Stokes Preconditioning on a GPU

Matthew Knepley1,2, Dave A. Yuen, and Dave A. May

1Computation Institute
University of Chicago

2Department of Molecular Biology and Physiology
Rush University Medical Center

AGU ’09
San Francisco, CA December 15, 2009
Collaborators

- **Prof. Dave Yuen**
 - Dept. of Geology and Geophysics, University of Minnesota

- **Dr. David May**, developer of BFBT (in PETSc)
 - Dept. of Earth Sciences, ETHZ

- **Felipe Cruz**, developer of FMM-GPU
 - Dept. of Applied Mathematics, University of Bristol

- **Prof. Lorena Barba**
 - Dept. of Mechanical Engineering, Boston University
Outline

1. 5 Slide Talk
2. What are the Problems?
3. Can we do Better?
4. Advantages and Disadvantages
5. What is Next?
BFBT preconditions the Schur complement using

\[S_b^{-1} = L_p^{-1} G^T KGL_p^{-1} \] \hspace{1cm} (1)

where \(L_p \) is the Laplacian in the pressure space.
The current BFBT code is limited by

- **Bandwidth constraints**
 - Sparse matrix-vector product
 - Achieves at most 10% of peak performance

- **Synchronization**
 - GMRES orthogonalization
 - Coarse problem

- **Convergence**
 - Viscosity variation
 - Mesh dependence
Use a **Boundary Element Method**, for the Laplace solves in BFBT, accelerated by **FMM**.
Missing Pieces

- **BEM discretization and assembly**
 - Matrix-free operator application using the Fast Multipole Method
 - Overcomes bandwidth limit, 480 GF on an NVIDIA 1060C GPU
 - Overcomes coarse bottleneck by overlapping direct work

- **Solver for BEM system**
 - Same total work as FEM due to well-conditioned operator
 - Possibility of multilevel preconditioner (even better)

- **Interpolation between FEM and BEM**
 - Boundary interpolation just averages
 - Can again use FMM for interior
Direct Fast Method for Variable-Viscosity Stokes

- Complexity not currently precisely quantified
 - We would like a given number of flops/digit of accuracy

- Brute Force
 - Use BEM to compute layers between regions of constant viscosity
 - Better conditioned, but not direct

- Elegant method should be possible
 - The operator is pseudo-differential
 - “Kernel-independent” FMM exists
Direct Fast Method for Variable-Viscosity Stokes

- Complexity not currently precisely quantified
 - We would like a given number of flops/digit of accuracy

- Brute Force
 - Use BEM to compute layers between regions of constant viscosity
 - Better conditioned, but not direct

- Elegant method should be possible
 - The operator is pseudo-differential
 - “Kernel-independent” FMM exists
Direct Fast Method for Variable-Viscosity Stokes

- Complexity not currently precisely quantified
 - We would like a given number of flops/digit of accuracy

- Brute Force
 - Use BEM to compute layers between regions of constant viscosity
 - Better conditioned, but not direct

- Elegant method should be possible
 - The operator is pseudo-differential
 - "Kernel-independent" FMM exists
Outline

1. 5 Slide Talk

2. What are the Problems?
 - Bandwidth
 - Synchronization
 - Convergence

3. Can we do Better?

4. Advantages and Disadvantages

5. What is Next?
The current BFBT code is limited by

- Bandwidth constraints
- Synchronization
- Convergence
Outline

What are the Problems?

- Bandwidth
- Synchronization
- Convergence
Bandwidth

Small bandwidth to main memory can limit performance

- Sparse matrix-vector product
- Operator application
- AMG restriction and interpolation
STREAM Benchmark

Simple benchmark program measuring **sustainable** memory bandwidth

- Protoypical operation is Triad \((WAXPY)\): \(w = y + \alpha x\)
- Measures the memory bandwidth bottleneck (much below peak)
- Datasets outstrip cache

<table>
<thead>
<tr>
<th>Machine</th>
<th>Peak (MF/s)</th>
<th>Triad (MB/s)</th>
<th>MF/MW</th>
<th>Eq. MF/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matt’s Laptop</td>
<td>1700</td>
<td>1122.4</td>
<td>12.1</td>
<td>93.5 (5.5%)</td>
</tr>
<tr>
<td>Intel Core2 Quad</td>
<td>38400</td>
<td>5312.0</td>
<td>57.8</td>
<td>442.7 (1.2%)</td>
</tr>
<tr>
<td>Tesla 1060C</td>
<td>984000</td>
<td>102000.0*</td>
<td>77.2</td>
<td>85000.0 (0.8%)</td>
</tr>
</tbody>
</table>

Table: Bandwidth limited machine performance

http://www.cs.virginia.edu/stream/
What are the Problems?

Analysis of Sparse Matvec (SpMV)

Assumptions
- No cache misses
- No waits on memory references

Notation
- m Number of matrix rows
- nz Number of nonzero matrix elements
- V Number of vectors to multiply

We can look at bandwidth needed for peak performance

$$\left(8 + \frac{2}{V}\right) \frac{m}{nz} + \frac{6}{V} \text{ byte/flop}$$ \hspace{1cm} (2)

or achieveable performance given a bandwith BW

$$\frac{Vnz}{(8V + 2)m + 6nz} BW \text{ Mflop/s}$$ \hspace{1cm} (3)

Towards Realistic Performance Bounds for Implicit CFD Codes, Gropp, Kaushik, Keyes, and Smith.
What are the Problems?

Bandwidth

Improving Serial Performance

For a single matvec with 3D FD Poisson, Matt’s laptop can achieve at most

\[
\frac{1}{(8 + 2) \frac{1}{7} + 6} \text{bytes/flop}(1122.4 \text{ MB/s}) = 151 \text{ MFlops/s},
\]

which is a dismal 8.8% of peak.

Can improve performance by

- Blocking
- Multiple vectors

but operation issue limitations take over.
Improving Serial Performance

For a single matvec with 3D FD Poisson, Matt’s laptop can achieve at most

\[
\frac{1}{(8 + 2) \frac{1}{y} + 6} \text{ bytes/flop}(1122.4 \text{ MB/s}) = 151 \text{ MFlops/s}, \quad (4)
\]

which is a dismal 8.8% of peak.

Better approaches:

- Unassembled operator application (Spectral elements, FMM)
 - N data, N^2 computation
- Nonlinear evaluation (Picard, FAS, Exact Polynomial Solvers)
 - N data, N^k computation
What are the Problems?

- Bandwidth
- Synchronization
- Convergence
Synchronization penalties can come from

- Reductions
 - GMRES orthogonalization
 - More than 20% penalty for PFLOTRAN on Cray XT5

- Small subproblems
 - Multigrid coarse problem
 - Lower levels of Fast Multipole Method tree
2 What are the Problems?
 - Bandwidth
 - Synchronization
 - Convergence
Convergence of the BFBT solve depends on
- Viscosity contrast (slightly)
- Viscosity topology
- Mesh

Convergence of the AMG Poisson solve depends on
- Mesh
Outline

1. 5 Slide Talk
2. What are the Problems?
3. Can we do Better?
 - BEM Formulation
 - BEM Solver
 - Interpolation
4. Advantages and Disadvantages
5. What is Next?
Use a **Boundary Element Method**, for the Laplace solves in BFBT, accelerated by **FMM**.
Missing Pieces

- BEM discretization and assembly
- Solver for BEM system
- Interpolation between FEM and BEM
Can we do Better?

- BEM Formulation
- BEM Solver
- Interpolation
The Poisson problem

\[\Delta u(x) = f(x) \quad \text{on } \Omega \]
\[u(x) \big|_{\partial \Omega} = g(x) \]
The Poisson problem (Boundary Integral Equation formulation)

\[C(\mathbf{x})u(\mathbf{x}) = \int_{\partial \Omega} F(\mathbf{x}, \mathbf{y})g(\mathbf{y}) - G(\mathbf{x}, \mathbf{y}) \frac{\partial u(\mathbf{y})}{\partial n} \, dS(\mathbf{y}) \]

(5)

\[G(\mathbf{x}, \mathbf{y}) = -\frac{1}{2\pi} \log r \]

(6)

\[F(\mathbf{x}, \mathbf{y}) = \frac{1}{2\pi r} \frac{\partial r}{\partial n} \]

(7)
Restricting to the boundary, we see that

\[
\frac{1}{2} g(x) = \int_{\partial \Omega} F(x, y) g(y) - G(x, y) \frac{\partial u(y)}{\partial n} dS(y)
\]

(5)
Discretizing, we have

\[-Gq = \left(\frac{1}{2} I - F \right) g\] \hspace{1cm} (5)
Boundary Element Method

Now we can evaluate u in the interior

$$u(x) = \int_{\partial \Omega} F(x, y)g(y) - G(x, y)\frac{\partial u(y)}{\partial n} dS(y)$$

(5)
Or in discrete form

\[u = Fg - Gq \]

(5)
The sources in the interior may be added in using superposition

\[
\frac{1}{2} g(x) = \int_{\partial \Omega} \left[F(x, y) g(y) - G(x, y) \left(\frac{\partial u(y)}{\partial n} - f \right) \right] dS(y)
\] (5)
Can we do Better?

- BEM Formulation
- BEM Solver
- Interpolation
The solve has two pieces:

- **Operator application**
 - Boundary solve
 - Interior evaluation
 - Accomplished using the Fast Multipole Method

- **Iterative solver**
 - Usually GMRES
 - We use PETSc
Using the Fast Multiple Method, the Green's functions (F and G) can be applied:

- in $O(N)$ time
- using small memory bandwidth
- in the interior and on the boundary
- with much higher serial and parallel performance
Fast Multipole Method

FMM accelerates the calculation of the function:

\[\Phi(x_i) = \sum_j K(x_i, x_j)q(x_j) \]

(6)

- Accelerates \(O(N^2) \) to \(O(N) \) time
- The kernel \(K(x_i, x_j) \) must decay quickly from \((x_i, x_i)\)
 - Can be singular on the diagonal (Calderón-Zygmund operator)
- Discovered by Leslie Greengard and Vladimir Rohklin in 1987
- Very similar to recent wavelet techniques
Fast Multipole Method

FMM accelerates the calculation of the function:

$$\Phi(x_i) = \sum_j \frac{q_j}{|x_i - x_j|}$$ \hspace{1cm} (6)

- Accelerates $O(N^2)$ to $O(N)$ time
- The kernel $K(x_i, x_j)$ must decay quickly from (x_i, x_i)
 - Can be singular on the diagonal (Calderón-Zygmund operator)
- Discovered by Leslie Greengard and Vladimir Rohklin in 1987
- Very similar to recent wavelet techniques
PetFMM CPU Performance

Strong Scaling

Can we do Better?

BEM Solver

ME Initialization
Upward Sweep
Downward Sweep
Evaluation
Load balancing stage
Total time

Time [sec]

Number of processors

ME Initialization
Upward Sweep
Downward Sweep
Evaluation
Load balancing stage
Total time

2 4 8 16 32 64 128 256

M. Knepley (UC)
Can we do Better?

PetFMM Load Balance

- uniform 4ML8R5
- uniform 10ML9R5
- spiral 1ML8R5
- spiral w/space-filling 1ML8R5
GPU Performance

- In our C++ code on a CPU, M2L transforms take 85% of the time
 - This does vary depending on N

- New M2L design was implemented using PyCUDA
 - Port to C++ is underway

- We can now achieve 500 GF on the NVIDIA Tesla
 - Previous best performance we found was 100 GF

- We will release PetFMM-GPU in the new year
GPU Performance

- In our C++ code on a CPU, M2L transforms take 85% of the time
 - This does vary depending on N

- New M2L design was implemented using PyCUDA
 - Port to C++ is underway

- We can now achieve 500 GF on the NVIDIA Tesla
 - Previous best performance we found was 100 GF

- We will release PetFMM-GPU in the new year
In our C++ code on a CPU, M2L transforms take 85% of the time. This does vary depending on N.

New M2L design was implemented using PyCUDA.
- Port to C++ is underway.

We can now achieve 500 GF on the NVIDIA Tesla.
- Previous best performance we found was 100 GF.

We will release PetFMM-GPU in the new year.
In our C++ code on a CPU, M2L transforms take 85% of the time
- This does vary depending on \(N \)

New M2L design was implemented using PyCUDA
- Port to C++ is underway

We can now achieve 500 GF on the NVIDIA Tesla
- Previous best performance we found was 100 GF

We will release PetFMM-GPU in the new year
PetFMM is an freely available implementation of the Fast Multipole Method
http://barbagroup.bu.edu/Barba_group/PetFMM.html

- Leverages PETSc
 - Same open source license
 - Uses Sieve for parallelism
- Extensible design in C++
 - Templated over the kernel
 - Templated over traversal for evaluation
- MPI implementation
 - Novel parallel strategy for anisotropic/sparse particle distributions
 - PetFMM—A dynamically load-balancing parallel fast multipole library
 - 86% efficient strong scaling on 64 procs
- Example application using the Vortex Method for fluids
- (coming soon) GPU implementation
Convergence

BEM Laplace operator is well-conditioned

- $\kappa = O(N_B) = O(\sqrt{N})$
 - Dijkstra and Mattheij

Thus the total work is in $O(N_B^2) = O(N)$

- Same as MG

Regular integral operators require only two multigrid cycles

- Multigrid of the 2nd kind by Hackbush
Can we do Better?

- BEM Formulation
- BEM Solver
- Interpolation
FEM \rightarrow BEM
- FEM boundary conditions can be directly used in BEM
- May require a VecScatter

FEM \leftarrow BEM
- BEM can evaluate the field at any domain point
- Cost is linear in the number of evaluations using FMM
- Can accommodate both
 - pointwise values, and
 - moments by quadrature
Outline

1. 5 Slide Talk
2. What are the Problems?
3. Can we do Better?
4. Advantages and Disadvantages
 - Bandwidth
 - Convergence
5. What is Next?
4 Advantages and Disadvantages
- Bandwidth
- Convergence
Advantages and Disadvantages

Bandwidth

Bandwidth and Serial Performance

- Provably low bandwidth
 - Shang-Hua Teng, SISC, 19(2), 635–656, 1998

- Key advantage over algebraic methods like FFT
 - Similar to wavelet transform

- Amenable to GPU implementation
 - Also highly concurrent
Advantages and Disadvantages

- Bandwidth
- Convergence
Advantages and Disadvantages

Convergence and Synchronization

- BEM matrices are better conditioned
 - However, FEM has better preconditioners
 - Without better preconditioners, might see more synchronization
 - Underexplored

- FMM can avoid bottleneck at lower levels
 - Overlap direct work with lower tree levels
 - Can provably eliminate bottleneck
Debatable Advantages

- Small memory
 - FEM can be done matrix-free

- Opens door to using Stokes operator for PC
 - We currently do not know what to do here
Outline

1. 5 Slide Talk
2. What are the Problems?
3. Can we do Better?
4. Advantages and Disadvantages
5. What is Next?
What is Next?

Direct Fast Method for Variable-Viscosity Stokes

- Complexity not currently precisely quantified
 - We would like a given number of flops/digit of accuracy

- Brute Force
 - Use BEM to compute layers between regions of constant viscosity
 - Better conditioned, but not direct

- Elegant method should be possible
 - The operator is pseudo-differential
 - “Kernel-independent” FMM exists
Direct Fast Method for Variable-Viscosity Stokes

- Complexity not currently precisely quantified
 - We would like a given number of flops/digit of accuracy

- Brute Force
 - Use BEM to compute layers between regions of constant viscosity
 - Better conditioned, but not direct

- Elegant method should be possible
 - The operator is pseudo-differential
 - “Kernel-independent” FMM exists
Direct Fast Method for Variable-Viscosity Stokes

- Complexity not currently precisely quantified
 - We would like a given number of flops/digit of accuracy

- Brute Force
 - Use BEM to compute layers between regions of constant viscosity
 - Better conditioned, but not direct

- Elegant method should be possible
 - The operator is pseudo-differential
 - “Kernel-independent” FMM exists