem 7. (i) The operator-vector product (D − L)−1Ux is independent of / and �.
(ii) The null-space of (D − L)−1U satis<es

N((D − L)−1U) ⊃ H × L2(T0; T1; U ) × H × L2(T1; T2; U ) × {0}
× · · · × H × L2(TNt−1; TNt ; U ) × {0} × {0}:
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Proof. Because of the third equation in (21b), all terms in (21b) involving / will be zero and, since
we perform a forward sweep, all terms in (21b), (21c) involving � will be zero. Hence, the forward
GS method is independent of / and �.
The second assertion follows immediately from the fact that all column blocks in the operator U

corresponding to Qy i+1; Qu i, i = 0; : : : ; Nt − 1, are equal to zero (cf. Fig. 1).

Because of Theorem 7 it is suBcient to consider /= �= 0.
Using our discussions in Section 4.2.1 we can formulate the forward GS method as follows:

Computation of xk+1 = (D − L)−1(b+Uxk):

For i = 0; : : : ; Nt − 1:

Solve (24) (or (23)):

Set Qy i+1 = yi(Ti+1); Qpi = pi(Ti):

(If i = 0; only Qy 1; Qu 0 are computed:)

Set QpNt = 0: (26)

In the forward GS method, the states computed as the solutions of (23a), (23b) are continuous in
time in the sense

yi(Ti+1) = Qy i+1 = yi+1(Ti); i = 0; : : : ; Nt − 1:

The adjoints and the controls, however, are in general not continuous at a given GS iteration. Only
as the GS iterations converges (assuming it does) will the jumps in adjoints and controls at the time
domain interfaces Ti vanish. If we perform one iteration of the forward GS method with starting
value Qpi=0, i=1; : : : ; Nt , then the states yi (dashed), controls Qu i (solid), and the adjoints pi (dotted)
at the end of the forward GS iteration are sketched in Fig. 2. The Qy i, Qpi components of the new
iterate are indicated by • and ◦, respectively.

Fig. 2. Sketch of the states (dashed), the controls (solid) and the adjoints (dotted) after iteration k of the forward GS
iteration (26).
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Backward GS: One sweep of the backward GS method is given as follows:

Computation of xk+1 = (D − U)−1(b+ Lxk):

(a) Compute QpNt from (21c):

(b) For i = Nt − 1; : : : ; 1:

Solve (21b) for Qy i+1; Qu i; Qpi:

(c) Solve (21a) for Qy 1; Qu 0: (27)

Again we overwrite the components of xk by those of xk+1 as soon as they become available.
Therefore, we omit the index k in steps a.–c. of (27).

Theorem 8. (i) The operator-vector product (D − U)−1Lx is independent of /.
(ii) The null-space of (D − U)−1L satis<es

N((D − U)−1L) ⊃ {0} × L2(T0; T1; U ) × {0} × {0} × H × · · · × {0} × {0} × H × H:

If �= 0,

N((D − U)−1L) ⊃ {0} × L2(T0; T1; U ) × {0} × L2(T1; T2; U ) × H

× · · · × {0} × L2(TNt−1; TNt ; U ) × H × H:

Proof. The third equation (21b) implies that all terms in (21b) involving / are zero. This
proves (i).

The ;rst assertion in (ii) follows immediately from the fact that all column blocks in the operator
L corresponding to Qu 0 Qpi, i=1; : : : ; Nt , are equal to zero (cf. Fig. 1). If �=0, then all column blocks
in the operator L corresponding to Qu i; Qpi+1, i = 0; : : : ; Nt − 1, are equal to zero (cf. Fig. 1).

Our discussions in Section 4.2.1 allow us to formulate the backward GS method as follows:

Computation of xk+1 = (D − U)−1(b+ Lxk):

If �¿ 0 solve (23a); (23b) for i = Nt − 1:

Compute QpNt = �( QyNt − yNt−1(TNt)):

For i = Nt − 1; : : : ; 1:

If �¿ 0 solve (23a); (23b) with i replaced by i − 1

Solve (24) (or (23)):

Set Qy i+1 = yi(Ti+1); Qpi = pi(Ti) + �( Qy i − yi−1(Ti)):

(If i = 0; only Qy 1; Qu 0 are computed:) (28)
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In the backward GS method with �= 0, the adjoints are continuous in time in the sense

pi(Ti+1) = Qpi+1 = pi+1(Ti+1); i = 0; : : : ; Nt − 1:

The states, however, are in general discontinuous at a given iteration of the backward GS method.

4.2.4. Connection between the GS iteration and instantaneous control
Our presentation of the forward GS method (26) now allows for a di9erent interpretation of

instantaneous control methods in their simplest form. If one step of the forward GS method (26)
with starting value Qy i =0, Qu i =0, Qpi =0, i=1; : : : ; Nt , is applied, then problem (24) to be solved in
the ith substep of the forward GS method is identical to the original optimal control problem (1),
(2) restricted to (Ti; Ti+1) with initial conditions y(Ti) = Qy i. Thus, instantaneous control methods
are equivalent to one step of the forward GS method (26) with starting value Qy i = 0, Qu i = 0,
Qpi = 0, i = 1; : : : ; Nt . If more than one GS iteration is performed, then the objective function term
〈yi(Ti+1); Qpi+1 +/(yi(Ti+1)− Qy i+1)〉H in (26) allows to propagate information from the time interval
[Ti+1; T ] backward to the time interval [Ti; Ti+1] via the adjoint Qpi+1 and the state Qy i+1, which are
both associated with [Ti+1; Ti+2].

As we have mentioned in the introduction, the instantaneous control methods applied in the
literature [7,13,14,22–24] are somewhat di9erent in that they may use a receeding time horizon,
they use a di9erent time-subinterval objective function, they use inexact solutions of subproblems
(24), and they are applied to nonlinear problems. Moreover, ‘convergence’ of the instantaneous
control approaches in [7,13,14,22–24] means usually that an objective function evaluated at time T
is suBciently small. Inexact subproblem (24) solves can be integrated into our formulation and our
approach can be extended to nonlinear problems (although in more than one way, see Section 6).
However, our ;nal time T is ;xed. Thus, our interpretation of instantaneous control as one iteration
of the GS method can only be applied to explain the behavior of instantaneous control after the ;nal
time T is determined. If the GS method converges, which is often not the case (see next section)
and for which no suBcient conditions exist for our applications, then convergence means that the
states Qy i, controls Qu i, and adjoints Qpi, i=1; : : : ; Nt , converge to the optimal states y∗(Ti), the optimal
controls u∗|(Ti;Ti+1), and the optimal adjoints y∗(Ti), i = 1; : : : ; Nt , respectively. This is di9erent from
the notion of convergence used in instantaneous control. It also needs to be re-emphasized that since
the time horizon T in instantaneous control is not ;xed a-priori, instantaneous control techniques
are not intended for use in an open-loop control context, which is the basis for our time-domain
decomposition techniques. Therefore, a precise comparison between existing instantaneous control
techniques and our approach is impossible.

4.3. GS preconditioners

Even if the GS method converges, the convergence is rather slow. Therefore, we propose to use
the GS method as a preconditioner in a Krylov subspace method. Let

A =M − N;

where M = D − L in the forward GS method, M = D − U in the backward GS method, and
M=(D−L)D−1(D−U) in the forward–backward GS method (see, e.g., [19,35]). Left preconditioning
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with the preconditioner M means that we apply a Krylov subspace method to the system

(I − M−1N)x =M−1Ax =M−1b: (29)

The application of a Krylov subspace method to the preconditioned system requires the computation of

(I − M−1N)x − M−1b= x − M−1(Nx + b)

with given x and, except in the initial iteration, b = 0. The computation of M−1(Nx + b) for the
forward, backward and forward–backward GS method can be performed using (26), (28). If b= 0,
then (26), (28) have to be executed with Qy 0 = 0; f̃ j = 0; z1; j = 0; z2 = 0 in (23) and (24).

4.4. Parallelism and hierarchical GS

Let � = 0. In the forward and backward GS sweep the solution Qy i+1; Qu i; Qpi of the system (21b)
depends only on Qy j+1; Quj; Qpj with j= i±1. Thus, we can solve in parallel the diagonal block systems
(22) corresponding to even indices i and then we can solve in parallel the diagonal block systems
(22) corresponding to odd indices i. This corresponds to a symmetric block permutation of system
(22), that groups the blocks with even indices and the ones with odd indices. This approach is
completely analogous to the red–black-ordering of linear systems arising from the discretization of
PDEs. Of course, since the GS method depends on the ordering of the system, the red–black-ordering
of (22) will inOuence the convergence behavior of the GS method.
The optimal control problems (24) corresponding to the block diagonal systems in (22) are of the

same type as the original problem (1), (2). Hence, the solution approach discussed in this section
can also be applied for the solution of the block diagonal systems in (22).

5. Numerical experiments

5.1. Neumann control of the one-dimensional heat equation

We consider the minimization problem

min
1
2

∫ T

0
u2(t) dt +

�1
2

∫ T

0

∫ b

a
(y(t; x) − z1(t; x))2 dx dt +

�2
2

∫ 1

0
(y(T; x) − z2(x))2 dx

governed by the one-dimensional linear heat equation

9
9t y(t; x) − 92

9x2 y(t; x) = f(t; x); t ∈ (0; T ); x∈ (0; 1);

9
9x y(t; 0) = u(t); t ∈ (0; T );

9
9x y(t; 1) = r(t); t ∈ (0; T );

y(0; x) = y0(x); x∈ (0; 1): (30)

We set H = L2(0; 1), V = H 1(0; 1), U = L2(0; T ), and Z = ZT = L2(a; b).



M. Heinkenschloss / Journal of Computational and Applied Mathematics 173 (2005) 169–198 189

Table 1
Problem speci;cations

Case �1 �2 [a; b]

1 103 103 [0; 1]
2 103 0 [0; 1]
3 103 0 [0:7; 1]
4 0 103 [0; 1]

This is a small example, that allows us to explore the spectra of the GS iteration matrices
numerically.

For the spatial discretization we use piecewise linear ;nite elements on a uniform grid xj =
(j − 1)=(nx − 1), j = 1; : : : ; nx. The observations z1(t; ·), t ∈ [0; T ], and z2 are replaced by their
interpolations. For the discretization in time we use the backward Euler method with step size 1=nt .
We use uniform time subintervals [Ti; Ti+1] of length 1=Nt = k=nt . In all cases nx=11, nt =30. Other
problem parameters are speci;ed in Table 1. The right-hand side, the given boundary data, and the
initial conditions are chosen to be

f(t; x) = (462(1 − e−t) + e−t) sin(26x); r(t) = 26(1 − e−t); y0(x) = 0:

These data are chosen so that if u= r, then y(t; x)=sin(26x)(1−e−t) solves the state equation (30).
The desired data are z1 = 1 and z2 = 1.

Cases 3 and 4 are expected to be more diBcult for the GS (or the instantaneous control) method,
since the observation region is on the right-hand side of the spatial interval, whereas control is
applied at x = 0 (case 3), or because only ;nal time observations are present, which need to be
‘transmitted’ to the control over the entire time horizon (case 4). Table 2 shows the spectral radii
of the forward GS iteration matrices M−1N = (D − L)−1U in Fig. 1 for varying time subdomains.
We use /= �= 0. This table shows that the GS method alone rarely converges and that even if it
converges the convergence tends to be slow, since the spectral radius of the iteration matrix tends
to be close to one.

As Table 2 shows, the GS method fails to converge most of the time. However, a look at the
spectrum of the GS iteration matrices M−1N for this example reveals that, while the largest absolute
eigenvalue is usually greater than one, the absolute eigenvalues tend to go to zero rather fast. Fig. 3
shows the absolute eigenvalues for several GS iteration matrices for case 4 (again with �= /= 0).
The corresponding plots for cases 1–3 were very similar and are not shown.

Table 2
Spectral radii

Nt Case 1 Case 2 Case 3 Case 4

3 4:27e − 1 3:97e − 1 2:83e + 0 1:94e + 0
10 6:50e − 1 5:02e − 1 2:20e + 0 3:88e + 0
15 7:27e − 1 6:18e − 1 1:78e + 0 2:78e + 0
30 1:22e + 0 7:83e − 1 1:35e + 0 5:09e + 0
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Fig. 3. Absolute eigenvalues of the forward (F), backward (B), and forward–backward (FB) GS Iteration matrices for
Case 4.

For our discretization, the sizes of Qy i, Qpi are nx, the size of Qu i is nt=Nt . Theorems 7, 8 guarantee
that at least Ntnx + nt eigenvalues of the forward GS and backward GS iteration matrices are equal
to zero. Hence, at most Ntnx eigenvalues of the forward GS and backward GS iteration matrices
are nonzero. This is reOected in the plots of Fig. 3. There are few qualitative di9erences in the
performance of forward GS and backward GS. It is remarkable, however, that the eigenvalues of
the forward–backward (FB) GS iteration matrices decay fast, even if the time subinterval length is
decreased, i.e., Nt is increased. The intuitive explanation for this observation is that in the forward
sweep problem information is propagated from t = 0 to T via the state, whereas in the backward
sweep problem information is propagated from t = T to 0 via the adjoint. Since the FB-GS method
combines both sweeps, information exchange is faster. A theoretical justi;cation for the fast de-
cay of eigenvalues is still missing. Because it is not clearly visible, we remark that the spectral
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Fig. 4. Convergence history of GMRES (Example 1, case 4, Nt = 3; 10; 15; 30).

radii of all GS iteration matrices whose absolute eigenvalues are portrayed in Fig. 3 are larger
than one.

If the eigenvalues of the GS iteration matrix M−1N cluster at zero, this means that the eigen-
values of A preconditioned with that GS method cluster at one (see [16]). Since roughly speaking
the convergence of Kryov subspace methods tends to be the better the more the eigenvalues of the
preconditioned system matrix cluster (in the case of GMRES see, e.g., [10,39]), it seems attrac-
tive to use the GS methods as preconditioners. We use forward (F), backward (B) and forward
–backward (FB) GS as a preconditioner in GMRES. The GMRES iteration is truncated if the
residual norm is less than 10−7 or if 100 iterations are performed. The results for case 4 are doc-
umented in Fig. 4. The numerical results for the other cases were similar and are therefore not
displayed. We observe that GMRES applied to (22) fails to converge within the allowed number of
iterations. GMRES with F-GS or B-GS preconditioner converges. However, we note that the number
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Fig. 5. Convergence history of GMRES(5) (Example 1, case 4, Nt = 3; 10; 15; 30).

of iterations increases as the number of time-subintervals increases. This is expected from Fig. 3.
Fig. 3 shows that the absolute eigenvalues of the F-GS or B-GS iteration matrix decrease the slower
the more time-subintervals we have. For the F-GS or B-GS preconditioner the number of precondi-
tioned GMRES iterations seems to increase roughly linear with the number Nt of time-subintervals
used in the preconditioner. If the FB-GS preconditioner is used, however, the number of precondi-
tioned GMRES iterations is much lower than in all other cases and the number increases very little
when the number Nt of time-subintervals increases. Thus, the FB-GS preconditioner is preferable,
even though one preconditioning step is twice as expensive as the F-GS or the B-GS preconditioning
step.

The amount of storage required in GMRES grows linearly with the number of iterations. Since
for the target applications x is very large and storage is a severe bottleneck, we also use restarted
GMRES(5). Without preconditioning GMRES(5) essentially stagnated; we do not show the results.
The performance of GMRES(5) with left backward GS preconditioning is very similar to that of
GMRES(5) with left forward GS preconditioning. Therefore, Fig. 5 contains only results for the
latter. Fig. 5 shows that unless the number of subintervals are very small, GMRES(5) with the
F-GS preconditioner fails to converge. In case of the FB-GS preconditioner the iterations for Nt =
3; 10; 15 convergence in ;ve iterations and are therefore not e9ected by the restart. For Nt = 30,
the restart slows down the rate of decrease of the residual norms, but GMRES(5) converges. For
comparison, we also add the results obtained with BiCGStab, instead of GMRES. The storage
requirements and the amount of work per iteration is constant in BiCGStab, but BiCGStab requires
two matrix-vector products and two applications of the preconditioner per iteration. Fig. 6 shows
that GMRES(5) combined with the FB-GS preconditioner is superior to BiCGStab combined with
the FB-GS preconditioner. If only F-GS or B-GS preconditioning is used, BiCGStab converges, but
the number of iterations required increases linearly with the number NT of time intervals.
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Fig. 6. Convergence history of BiCGStab (Example 1, case 4, Nt = 3; 10; 15; 30).

5.2. Dirichlet control of the two-dimensional heat equation

Our second example is

min
1
2

∫ T

0
‖u2(t; ·)‖2L2(7) dt +

�1
2

∫ T

0
‖(y(t; ·) − z1(t; ·)‖2L2(') dt +

�2
2

‖y(T; ·) − z2‖2−1

s:t:
9
9t y(t; x) − $Py(t; x) = f(t; x); t ∈ (0; T ); x∈';

y(t; x) = u(t; x); t ∈ (0; T ); x∈70;

y(t; x) = 0; t ∈ (0; T ); x∈ 9' \ 70;

y(0; x) = y0(x); x∈': (31)
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Fig. 7. Convergence history of GMRES (Example 2, Nt = 4; 8; 16).

Here '=(0; 1)2 and ‖ · ‖−1 denotes the norm in H−1('), which de;ned by ‖y‖−1 =‖∇8‖L2 , where
8∈H 1

0 (') is the solution of
∫
' ∇8 · ∇9 = 〈y; 9〉H−1×H 1

0
for all 9∈H 1

0 ('). The objective function
with �1 = 0 is an approximate controllability problem studied in [11,18, Section 2]. For u∈U =
L2(0; T ;L2(9')) problem (31) has a unique solution y in L2(0; T ;L2('))∩C0([0; T ]; (H 1('))∗) with
yt in L2(0; T ; (H 2('))∗) (see [18, Section 2]). While this optimal control problem is well posed,
it does not ;t into the framework of Section 2. Therefore, we apply our domain decomposition
based methods to the semi-discrete problem in which we ;rst discretize optimal control problem in
space.

Our spatial discretization of the problem follows [11,18, Section 2.6], who use linear ;nite
elements on a uniform triangulation which is constructed by dividing ' into n2x squares of equal
size and then cutting each square from the lower left to the top right into two triangles. In our
computations nx = 16. We use the backward Euler in time using nt = kNt = 32 time steps.
Our problem data are those of the second test problem in [18, p. 182]. In particular, 70 = (0; 1)×

{0}, $=1=(262), z1(t; x1; x2)=min{x1; x2; 1− x1; 1− x2}, z2(x1; x2)=min{x1; x2; 1− x1; 1− x2}, f=0,
and y0=0. We consider two cases. In case 1 we set �1=�2=105 and in case 2 we set �1=0; �2=105.

Because of the problem size we did not compute the eigenvalues of the GS iteration matrices.
Instead, we only solved (22) using GMRES with left preconditioning. The preconditioned GMRES
iteration was truncated when the residual norm was less than 10−7. Without preconditioning or even
with forward GS or backward GS preconditioning the preconditioned GMRES did not converge
within 100 iterations. The GMRES iterations with forward–backward GS preconditioning are docu-
mented in Fig. 7. For case 1 we observe at most a slight increase in GMRES iterations, when the
number of time-subdomains is increased. For case 2, which is the problem in which only end-time
observations are present, and which is signi;cantly more ill-conditioned, the number of GMRES
iterations seems to increase roughly linearly with the number of time-subdomains. The total number
of preconditioned GMRES iterations, however, still remains reasonably small.
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Fig. 8. Convergence history of GMRES(5) (Example 2, Nt = 4; 8; 16).
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Fig. 9. Convergence history of BiCGStab (Example 2, Nt = 4; 8; 16).

Figs. 8 and 9 show the convergence plots for GMRES(5) and BiCGStab, respectively. For case 1,
the number of iterations for GMRES(5) and BiCGStab with forward–backward GS preconditioning
is almost independent of the number time subintervals. In terms of operator-vector products, all three
methods, GMRES, GMRES(5) and BiCGStab are comparable. In case 2, the convergence properties
of GMRES(5) deteriorate signi;cantly when the number Nt of time subintervals is increased and
it fails to converge within the maximum number of iterations, 100, for Nt = 16. In case 2, the
number of BiCGStab, roughly grows linearly with Nt . In terms of operator-vector products GMRES
outperforms BiCGStab by a factor of 2–3.5.
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6. Conclusions and outlook

We have introduced a class of time-domain decomposition based methods for the solution of
distributed linear quadratic optimal control problems (1), (2). These methods are derived from a
multiple shooting-based reformulation of the distributed linear quadratic optimal control problem as
a DTOC problem in Hilbert space. The optimality conditions for this DTOC problem lead to a linear
system with block structure, which motivates the application of block GS methods for its solution.
If the applications of the GS methods are stated in the framework of the original problem (1), (2),
then they reveal an interesting connection between instantaneous control methods and the forward GS
method. Instantaneous control methods can be interpreted as the application of one step of the forward
GS method with starting values zero. However, our formulation also leads to di9erent iterations, such
as forward GS, backward GS, and forward–backward GS. Since convergence of the GS methods
cannot be guaranteed for our class of problems, we propose to use them as preconditioners in a
Krylov-subspace method. Numerical results show that the forward–backward GS preconditioner is
vastly superior to forward GS and backward GS. Other orderings for the GS method, especially red
–black orderings (Section 4.4) are interesting because they allow a parallel solution of the problem.
We will explore this approach in the future.

Most of the material in Sections 3 and 4 can be generalized to problems with nonlinear state
equations or nonquadratic objective functions. It can be shown that this leads to a nonlinear GS
method and we can interpret instantaneous control methods as the application of one step of the
forward nonlinear GS method with starting values zero. The nonlinear GS method has rather stringent
convergence requirements (see [33]) and in our context we do not expect convergence in most
cases. Moreover, for nonconvex problems we cannot simply solve the ;rst-order necessary optimality
conditions. Alternatively, we may apply Newton or sequential quadratic programming type methods.
In each step of these methods a linear quadratic problem of type (1), (2) has to be solved and the
techniques of this paper can be applied for this task.
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