This page contains a sampling of some of the research projects which have utilized the ARPACK software package.

o Large Scale SVD for Image Reconstruction
o Large Scale SVD for Molecular Dynamics Simulations
o Stability Analysis of Crystal Growth
o Reactive Scattering

o Large Scale SVD for 3-D Reconstruction of Images

Large Scale SVD for 3-D Reconstruction of Images from 2-D Projections Through Analysis of Projections from Electron Micrographs

We are currently working with Dr. Wah Chiu and his colleagues at the Baylor College of Medicine to increase the efficiency of their 3-dimensional image reconstruction software. Their project involves the identification and classification of 2-dimensional electron micrograph images of biological macromolecules and the subsequent generation of the corresponding high resolution 3-D images. The underlying algorithm is based upon the statistical technique of principle component analysis. An SVD of the data set is performed to extract the largest singular vectors which are then used in the classification procedure.

There are typically several thousand particle images in a working set, and in theory, each one characterizes a different viewing angle of the molecule. Once each image is aligned and processed to eliminate as much noise as possible the viewing angle must be determined. The set is then Fourier transformed, and each transformed image is added to a Fourier composite in a position appropriate to this angle. The composite is then transformed back to yield a high resolution 3-D image.

If we consider each 2-D image to be a vector in N dimensional space, where N is the number of pixels, we know that we can describe each image as a weighted sum of the singular vectors of the space defined by the set. The distribution of the images in this N dimensional coordinate system is then used to break up the set into classes of viewing angles, and the images in a class are averaged. Determining the left singular vectors of the space of images is presently the computational bottleneck of the process. As is true in many applications, the classification can be accomplished with relatively few of the singular vectors corresponding to the largest singular values. The initial effort has been to replace the existing algorithm for computing the SVD with ARPACK. Use of ARPACK has increased the speed of the anaylsis by a factor of 7 on a Iris workstation and in addition has increased the accuracy of the results dramatically.

Research Project Web Site

( where to view the pretty pictures! )

o Herpes Simplex Virus

 Large Scale SVD for Molecular Dynamics Simulations

Large Scale SVD for Data Compression and Analysis of Molecular Dynamics Simulations

Knowledge of the motion of proteins is important to understanding their function. Proteins are not rigid static structures, but exist as a complex dynamical ensemble of closely related substates. It is the dynamics of the system that permit transitions between these conformational substates and there is evidence that this dynamic behavior is also responsible for the kinetics of ligand entry and ligand binding in systems such as myoglobin.

X-ray crystallography is able to provide high resolution maps of the average structure of a protein, but this structure only represents a static conformation. Molecular dynamics, which solves the Newtonian equations of motion for each atom, is not subject to such approximations and can be used to model the range of motions available to the protein on short (nanosecond) time-scales. Time-averaged refinement extends the molecular dynamics concept, restraining the simulation by requiring the time-averaged structure to fit the observed X-ray data. With this methodology, an ensemble of structures that together are consistent with the dynamics force-fields and the observed data is generated. This ensemble represents a range of conformations that are accessible to proteins in the crystalline state.

One difficulty with time-averaged refinements is the plethora of generated conformations. No longer is one structure given as the model, rather thousands of structures collectively describe the model. Although it is possible to analyze this data directly by manually examining movies of each residue in the simulation until some pattern emerges, this is not a feasible approach. Nor is it feasible to watch an animation of the entire protein and discern the more subtle global conformation states that may exist. If this ensemble of conformations is thought of as a matrix however, then anayltical tools from linear algebra can be used. Here the tool of choice is the SVD. The SVD can be used for both compressing the data required to represent the simulation and for locating interesting functional behavior.

Research Project Web Site

o Protein Substate Modeling and Identification Using the SVD

o Stability Analysis of Crystal Growth

Image that a piece of crystal is placed in some undercooled liquid. As the crystal freezes, the interface between the solid and the liquid starts to change. The solid phase grows rapidly from the crystal by sending out branching fingers. This phenomenon is also called dendritic solidification , and is responsible for the complicated interface observed in snowflakes.

Both analytical and numerical solutions of the above problem are difficult to obtain because of the moving boundary. We are interested in analyzing the stability of a well known stationary solution that corresponds to a simple parabolic shaped moving front. The standard techniques of linear stability analysis lead to an eigenvalue problem. In particular, the rightmost eigenvalues of some convection diffusion operator are of interest. The stationary solution is said to be stable if there is no eigenvalue of positive real part.

Research Project Web Site

o Crystal Growth

o Reactive Scattering

Reactive Scattering( RS ) yields state-to-state information for chemical reactions providing the most detailed approach to the study of chemical reactivity. Atom-diatom (e.g. 3 atom) reactions of the type

A + BC < - > AB + C

are central in modeling of combustion systems, atmospheric chemistry, and gas-phase synthesis in interstellar clouds. Some examples are HeH2+, HO2, LiHF, ClO2, FH2, NeH2+

RS calculations involve solving the Schroedinger equation for nuclear motion in an electronic field. In order to treat all nuclear arrangements equally (6 permutations of ABC), Adiabatically adjusting, Principal axes, Hyperspherical ( APH ) coordinates are employed.

The resulting Partial Differential Equation( PDE ) contains angles and hyperradius and is approximately split into a PDE involving angles only and ODE (Ordinary Differential Equation) involving hyperradius. This approach is similar to method of lines. The PDE depends parametrically on hyperradius which defines sectors within which hyperradius varies slowly, and is therefore approximately constant. The PDE solution on each sector is independent of solution on any other sector, thus providing obvious opportunity for parallel processing.

The ODE in hyperradius is the well-known Riccati equation which is solved by log-derivative propagation method for each scattering energy. This method is chosen because a solution is needed for large radius limit only.

Discretization of the PDE is achieved by simplifying the potential energy part of the Hamiltonian to be diagonalized.Thus, the angular momentum eigenfunction basis of spherical harmonics is transformed into Discrete Variable Representation( DVR ). This discretization is similar to collocation method. The original PDE is thereby transformed into an algebraic eigenvalue problem of real symmetric matrix which is nicely solvable by ARPACK. The matrix diagonalization step is frequently the most time consuming in the whole RS calculation. The order of our matrices are typically at least in tens of thousands and can scale up to millions.

Research Project Web Site

o Reactive Scattering