Computational Considerations for Magma Dynamics

Matthew Knepley and Tobin Isaac

Computational and Applied Mathematics
Rice University
Computation Institute
University of Chicago

Melt in the Mantle Workshop
Isaac Newton Centre
Cambridge University, UK February 19, 2016
Collaborators

Magma Dynamics Collaboration

Jed Brown

Richard Katz
Adaptive Mesh Refinement Collaboration

Toby Isaac
What am I going to talk about?

- Nonlinear Solvers for the Mechanical Model
- Discretization of the Mechanical Model
- Meshing for the Mechanical Model
What am I going to talk about?

- Nonlinear Solvers for the Mechanical Model
- Discretization of the Mechanical Model
- Meshing for the Mechanical Model
Why is this important?

- **Comparison** is essential for making informed algorithmic choices
- Comparison in a **single code** seems necessary
- Current codes make it difficult to compare meshes, discretizations, and multilevel solvers
Outline

1. Nonlinear Solvers
 - Problem Definition
 - Newton for pure FEM Formulation
 - Composition Strategies
 - Solvers for pure FEM Formulation
 - Solvers for FEM+FVM Formulation

2. Discretization

3. Conclusions

4. Non-asymptotic Convergence

5. AMR
Main Points

We can construct nonlinear solvers that are more robust than Newton.

We can construct nonlinear solvers that are more rapidly convergent than Newton.

Picard is never really acceptable.
Nonlinear Solvers

Main Points

We can construct nonlinear solvers that are more robust than Newton.

We can construct nonlinear solvers that are more rapidly convergent than Newton.

Picard is never really acceptable.
We can construct nonlinear solvers that are more robust than Newton.

We can construct nonlinear solvers that are more rapidly convergent than Newton.

Picard is never really acceptable.
Outline

1. Nonlinear Solvers
 - Problem Definition
 - Newton for pure FEM Formulation
 - Composition Strategies
 - Solvers for pure FEM Formulation
 - Solvers for FEM+FVM Formulation
Dimensional Formulation

\[\nabla p - \nabla \zeta_\phi (\nabla \cdot \vec{v}^S) - \nabla \cdot \left(2\eta_\phi \dot{\varepsilon}^S \right) = 0 \]

\[\nabla \cdot \left(-\frac{K_\phi}{\mu} \nabla p + \vec{v}^S \right) = 0 \]

\[\frac{\partial \phi}{\partial t} - \nabla \cdot (1 - \phi) \vec{v}^S = 0 \]
Closure Conditions

\[K_\phi = K_0 \left(\frac{\phi}{\phi_0} \right)^n \]

\[\eta_\phi = \eta_0 \exp \left(-\lambda (\phi - \phi_0) \right) \]

\[\zeta_\phi = \zeta_0 \left(\frac{\phi}{\phi_0} \right)^{-m} \]
Nondimensional Formulation

\[\nabla p - \nabla \left(\left(\frac{\phi}{\phi_0} \right)^{-m} \nabla \cdot \vec{v}^S \right) - \nabla \cdot \left(2e^{-\lambda(\phi-\phi_0)} \dot{\epsilon}^S \right) = 0 \]

\[\nabla \cdot \left(-\frac{R^2}{r_\zeta + 4/3} \left(\frac{\phi}{\phi_0} \right)^n \nabla p + \vec{v}^S \right) = 0 \]

\[\frac{\partial \phi}{\partial t} - \nabla \cdot (1 - \phi) \vec{v}^S = 0 \]
Nonlinear Solvers

Problem Definition

Initial and Boundary conditions

Initially

\[\phi = \phi_0 + A \cos(\vec{k} \cdot \vec{x}) \]

where

\[A \ll \phi_0 \]

and on the top and bottom boundary

\[K_\phi \nabla p \cdot \hat{n} = 0 \]

\[\vec{v}^S = \pm \frac{\gamma}{2} \dot{\hat{x}} \]
Mechanical Benchmarks

Benchmark 0: $\lambda = 0$
There is no porosity feedback, and the initial pattern is stably advected:

$$\vec{k}(t) = \vec{k}_0 \left(\hat{x} \sin \theta_0 + \hat{y} (\cos \theta_0 - t \sin \theta_0) \right)$$

Benchmark 1: $\lambda > 0$
The porosity feedback causes localization, with initial compaction rate:

$$C = \nabla \cdot \vec{v}_S \bigg|_{t=0} = \frac{A\lambda \phi_0 \sin(2\theta_0)}{r_\zeta + 4/3} \cos(\vec{k} \cdot \vec{x})$$
Initial Porosity
Initial Velocity
Outline

1. Nonlinear Solvers
 - Problem Definition
 - Newton for pure FEM Formulation
 - Composition Strategies
 - Solvers for pure FEM Formulation
 - Solvers for FEM+FVM Formulation
We will use simple Backward Euler:

\[
\nabla p^{k+1} - \nabla \left(\left(\frac{\phi^{k+1}}{\phi_0} \right)^{-m} \nabla \cdot \vec{v}^{k+1} \right) - \nabla \cdot \left(2e^{-\lambda(\phi^{k+1} - \phi_0)} \dot{\epsilon}^{k+1} \right) = 0
\]

\[
\nabla \cdot \left(-\frac{R^2}{r_{\zeta} + 4/3} \left(\frac{\phi^{k+1}}{\phi_0} \right)^n \nabla p^{k+1} + \vec{v}^{k+1} \right) = 0
\]

\[
\frac{\phi^{k+1} - \phi^k}{\Delta t} - \nabla \cdot (1 - \phi^{k+1}) \vec{v}^{k+1} = 0
\]
Begin with a Newton-Krylov solve with line search:

\[\mathcal{N} / K - L \text{ NRICH} \]

Optimal linear preconditioner in Rhebergen, Wells, Wathen, and Katz, SISC.
We can separate the Stokes-like solve from the porosity advection:

\[
\begin{align*}
 A \oplus_{\text{Schur}} L & \quad 0 \\
 F & \quad 0 & I + G
\end{align*}
\]
Solver Organization
Newton-Krylov

```
-pc_type fieldsplit
  -pc_fieldsplit_0_fields 0,1 -pc_fieldsplit_1_fields 2
  -pc_fieldsplit_type multiplicative
    -fieldsplit_0_pc_type fieldsplit
       -fieldsplit_0_pc_fieldsplit_type schur
       -fieldsplit_0_pc_fieldsplit_schur_precondition selfp
       -fieldsplit_0_pc_fieldsplit_schur_factorization_type full
    -fieldsplit_0_fieldsplit_velocity_pc_type lu
    -fieldsplit_0_fieldsplit_pressure_ksp_rtol 1.0e-9
    -fieldsplit_0_fieldsplit_pressure_pc_type gamg
       -fieldsplit_0_fieldsplit_pressure_ksp_monitor
       -fieldsplit_0_fieldsplit_pressure_ksp_gmres_restart 100
       -fieldsplit_fieldsplit_0_pressure_ksp_max_it 200
```
Or we can incorporate the porosity advection into the Stokes-like solve:

\[
\begin{bmatrix}
A & E \\
F & I+G
\end{bmatrix} \oplus \text{Schur} \quad L
\]
Newton options
Newton-Krylov with Porosity

-snes_monitor -snes_converged_reason
-snes_type newtonls -snes_linesearch_type bt
-snes_fd_color -snes_fd_color_use_mat -mat_coloring_type greedy
-ksp_rtol 1.0e-10 -ksp_monitor -ksp_gmres_restart 200
-pc_type fieldsplit
 -pc_fieldsplit_0_fields 0,2 -pc_fieldsplit_1_fields 1
 -pc_fieldsplit_type schur -pc_fieldsplit_schur_precondition selfp
 -pc_fieldsplit_schur_factorization_type full
 -fieldsplit_0_pc_type lu
 -fieldsplit_pressure_ksp_rtol 1.0e-9 -fieldsplit_pressure_pc_type gamg
 -fieldsplit_pressure_ksp_monitor
 -fieldsplit_pressure_ksp_gmres_restart 100
 -fieldsplit_pressure_ksp_max_it 200
Nonlinear Solvers

Newton for pure FEM Formulation

Early Newton convergence

0 TS dt 0.01 time 0
 0 SNES Function norm 5.292194079127e-03
 Linear pressure_ solve converged due to CONVERGED_RTOL its 10
 0 KSP Residual norm 4.618093146920e+00
 Linear pressure_ solve converged due to CONVERGED_RTOL its 10
 1 KSP Residual norm 3.018153330707e-03
 Linear pressure_ solve converged due to CONVERGED_RTOL its 11
 2 KSP Residual norm 4.274869628519e-13
 Linear solve converged due to CONVERGED_RTOL its 2
 1 SNES Function norm 2.766906985362e-06
 Linear pressure_ solve converged due to CONVERGED_RTOL its 8
 0 KSP Residual norm 2.555890235972e-02
 Linear pressure_ solve converged due to CONVERGED_RTOL its 8
 1 KSP Residual norm 1.638293944976e-07
 Linear pressure_ solve converged due to CONVERGED_RTOL its 8
 2 KSP Residual norm 1.771928779400e-14
 Linear solve converged due to CONVERGED_RTOL its 2
 2 SNES Function norm 1.188754322734e-11
 Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE its 2
1 TS dt 0.01 time 0.01
Later Newton convergence

0 TS dt 0.01 time 0.63
0 SNES Function norm 9.366565251786e-03
 Linear pressure_ solve converged due to CONVERGED_RTOL its 16
 Linear pressure_ solve converged due to CONVERGED_RTOL its 16
 Linear pressure_ solve converged due to CONVERGED_RTOL its 16
Linear solve converged due to CONVERGED_RTOL its 2
1 SNES Function norm 4.492625910272e-03
Linear solve converged due to CONVERGED_RTOL its 2
2 SNES Function norm 3.66181450068e-03
Linear solve converged due to CONVERGED_RTOL its 2
3 SNES Function norm 2.523116582272e-03
Linear solve converged due to CONVERGED_RTOL its 2
4 SNES Function norm 3.02268159491e-04
Linear solve converged due to CONVERGED_RTOL its 2
5 SNES Function norm 9.76131732448e-06
Linear solve converged due to CONVERGED_RTOL its 2
6 SNES Function norm 1.14794474432e-08
Linear solve converged due to CONVERGED_RTOL its 2
7 SNES Function norm 8.729160299009e-14
 Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE its 7
1 TS dt 0.01 time 0.64
Newton failure

0 TS dt 0.01 time 0.64
Time 0.64 L_2 Error: 0.494811 [0.0413666, 0.491642, 0.0376071]

0 SNES Function norm 9.682733054059e-03
 Linear solve converged due to CONVERGED_RTOL iterations 2
1 SNES Function norm 6.841434267123e-03
 Linear solve converged due to CONVERGED_RTOL iterations 3
2 SNES Function norm 4.12420553822e-03
 Linear solve converged due to CONVERGED_RTOL iterations 5
3 SNES Function norm 3.309326919835e-03
 Linear solve converged due to CONVERGED_RTOL iterations 6
4 SNES Function norm 3.022494350289e-03
 Linear solve converged due to CONVERGED_RTOL iterations 7
5 SNES Function norm 2.941050948582e-03
 Linear solve converged due to CONVERGED_RTOL iterations 7

...

9 SNES Function norm 2.631941422878e-03
 Linear solve converged due to CONVERGED_RTOL iterations 7
10 SNES Function norm 2.631897334054e-03
 Linear solve converged due to CONVERGED_RTOL iterations 10
11 SNES Function norm 2.631451174722e-03
 Linear solve converged due to CONVERGED_RTOL iterations 15

...
Outline

1. Nonlinear Solvers
 - Problem Definition
 - Newton for pure FEM Formulation
 - Composition Strategies
 - Solvers for pure FEM Formulation
 - Solvers for FEM+FVM Formulation
Out prototypical nonlinear equation is:

\[\mathcal{F}(\vec{x}) = \vec{b} \] \hspace{1cm} (1)

and we define the residual as

\[\vec{r}(\vec{x}) = \mathcal{F}(\vec{x}) - \vec{b} \] \hspace{1cm} (2)
Out prototypical nonlinear equation is:

\[\mathcal{F}(\vec{x}) = \vec{b} \] \hspace{1cm} (1)

and we define the (linear) residual as

\[\vec{r}(\vec{x}) = A\vec{x} - \vec{b} \] \hspace{1cm} (3)
The modified equation becomes

\[P^{-1} \left(A\vec{x} - \vec{b} \right) = 0 \] \hspace{1cm} (4)
The modified defect correction equation becomes

$$P^{-1} \left(A\vec{x}_i - \vec{b} \right) = \vec{x}_{i+1} - \vec{x}_i \quad (5)$$
Additive Combination

The linear iteration

$$\tilde{x}_{i+1} = \tilde{x}_i - (\alpha P^{-1} + \beta Q^{-1})(A\tilde{x}_i - \tilde{b})$$ \hspace{1cm} (6)

becomes the nonlinear iteration
Additive Combination

The linear iteration

\[\bar{x}_{i+1} = \bar{x}_i - (\alpha P^{-1} + \beta Q^{-1}) \bar{r}_i \]

becomes the nonlinear iteration
Additive Combination

The linear iteration

\[\tilde{x}_{i+1} = \tilde{x}_i - (\alpha P^{-1} + \beta Q^{-1}) \tilde{r}_i \] \hspace{1cm} (7)

becomes the nonlinear iteration

\[\tilde{x}_{i+1} = \tilde{x}_i + \alpha (\mathcal{N}(F, \tilde{x}_i, b) - \tilde{x}_i) + \beta (\mathcal{M}(F, \tilde{x}_i, b) - \tilde{x}_i) \] \hspace{1cm} (8)
From the additive combination, we have

\[P^{-1} \tilde{r} \mapsto \tilde{x}_i - \mathcal{N}(\mathcal{F}, \tilde{x}_i, \tilde{b}) \quad (9) \]

so we define the preconditioning operation as

\[\tilde{r}_L \equiv \tilde{x} - \mathcal{N}(\mathcal{F}, \tilde{x}, \tilde{b}) \quad (10) \]
The linear iteration

\[
\vec{x}_{i+1} = \vec{x}_i - (P^{-1} + Q^{-1} - Q^{-1}AP^{-1})\vec{r}_i \quad (11)
\]

becomes the nonlinear iteration

\[
\vec{x}_{i+1} = M(F, N(F, \vec{x}_i, \vec{b}), \vec{b}) \quad (14)
\]
The linear iteration

\[\vec{x}_{i+1/2} = \vec{x}_i - P^{-1}\vec{r}_i \]
\[\vec{x}_i = \vec{x}_{i+1/2} - Q^{-1}\vec{r}_{i+1/2} \]

becomes the nonlinear iteration
The linear iteration

\[\vec{x}_{i+1/2} = \vec{x}_i - P^{-1}\vec{r}_i \] \hspace{1cm} (12)

\[\vec{x}_i = \vec{x}_{i+1/2} - Q^{-1}\vec{r}_{i+1/2} \] \hspace{1cm} (13)

becomes the nonlinear iteration

\[\vec{x}_{i+1} = \mathcal{M}(\mathcal{F}, \mathcal{N}(\mathcal{F}, \vec{x}_i, \vec{b}), \vec{b}) \] \hspace{1cm} (14)
For the linear case, we have

\[AP^{-1} \vec{y} = \vec{b} \quad (15) \]
\[\vec{x} = P^{-1} \vec{y} \quad (16) \]

so we define the preconditioning operation as

\[\vec{y} = \mathcal{M}(\mathcal{F}(\mathcal{N}(\mathcal{F}, \cdot, \vec{b})), \vec{x}_i, \vec{b}) \quad (17) \]
\[\vec{x} = \mathcal{N}(\mathcal{F}, \vec{y}, \vec{b}) \quad (18) \]
Nonlinear Preconditioning

<table>
<thead>
<tr>
<th>Type</th>
<th>Sym</th>
<th>Statement</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Additive</td>
<td>+</td>
<td>$\bar{x} + \alpha (M(F, \bar{x}, \bar{b}) - \bar{x})$ + $\beta (N(F, \bar{x}, \bar{b}) - \bar{x})$</td>
<td>$M + N$</td>
</tr>
<tr>
<td>Multiplicative</td>
<td>*</td>
<td>$M(F, N(F, \bar{x}, \bar{b}), \bar{b})$</td>
<td>$M \ast N$</td>
</tr>
<tr>
<td>Left Prec.</td>
<td>$-L$</td>
<td>$M(\bar{x} - N(F, \bar{x}, \bar{b}), \bar{x}, \bar{b})$</td>
<td>$M - L N$</td>
</tr>
<tr>
<td>Right Prec.</td>
<td>$-R$</td>
<td>$M(F(N(F, \bar{x}, \bar{b})), \bar{x}, \bar{b})$</td>
<td>$M - R N$</td>
</tr>
<tr>
<td>Inner Lin. Inv.</td>
<td>\</td>
<td>$\bar{y} = \bar{J}(\bar{x})^{-1} \bar{r}(\bar{x}) = K(\bar{J}(\bar{x}), \bar{y}_0, \bar{b})$</td>
<td>$N \backslash K$</td>
</tr>
</tbody>
</table>

Outline

1. Nonlinear Solvers
 - Problem Definition
 - Newton for pure FEM Formulation
 - Composition Strategies
 - Solvers for pure FEM Formulation
 - Solvers for FEM+FVM Formulation
We can combine Newton-Krylov with Nonlinear CG:

$$(NCG -_{L} NRICH) \ast (\mathcal{N} \backslash K -_{L} NRICH)$$
NCG*Newton options

-snes_monitor -snes_converged_reason
-snes_type composite -snes_composite_type multiplicative
-snes_composite_sneses ncg,newtonls
 -sub_0_snes_monitor -sub_1_snes_monitor
 -sub_0_snes_type ncg -sub_0_snes_linesearch_type cp
 -sub_0_snes_max_it 5
 -sub_1_snes_linesearch_type bt -sub_1_snes_fd_color
 -sub_1_snes_fd_color_use_mat -mat_coloring_type greedy
 -sub_1_ksp_rtol 1.0e-10 -sub_1_ksp_monitor -sub_1_ksp_gmres_restart 200
 -sub_1_pc_type fieldsplit -sub_1_pc_fieldsplit_0_fields 0,2
 -sub_1_pc_fieldsplit_1_fields 1
 -sub_1_pc_fieldsplit_type schur
 -sub_1_pc_fieldsplit_schur_precondition selfp
 -sub_1_pc_fieldsplit_schur_factorization_type full
 -sub_1_fieldsplit_0_pc_type lu
 -sub_1_fieldsplit_pressure_ksp_rtol 1.0e-9
 -sub_1_fieldsplit_pressure_pc_type gamg
 -sub_1_fieldsplit_pressure_ksp_gmres_restart 100
 -sub_1_fieldsplit_pressure_ksp_max_it 200
Nonlinear Solvers
Solvers for pure FEM Formulation

NCG*Newton convergence

0 TS dt 0.01 time 0.64
 0 SNES Function norm 9.682733054059e-03
 0 SNES Function norm 9.682733054059e-03
 1 SNES Function norm 3.705698943518e-02
 2 SNES Function norm 4.981898384331e-02
 3 SNES Function norm 5.710183285964e-02
 4 SNES Function norm 5.476973798534e-02
 5 SNES Function norm 6.464724668855e-02
 6 SNES Function norm 6.464724668855e-02
 0 KSP Residual norm 1.021155502263e+00
 1 KSP Residual norm 9.145207488003e-05
 2 KSP Residual norm 3.899752904206e-09
 3 KSP Residual norm 1.001750831581e-12
 1 SNES Function norm 8.940296814443e-03
 1 SNES Function norm 8.940296814443e-03
 2 SNES Function norm 4.290429277269e-02
 3 SNES Function norm 1.154466745956e-02
 4 SNES Function norm 2.938816182982e-03
 5 SNES Function norm 4.148507767082e-04
 6 SNES Function norm 1.892807106900e-05
 7 SNES Function norm 4.912654244547e-08
 8 SNES Function norm 3.8516265260e-13

1 TS dt 0.01 time 0.65
We can use Newton-Krylov as a level solver for FAS:

\[\text{FAS}(\mathcal{N} \setminus K, \mathcal{N} \setminus K) \]
FAS-Newton options

Top level

-snes_monitor -snes_converged_reason
-snes_type fas -snes_fas_type full -snes_fas_levels 4
 -fas_levels_3_snes_monitor -fas_levels_3_snes_converged_reason
 -fas_levels_3_snes_atol 1.0e-9 -fas_levels_3_snes_max_it 2
 -fas_levels_3_snes_type newtonls -fas_levels_3_snes_linesearch_type bt
 -fas_levels_3_snes_fd_color -fas_levels_3_snes_fd_color_use_mat
 -fas_levels_3_ksp_rtol 1.0e-10 -mat_coloring_type greedy
 -fas_levels_3_ksp_gmres_restart 50 -fas_levels_3_ksp_max_it 200
 -fas_levels_3_pc_type fieldsplit
 -fas_levels_3_pc_fieldsplit_0_fields 0,2
 -fas_levels_3_pc_fieldsplit_1_fields 1
 -fas_levels_3_pc_fieldsplit_type schur
 -fas_levels_3_pc_fieldsplit_schur_precondition selfp
 -fas_levels_3_pc_fieldsplit_schur_factorization_type full
 -fas_levels_3_fieldsplit_0_pc_type lu
 -fas_levels_3_fieldsplit_pressure_ksp_rtol 1.0e-9
 -fas_levels_3_fieldsplit_pressure_pc_type gamg
 -fas_levels_3_fieldsplit_pressure_ksp_gmres_restart 100
 -fas_levels_3_fieldsplit_pressure_ksp_max_it 200
FAS-Newton options

2nd level

- \texttt{fas_levels_2_snes_monitor} \texttt{\ -fas_levels_2_snes_converged_reason}
- \texttt{fas_levels_2_snes_atol} 1.0e-9 \texttt{\ -fas_levels_2_snes_max_it} 2
- \texttt{fas_levels_2_snes_type} newtonls \texttt{\ -fas_levels_2_snes_linesearch_type} bt
- \texttt{fas_levels_2_snes_fd_color} \texttt{\ -fas_levels_2_snes_fd_color_use_mat}
- \texttt{fas_levels_2_ksp_rtol} 1.0e-10 \texttt{\ -fas_levels_2_ksp_gmres_restart} 50
- \texttt{fas_levels_2_pc_type} fieldsplit
 - \texttt{fas_levels_2_pc_fieldsplit_0_fields} 0,2
 - \texttt{fas_levels_2_pc_fieldsplit_1_fields} 1
 - \texttt{fas_levels_2_pc_fieldsplit_type} schur
 - \texttt{fas_levels_2_pc_fieldsplit_schur_precondition} selfp
 - \texttt{fas_levels_2_pc_fieldsplit_schur_factorization_type} full
 - \texttt{fas_levels_2_fieldsplit_0_pc_type} lu
 - \texttt{fas_levels_2_fieldsplit_pressure_ksp_rtol} 1.0e-9
 - \texttt{fas_levels_2_fieldsplit_pressure_pc_type} gamg
 - \texttt{fas_levels_2_fieldsplit_pressure_ksp_gmres_restart} 100
 - \texttt{fas_levels_2_fieldsplit_pressure_ksp_max_it} 200
FAS-Newton options

1st level

-fas_levels_1_snes_monitor -fas_levels_1_snes_converged_reason
-fas_levels_1_snes_atol 1.0e-9
-fas_levels_1_snes_type newtonls -fas_levels_1_snes_linesearch_type bt
-fas_levels_1_snes_fd_color -fas_levels_1_snes_fd_color_use_mat
-fas_levels_1_ksp_rtol 1.0e-10 -fas_levels_1_ksp_gmres_restart 50
-fas_levels_1_pc_type fieldsplit
 -fas_levels_1_pc_fieldsplit_0_fields 0,2
 -fas_levels_1_pc_fieldsplit_1_fields 1
 -fas_levels_1_pc_fieldsplit_type schur
 -fas_levels_1_pc_fieldsplit_schur_precondition selfp
 -fas_levels_1_pc_fieldsplit_schur_factorization_type full
 -fas_levels_1_fieldsplit_0_pc_type lu
 -fas_levels_1_fieldsplit_pressure_ksp_rtol 1.0e-9
 -fas_levels_1_fieldsplit_pressure_pc_type gamg
FAS-Newton options

Coarse level

-fas_coarse_snes_monitor -fas_coarse_snes_converged_reason
-fas_coarse_snes_atol 1.0e-9
-fas_coarse_snes_type newtonls -fas_coarse_snes_linesearch_type bt
-fas_coarse_snes_fd_color -fas_coarse_snes_fd_color_use_mat
-fas_coarse_ksp_rtol 1.0e-10 -fas_coarse_ksp_gmres_restart 50
-fas_coarse_pc_type fieldsplit
 -fas_coarse_pc_fieldsplit_0_fields 0,2
 -fas_coarse_pc_fieldsplit_1_fields 1
 -fas_coarse_pc_fieldsplit_type schur
 -fas_coarse_pc_fieldsplit_schur_precondition selfp
 -fas_coarse_pc_fieldsplit_schur_factorization_type full
 -fas_coarse_fieldsplit_0_pc_type lu
 -fas_coarse_fieldsplit_pressure_ksp_rtol 1.0e-9
 -fas_coarse_fieldsplit_pressure_pc_type gamg
FAS-Newton convergence

0 TS dt 0.01 time 0.64

0 SNES Function norm 9.682733054059e-03
2 SNES Function norm 4.412420553822e-03

2 SNES Function norm 8.022096211721e-15
1 SNES Function norm 2.773743832538e-04
1 SNES Function norm 5.627093528843e-11
1 SNES Function norm 4.405884464849e-10
2 SNES Function norm 8.985059910030e-08
1 SNES Function norm 4.672651281994e-15
2 SNES Function norm 1.046571008046e-14
2 SNES Function norm 1.804845173803e-02
2 SNES Function norm 2.776600115290e-12
0 SNES Function norm 1.354009326059e-15
0 SNES Function norm 5.881604627760e-13
0 SNES Function norm 1.354011456281e-12
0 SNES Function norm 2.776600115290e-12
2 SNES Function norm 9.640723411562e-05
1 SNES Function norm 9.640723411562e-05
2 SNES Function norm 1.057876040732e-08
3 SNES Function norm 5.623618219189e-11

1 TS dt 0.01 time 0.65
On fine levels, we can replace Newton-Krylov with Nonlinear Gauss-Siedel:

\[\text{FAS}(\text{NGS}, \mathcal{N} \setminus \mathcal{K}) \]
Nonlinear Solvers Solvers for pure FEM Formulation

FAS-NGS options

Top level

-snes_monitor -snes_converged_reason
-snes_type fas -snes_fas_type full -snes_fas_levels 4
-fas_levels_3_snes_monitor -fas_levels_3_snes_converged_reason
-fas_levels_3_snes_atol 1.0e-9 -fas_levels_3_snes_max_it 10
-fas_levels_3_snes_type ngs -fas_levels_3_snes_linesearch_type nleqerr
FAS-NGS convergence

0 TS dt 0.01 time 0.64
Time 0.64 L_2 Error: 0.494811 [0.0413666, 0.491642, 0.0376071]
 0 SNES Function norm 9.68e-03 [1.96e-03, 1.71e-14, 9.65e-03]
 0 SNES Function norm 9.682733054059e-03
 3 SNES Function norm 9.06994580453e-01
 3 SNES Function norm 3.790367845975e-11
 0 SNES Function norm 1.884126634610e+00
 1 SNES Function norm 6.752057466899e-02
 2 SNES Function norm 3.799909413083e-11
 0 SNES Function norm 1.450032375835e-01
 1 SNES Function norm 2.567674743706e-04
 0 SNES Function norm 1.027806561203e+00
 3 SNES Function norm 1.582489644172e+00
 1 SNES Function norm 4.847533456932e-01
 3 SNES Function norm 7.36666076108e-15
 1 SNES Function norm 1.744390611632e-02
 3 SNES Function norm 1.473321454964e+00
 1 SNES Function norm 1.47e+00 [1.44e+00, 2.92e-01, 8.82e-04]
 0 SNES Function norm 9.962396109825e+00
 1 SNES Function norm 3.189537494940e+86
Nonlinear fas_levels_2_ solve did not converge, DIVERGED_FNORM_NAN
Nonlinear solve did not converge due to DIVERGED_INNER
Nonlinear Solvers

1. Problem Definition
2. Newton for pure FEM Formulation
3. Composition Strategies
4. Solvers for pure FEM Formulation
5. Solvers for FEM+FVM Formulation
We can use a simple split scheme:

\[\nabla p^{k+1} - \nabla \left(\left(\frac{\phi^k}{\phi_0} \right)^{-m} \nabla \cdot \vec{v}^{k+1} \right) - \nabla \cdot \left(2e^{-\lambda(\phi^k - \phi_0)} \dot{\epsilon}^{k+1} \right) = 0 \]

\[\nabla \cdot \left(- \frac{R^2}{r_\zeta + 4/3} \left(\frac{\phi^k}{\phi_0} \right)^n \nabla p^{k+1} + \vec{v}^{k+1} \right) = 0 \]

\[\frac{\phi^{k+1} - \phi^k}{\Delta t} - \nabla \cdot (1 - \phi^k) \vec{v}^{k+1} = 0 \]
Or one that couples the algebraic and evolution equations:

\[
\nabla p^{k+1} - \nabla \left(\left(\frac{\phi^{k+1}}{\phi_0} \right)^{-m} \nabla \cdot \vec{v}^{k+1} \right) - \nabla \cdot \left(2 e^{-\lambda (\phi^{k+1} - \phi_0)} \dot{\epsilon}^{k+1} \right) = 0
\]

\[
\nabla \cdot \left(- \frac{R^2}{r_\zeta + 4/3} \left(\frac{\phi^{k+1}}{\phi_0} \right)^n \nabla p^{k+1} + \vec{v}^{k+1} \right) = 0
\]

\[
\frac{\phi^{k+1} - \phi^k}{\Delta t} - \nabla \cdot (1 - \phi^k) \vec{v}^{k+1} = 0
\]
Newton options

-snes_atol 1.0e-10 -snes_monitor_field -snes_converged_reason
-snes_linesearch_type basic -snes_fd_color -snes_fd_color_use_mat
-mat_coloring_type greedy -mat_coloring_greedy_symmetric 0
-ksp_rtol 1.0e-10 -ksp_monitor -ksp_gmres_restart 200
-pc_type fieldsplit
-pc_fieldsplit_0_fields 0,2 -pc_fieldsplit_1_fields 1
-pc_fieldsplit_type schur -pc_fieldsplit_schur_precondition selfp
-pc_fieldsplit_schur_factorization_type full
-fieldsplit_0_ksp_rtol 1.0e-8 -fieldsplit_0_pc_type lu
-fieldsplit_pressure_ksp_rtol 1.0e-9 -fieldsplit_pressure_pc_type svd
Early Newton convergence

5 TS dt 0.005 time 0.025
 0 SNES Function norm 6.52e-02 [1.46e-14, 4.91e-16, 6.52e-02]
 0 KSP Residual norm 4.26e-04
 1 KSP Residual norm 1.78e-17
 1 SNES Function norm 2.19e-03 [2.96e-08, 3.91e-09, 2.19e-03]
 2 SNES Function norm 7.51e-05 [3.40e-11, 4.55e-12, 7.51e-05]
 3 SNES Function norm 2.58e-06 [2.46e-13, 1.28e-14, 2.58e-06]
 4 SNES Function norm 8.86e-08 [1.39e-14, 6.64e-16, 8.86e-08]

6 TS dt 0.005 time 0.03
Late Newton convergence

<table>
<thead>
<tr>
<th>TS dt</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.005</td>
<td>0.825</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Iteration</th>
<th>SNES Function norm</th>
<th>KSP Residual norm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.14e+00 [1.40e-14, 3.67e-16, 2.14e+00]</td>
<td>3.53e+01</td>
</tr>
<tr>
<td>1</td>
<td>5.13e-02 [2.01e-04, 1.47e-04, 5.13e-02]</td>
<td>1.03e+10</td>
</tr>
<tr>
<td>2</td>
<td>2.47e-02 [9.20e-06, 7.73e-06, 2.47e-02]</td>
<td>2.82e+16</td>
</tr>
<tr>
<td>3</td>
<td>7.81e-03 [2.13e-06, 1.67e-06, 7.81e-03]</td>
<td>7.21e+10</td>
</tr>
<tr>
<td>4</td>
<td>2.12e-03 [1.81e-07, 1.41e-07, 2.12e-03]</td>
<td>1.12e+10</td>
</tr>
<tr>
<td>5</td>
<td>4.72e-04 [1.08e-08, 8.28e-09, 4.72e-04]</td>
<td>2.63e+10</td>
</tr>
<tr>
<td>6</td>
<td>1.12e-04 [5.76e-10, 4.41e-10, 1.12e-04]</td>
<td>6.17e+10</td>
</tr>
<tr>
<td>7</td>
<td>2.63e-05 [3.21e-11, 2.50e-11, 2.63e-05]</td>
<td>1.45e+10</td>
</tr>
<tr>
<td>8</td>
<td>6.17e-06 [1.77e-12, 1.26e-12, 6.17e-06]</td>
<td>3.40e+10</td>
</tr>
<tr>
<td>9</td>
<td>1.45e-06 [1.07e-13, 9.84e-14, 1.45e-06]</td>
<td>7.99e+10</td>
</tr>
<tr>
<td>10</td>
<td>3.40e-07 [1.78e-14, 4.74e-15, 3.40e-07]</td>
<td>1.88e+10</td>
</tr>
<tr>
<td>11</td>
<td>7.99e-08 [1.36e-14, 1.88e-15, 7.99e-08]</td>
<td>5.72e+10</td>
</tr>
<tr>
<td>12</td>
<td>1.88e-08 [1.34e-14, 5.72e-16, 1.88e-08]</td>
<td>1.88e+10</td>
</tr>
</tbody>
</table>

1 TS dt 0.005 time 0.83
Nonlinear Solvers

Solvers for FEM+FVM Formulation

FAS-Newton options

Top level

-snse_atol 1.0e-9 -snse_monitor_field -snse_converged_reason
-snse_type fas -snse_fas_type full -snse_fas_levels 3
-fas_levels_2_snse_monitor -fas_levels_2_snse_converged_reason
-fas_levels_2_snse_atol 1.0e-9 -fas_levels_2_snse_max_it 2
-fas_levels_2_snse_type newtonls
-fas_levels_2_snse_linesearch_type basic
-fas_levels_2_snse_fd_color -fas_levels_2_snse_fd_color_use_mat
-fas_levels_2_ksp_rtol 1.0e-10 -fas_levels_2_ksp_gmres_restart 50
-fas_levels_2_pc_type fieldsplit
-fas_levels_2_pc_fieldsplit_0_fields 0,2
-fas_levels_2_pc_fieldsplit_1_fields 1
-fas_levels_2_pc_fieldsplit_type schur
-fas_levels_2_pc_fieldsplit_schur_precondition selfp
-fas_levels_2_pc_fieldsplit_schur_factorization_type full
-fas_levels_2_fieldsplit_0_pc_type lu
-fas_levels_2_fieldsplit_pressure_ksp_rtol 1.0e-9
-fas_levels_2_fieldsplit_pressure_pc_type svd
-fas_levels_2_fieldsplit_pressure_ksp_gmres_restart 100
-fas_levels_2_fieldsplit_pressure_ksp_max_it 200
FAS-Newton options

Coarse level

- `fas_coarse_snes_max_it 10`
- `fas_coarse_snes_max_linear_solve_fail 10`
- `fas_coarse_snes_atol 1.0e-9`
- `fas_coarse_snes_monitor`
- `fas_coarse_snes_converged_reason`
- `fas_coarse_snes_type newtonls`
- `fas_coarse_snes_linesearch_type bt`
- `fas_coarse_snes_fd_color`
- `fas_coarse_snes_fd_color_use_mat`
- `fas_coarse_ksp_rtol 1.0e-10`
- `fas_coarse_ksp_gmres_restart 50`
- `fas_coarse_pc_type fieldsplit`
- `fas_coarse_pc_fieldsplit_0_fields 0,2`
- `fas_coarse_pc_fieldsplit_1_fields 1`
- `fas_coarse_pc_fieldsplit_type schur`
- `fas_coarse_pc_fieldsplit_schur_precondition selfp`
- `fas_coarse_pc_fieldsplit_schur_factorization_type full`
- `fas_coarse_fieldsplit_0_pc_type lu`
- `fas_coarse_fieldsplit_pressure_ksp_rtol 1.0e-9`
- `fas_coarse_fieldsplit_pressure_pc_type svd`
FAS-Newton convergence

0 TS dt 0.005 time 0.825
 0 SNES Function norm 2.14e+00 [1.40e-14, 3.67e-16, 2.14e+00]
 0 SNES Function norm 2.136811983007e+00
 2 SNES Function norm 2.467490038458e-02
 0 SNES Function norm 2.892788645925e-02
 5 SNES Function norm 6.686368379854e-11
 0 SNES Function norm 5.034219273717e-02
 1 SNES Function norm 1.054842559307e-03
 0 SNES Function norm 1.663080254945e-03
 4 SNES Function norm 2.126370356882e-10
 0 SNES Function norm 2.599480303180e-03
 1 SNES Function norm 9.990047497418e-05
 0 SNES Function norm 4.798584798600e-02
 2 SNES Function norm 1.288870672992e-03
 1 SNES Function norm 3.770621359658e-05
 2 SNES Function norm 1.127970439777e-08
 1 SNES Function norm 1.008431552413e-06
 0 SNES Function norm 2.502531975042e-03
 2 SNES Function norm 4.730240156687e-05
 1 SNES Function norm 4.73e-05 [1.04e-10, 7.85e-11, 4.73e-05]
 2 SNES Function norm 3.98e-09 [1.38e-14, 4.18e-16, 3.98e-09]
1 TS dt 0.005 time 0.83
FAS-NGS options

Top level

-snes_atol 1.0e-9 -snes_monitor_field -snes_converged_reason
-snes_type fas -snes_fas_type full -snes_fas_levels 3
 -fas_levels_2_snes_monitor -fas_levels_2_snes_converged_reason
 -fas_levels_2_snes_atol 1.0e-9 -fas_levels_2_snes_max_it 10
 -fas_levels_2_snes_type ngs -fas_levels_2_snes_linesearch_type bt
FAS-NGS convergence

0 TS dt 0.005 time 0.825

0 SNES Function norm 2.14e+00 [1.39e-14, 3.66e-16, 2.13e+00]
1 SNES Function norm 2.87e-04 [2.08e-04, 4.80e-06, 1.98e-04]
2 SNES Function norm 3.15e-05 [2.30e-05, 9.56e-07, 2.19e-05]
3 SNES Function norm 1.65e-05 [1.14e-05, 5.44e-07, 1.21e-05]
4 SNES Function norm 1.07e-05 [7.38e-06, 3.48e-07, 7.89e-06]
5 SNES Function norm 7.06e-06 [4.85e-06, 2.26e-07, 5.20e-06]
6 SNES Function norm 4.67e-06 [3.20e-06, 1.48e-07, 3.44e-06]
7 SNES Function norm 3.09e-06 [2.12e-06, 9.82e-07, 2.19e-06]
8 SNES Function norm 2.05e-06 [1.40e-06, 6.52e-08, 1.50e-06]
9 SNES Function norm 1.36e-06 [9.35e-07, 4.34e-08, 1.00e-06]
10 SNES Function norm 9.03e-07 [6.21e-07, 2.89e-08, 6.64e-07]
11 SNES Function norm 6.00e-07 [4.13e-07, 1.94e-08, 4.41e-07]
12 SNES Function norm 3.99e-07 [2.75e-07, 1.30e-08, 2.94e-07]
13 SNES Function norm 2.67e-07 [1.84e-07, 8.84e-09, 1.96e-07]
14 SNES Function norm 1.78e-07 [1.23e-07, 6.01e-09, 1.31e-07]
15 SNES Function norm 1.20e-07 [8.31e-08, 4.12e-09, 8.80e-08]
16 SNES Function norm 8.12e-08 [5.64e-08, 2.85e-09, 5.94e-08]
17 SNES Function norm 5.55e-08 [3.87e-08, 1.99e-09, 4.05e-08]
18 SNES Function norm 3.86e-08 [2.70e-08, 1.41e-09, 2.80e-08]
19 SNES Function norm 2.74e-08 [1.93e-08, 1.01e-09, 1.97e-08]
20 SNES Function norm 2.00e-08 [1.43e-08, 7.48e-10, 1.44e-08]

1 TS dt 0.005 time 0.83
Can’t you just pick the *right* discretization?
Can’t you just use CG for everything?

- Good idea for elliptic equations
 Mass and momentum conservation
- Bad for porosity advection (very diffusive)
 Easy to see in uniform advection of a porous block
- Solitary wave benchmark does not test diffusivity
 because you can make the wave stand almost still
- Shear band benchmark does not test diffusivity
 but localization will be artificially arrested
Can’t you just use CG for everything?

- Good idea for elliptic equations
 Mass and momentum conservation

- Bad for porosity advection (very diffusive)
 Easy to see in uniform advection of a porous block

- Solitary wave benchmark does not test diffusivity
 because you can make the wave stand almost still

- Shear band benchmark does not test diffusivity
 but localization will be artificially arrested
Can’t you just use CG for everything?

- Good idea for elliptic equations
 Mass and momentum conservation

- Bad for porosity advection (very diffusive)
 Easy to see in uniform advection of a porous block

- Solitary wave benchmark does not test diffusivity
 because you can make the wave stand almost still

- Shear band benchmark does not test diffusivity
 but localization will be artificially arrested
Can’t you just use CG for everything?

- Good idea for elliptic equations
 Mass and momentum conservation

- Bad for porosity advection (very diffusive)
 Easy to see in uniform advection of a porous block

- Solitary wave benchmark does not test diffusivity
 because you can make the wave stand almost still

- Shear band benchmark does not test diffusivity
 but localization will be artificially arrested
Can’t you just use DG for everything?

- Good idea for advection
- Bad idea for conservation of mass and momentum
 Forcing continuity results (morally) in penalization
 creating hard-to-solve systems of equations, resulting in . . .
Can’t you just use DG for everything?

- Good idea for advection
- Bad idea for conservation of mass and momentum
 Forcing continuity results (morally) in penalization
 creating hard-to-solve systems of equations, resulting in . . .
Can’t you just use DG for everything?

- Good idea for advection
- Bad idea for conservation of mass and momentum
 Forcing continuity results (morally) in penalization
 creating hard-to-solve systems of equations, resulting in . . .
Can’t you just use DG for everything?

- Good idea for advection
- Bad idea for conservation of mass and momentum
 Forcing continuity results (morally) in penalization
- Bad idea for efficiency

 Lehmann, Lukáčová-Medvid’ová, Kaus and Popov, ZAMM, 2015
 DG has higher cost for equivalent accuracy, resulting in . . .
Can’t you just use DG for everything?

- Good idea for advection
- Bad idea for conservation of mass and momentum
 Forcing continuity results (morally) in penalization
- Bad idea for efficiency
 DG has higher cost for equivalent accuracy, resulting in . . .
Discontinuous Galerkin

DG makes a lot of sense for the advection equation

- Not diffusive
- Handles sharp fronts
- Can be high order accurate
- Implicit formulation makes sense
- Needs a limiter to prevent oscillation
FV also makes sense for the advection equation

- Not diffusive
- Handles sharp fronts
- Can be low order accurate
- Implicit formulation does not make sense
- Needs a limiter to prevent oscillation
Can we mix discretizations?

- FEniCS/Firedrake can do CG+DG
- Deal.II can do CG+DG
- PETSc can do CG+FV
Using continuous FE spaces,

which satisfy an inf-sup stability condition.
Using continuous FE spaces,

\[Q_2 \text{ velocity} \]
\[Q_1 \text{ pressure} \]
\[Q_1 \text{ porosity} \]

which satisfy an inf-sup stability condition.
Using continuous FE spaces,

- velocity_petscspace_order 2
 - velocity_petscspace_poly_tensor
- pressure_petscspace_order 1
 - pressure_petscspace_poly_tensor
- porosity_petscspace_order 1
 - porosity_petscspace_poly_tensor

which satisfy an inf-sup stability condition.
Using continuous/discontinuous FE spaces,

\[Q_2 \quad \text{velocity} \]

\[P_{1\text{disc}} \quad \text{pressure} \]

\[Q_1 \quad \text{porosity} \]

which satisfy an inf-sup stability condition.
Using continuous/discontinuous FE spaces,

-velocity_petscspace_order 2
 -velocity_petscspace_poly_tensor
-pressure_petscspace_order 1
 -pressure_petscdualspace_lagrange_continuity 0
-porosity_petscspace_order 1
 -porosity_petscspace_poly_tensor

which satisfy an inf-sup stability condition.
Discretization

Using continuous FE spaces and simple FV,

\(Q_2 \) velocity
\(Q_1 \) pressure
\(FV \) porosity

which we connect by cell/face interpolants.

/* Set discretization object */
if (user->useFV) {
 PetscDSSetDiscretization(prob, 2, fv);
} else {
 PetscDSSetDiscretization(prob, 2, fe[2]);
}

/* Set pointwise residual functions */
PetscDSSetResidual(prob, 2, f0_advection, f1_scalar_zero);
PetscDSSetRiemannSolver(prob, 2, riemann_coupled_advection);
Using continuous FE spaces and simple FV,

- `velocity_petscSpace_order 2`
- `velocity_petscSpace_poly_tensor`
- `pressure_petscSpace_order 1`
- `pressure_petscSpace_poly_tensor`
- `use_fv`

which we connect by cell/face interpolants.

```c
/* Set discretization object */
if (user->useFV) {
    PetscDSSetDiscretization(prob, 2, fv);
} else {
    PetscDSSetDiscretization(prob, 2, fe[2]);
}
/* Set pointwise residual functions */
PetscDSSetResidual(prob, 2, f0_advection, f1_scalar_zero);
PetscDSSetRiemannSolver(prob, 2, riemann_coupled_advection);
```
Using continuous FE spaces and simple FV,

- \(Q_2 \) velocity
- \(Q_1 \) pressure
- \(FV \) porosity

which we connect by cell/face interpolants.

```c
/* Set discretization object */
if (user->useFV) {
    PetscDSSetDiscretization(prob, 2, fv);
} else {
    PetscDSSetDiscretization(prob, 2, fe[2]);
}
/* Set pointwise residual functions */
PetscDSSetResidual(prob, 2, f0_advection, f1_scalar_zero);
PetscDSSetRiemannSolver(prob, 2, riemann_coupled_advection);
```
Should we use AMR?

- Uniform refinement is scalable, but
 - AMR achieves higher accuracy on fixed resources, or
 - AMR uses less memory for fixes accuracy
- AMR could affect the nonlinear conditioning
- AMR complicates multilevel solves
Should we use AMR?

- Uniform refinement is scalable, but
 - AMR achieves higher accuracy on fixed resources, or
 - AMR uses less memory for fixes accuracy
- AMR could affect the nonlinear conditioning
- AMR complicates multilevel solves
Should we use AMR?

- Uniform refinement is scalable, but
 - AMR achieves higher accuracy on fixed resources, or
 - AMR uses less memory for fixes accuracy
- AMR could affect the nonlinear conditioning
- AMR complicates multilevel solves
Should we use AMR?

- Uniform refinement is scalable, but
 - AMR achieves higher accuracy on fixed resources, or
 - AMR uses less memory for fixes accuracy

- AMR could affect the nonlinear conditioning
 - AMR complicates multilevel solves
Should we use AMR?

- Uniform refinement is scalable, but
 - AMR achieves higher accuracy on fixed resources, or
 - AMR uses less memory for fixes accuracy
- AMR could affect the nonlinear conditioning
- AMR complicates multilevel solves
Can we use AMR?

- LibMesh can do AMR
- Deal.II can do AMR
- PETSc can do AMR
AMR Shear Bands

Vec_0x84000000_0_porosity

M. Knepley (Rice)
We need composable, extensible systems to match numerics to the physics.
We need composable, extensible systems to match numerics to the physics.
We need composable, extensible systems to match numerics to the physics.
We need composable, extensible systems to match numerics to the physics.
Outline

1. Nonlinear Solvers
2. Discretization
3. Conclusions
4. Non-asymptotic Convergence
 - Convergence Rates
 - Convergence Theory
5. AMR
Outline

4. Non-asymptotic Convergence
 - Convergence Rates
 - Convergence Theory
Rate of Convergence

What should be a Rate of Convergence? [Ptak, 1977]:

1. It should relate quantities which may be measured or estimated during the actual process.
2. It should describe accurately in particular the initial stage of the process, not only its asymptotic behavior.

\[
\|x_{n+1} - x^*\| \leq c\|x_n - x^*\|^q
\]
Rate of Convergence

What should be a Rate of Convergence? [Ptak, 1977]:

1. It should relate quantities which may be measured or estimated during the actual process.

2. It should describe accurately in particular the initial stage of the process, not only its asymptotic behavior . . .

\[\| x_{n+1} - x_n \| \leq c \| x_n - x_{n-1} \|^q \]
Rate of Convergence

What should be a Rate of Convergence? [Ptak, 1977]:
1. It should relate quantities which may be measured or estimated during the actual process.
2. It should describe accurately in particular the initial stage of the process, not only its asymptotic behavior . . .

\[\|x_{n+1} - x_n\| \leq \omega(\|x_n - x_{n-1}\|) \]

where we have for all \(r \in (0, R) \)

\[\sigma(r) = \sum_{n=0}^{\infty} \omega^{(n)}(r) < \infty \]
Define an approximate set $Z(r)$, where $x^* \in Z(0)$ implies $f(x^*) = 0$.
Define an approximate set $Z(r)$, where $x^* \in Z(0)$ implies $f(x^*) = 0$.

For Newton's method, we use

$$Z(r) = \left\{ x \left| \| f'(x)^{-1} f(x) \| \leq r, d(f'(x)) \geq h(r), \| x - x_0 \| \leq g(r) \right. \right\},$$

where

$$d(A) = \inf_{\| x \| \geq 1} \| Ax \|,$$

and $h(r)$ and $g(r)$ are positive functions.
Define an approximate set $Z(r)$, where $x^* \in Z(0)$ implies $f(x^*) = 0$.

For $r \in (0, R]$,

$$Z(r) \subset U(Z(\omega(r)), r)$$

implies

$$Z(r) \subset U(Z(0), \sigma(r)).$$
Nondiscrete Induction

For the fixed point iteration

\[x_{n+1} = Gx_n, \]

if I have

\[x_0 \in Z(r_0) \]

and for \(x \in Z(r) \),

\[\| Gx - x \| \leq r \]

\[Gx \in Z(\omega(r)) \]

then
Nondiscrete Induction

For the fixed point iteration

\[x_{n+1} = Gx_n, \]

if I have

\[x_0 \in \mathbb{Z}(r_0) \]

and for \(x \in \mathbb{Z}(r) \),

\[\| Gx - x \| \leq r \]
\[Gx \in \mathbb{Z}(\omega(r)) \]

then

\[x^* \in \mathbb{Z}(0) \]
\[x_n \in \mathbb{Z}(\omega^{(n)}(r_0)) \]
Nondiscrete Induction

For the fixed point iteration

\[x_{n+1} = Gx_n, \]

if I have

\[x_0 \in Z(r_0) \]

and for \(x \in Z(r) \),

\[\| Gx - x \| \leq r \]

\[Gx \in Z(\omega(r)) \]

then

\[\| x_{n+1} - x_n \| \leq \omega^{(n)}(r_0) \]

\[\| x_n - x^* \| \leq \sigma(\omega^{(n)}(r_0)) \]
Nondiscrete Induction

For the fixed point iteration

\[x_{n+1} = Gx_n, \]

if I have

\[x_0 \in Z(r_0) \]

and for \(x \in Z(r) \),

\[\|Gx - x\| \leq r \]
\[Gx \in Z(\omega(r)) \]

then

\[\|x_n - x^*\| \leq \sigma(\omega(\|x_n - x_{n-1}\|)) \]
\[= \sigma(\|x_n - x_{n-1}\|) - \|x_n - x_{n-1}\| \]
Newton’s Method

\[\omega_N(r) = cr^2 \]
Newton’s Method

\[
\omega_N(r) = \frac{r^2}{2\sqrt{r^2 + a^2}}
\]

\[
\sigma_N(r) = r + \sqrt{r^2 + a^2} - a
\]

where

\[
a = \frac{1}{k_0} \sqrt{1 - 2k_0r_0},
\]

\(k_0\) is the (scaled) Lipschitz constant for \(f'\), and \(r_0\) is the (scaled) initial residual.
Newton’s Method

\[\omega_N(r) = \frac{r^2}{2\sqrt{r^2 + a^2}} \]

\[\sigma_N(r) = r + \sqrt{r^2 + a^2} - a \]

This estimate is *tight* in that the bounds hold with equality for some function \(f \),

\[f(x) = x^2 - a^2 \]

using initial guess

\[x_0 = \frac{1}{k_0} \].

Also, if equality is attained for some \(n_0 \), this holds for all \(n \geq n_0 \).
Newton’s Method

\[\omega_N(r) = \frac{r^2}{2\sqrt{r^2 + a^2}}\]

\[\sigma_N(r) = r + \sqrt{r^2 + a^2} - a\]

If \(r \gg a \), meaning we have an inaccurate guess,

\[\omega_N(r) \approx \frac{1}{2} r,\]

whereas if \(r \ll a \), meaning we are close to the solution,

\[\omega_N(r) \approx \frac{1}{2a} r^2.\]
Left vs. Right

Left:

\[\mathcal{F}(x) \implies x - \mathcal{N}(\mathcal{F}, x, b) \]

Right:

\[x \implies y = \mathcal{N}(\mathcal{F}, x, b) \]

Heisenberg vs. Schrödinger Picture
Left vs. Right

Left:

\[\mathcal{F}(x) \implies x - \mathcal{N}(\mathcal{F}, x, b) \]

Right:

\[x \implies y = \mathcal{N}(\mathcal{F}, x, b) \]

Heisenberg vs. Schrödinger Picture
We start with $x \in Z(r)$, apply \mathcal{N} so that

$$y \in Z(\omega_N(r)),$$

and then apply \mathcal{M} so that

$$x' \in Z(\omega_M(\omega_N(r))).$$

Thus we have

$$\omega_{\mathcal{M}-R\mathcal{N}} = \omega_M \circ \omega_N.$$
\[N \circ_{R} NRICH \]

\[
\omega_{N} \circ \omega_{NRICH} = \frac{1}{2} \frac{r^2}{\sqrt{r^2 + a^2}} \circ cr,
\]

\[
= \frac{1}{2} \frac{c^2 r^2}{\sqrt{c^2 r^2 + a^2}},
\]

\[
= \frac{1}{2} \frac{cr^2}{\sqrt{r^2 + (a/c)^2}},
\]

\[
= \frac{1}{2} \frac{r^2}{c \sqrt{r^2 + \tilde{a}^2}},
\]
Non-Abelian

\[\mathcal{N} - R \text{ NRICH: } \frac{1}{2} c \frac{r^2}{\sqrt{r^2 + a^2}} \]

NRICH \(- R \mathcal{N} \)

\[\omega_{\text{NRICH}} \circ \omega_{\mathcal{N}} = cr \circ \frac{1}{2} \frac{r^2}{\sqrt{r^2 + a^2}}, \]

\[= \frac{1}{2} c \frac{r^2}{\sqrt{r^2 + a^2}}, \]

\[= \frac{1}{2} c \frac{r^2}{\sqrt{r^2 + a^2}}. \]
Non-Abelian

\[\mathcal{N} - R \text{ NRICH}: \frac{1}{2} c \frac{r^2}{\sqrt{r^2 + \tilde{a}^2}} \]

\[\text{NRICH} - R \mathcal{N}: \frac{1}{2} c \frac{r^2}{\sqrt{r^2 + a^2}} \]

The first method also changes the onset of second order convergence.
Outline

4. Non-asymptotic Convergence
 - Convergence Rates
 - Convergence Theory
Theorem

If ω_1 and ω_2 are convex rates of convergence, then $\omega = \omega_1 \circ \omega_2$ is a rate of convergence.
Theorem

If ω_1 and ω_2 are convex rates of convergence, then $\omega = \omega_1 \circ \omega_2$ is a rate of convergence.

First we show that

$$\omega(s) \leq \frac{s}{r} \omega(r),$$

which means that convex rates of convergence are non-decreasing.

This implies that compositions of convex rates of convergence are also convex and non-decreasing.
Theorem

If ω_1 and ω_2 are convex rates of convergence, then $\omega = \omega_1 \circ \omega_2$ is a rate of convergence.

Then we show that

$$\omega(r) < r \quad \forall r \in (0, R)$$

by contradiction.
Non-asymptotic Convergence

Convergence Theory

Composed Rates of Convergence

Theorem

If ω_1 *and* ω_2 *are convex rates of convergence, then* $\omega = \omega_1 \circ \omega_2$ *is a rate of convergence.*

This is enough to show that

$$\omega_1(\omega_2(r)) < \omega_1(r),$$

and in fact

$$ (\omega_1 \circ \omega_2)^{(n)}(r) < \omega_1^{(n)}(r). $$
Non-asymptotic Convergence
Convergence Theory

Multidimensional Induction Theorem

Preconditions

Theorem

Let
- \(p \) (1 for our case) and \(m \) (2 for our case) be two positive integers,
- \(X \) be a complete metric space and \(D \subset X^p \),
- \(G : D \rightarrow X^p \) and \(F : D \rightarrow X^{p+1} \) be defined by \(Fu = (u, Gu) \),
- \(F_k = P_k F, \ -p + 1 \leq k \leq m \), the components of \(F \),
- \(P = P_m \),
- \(Z(r) \subset D \) for each \(r \in T^p \),
- \(\omega \) be a rate of convergence of type \((p, m)\) on \(T \),
- \(u_0 \in D \) and \(r_0 \in T^p \).
Multidimensional Induction Theorem

Theorem

If the following conditions hold

\[u_0 \in Z(r_0), \]
\[PFZ(r) \subset Z(\tilde{\omega}(r)), \]
\[\|F_k u - F_{k+1} u\| \leq \omega_k(r), \]

for all \(r \in T^p, \ u \in Z(r), \) *and* \(k = 0, \ldots, m - 1, \) *then*

1. \(u_0 \) is admissible, and \(\exists x^* \in X \) such that \((P_k u_n)_{n \geq 0} \to x^*,\)
2. *and the following relations hold for* \(n > 1, \)

\[Pu_n \in Z(\tilde{\omega}(r_0)), \]
\[\|P_k u_n - P_{k+1} u_n\| \leq \omega_k^{(n)}(r_0), \quad 0 \leq k \leq m - 1, \]
\[\|P_k u_n - x^*\| \leq \sigma_k(\tilde{\omega}(r_0)), \quad 0 \leq k \leq m; \]
Theorem

If the following conditions hold

\[u_0 \in Z(r_0), \]
\[PFZ(r) \subset Z(\tilde{\omega}(r)), \]
\[\|F_k u - F_{k+1} u\| \leq \omega_k(r), \]

for all \(r \in T^p, u \in Z(r), \) and \(k = 0, \ldots, m - 1, \) then

1. \(u_0 \) is admissible, and \(\exists x^* \in X \) such that \((P_k u_n)_{n \geq 0} \to x^*, \)
2. and the following relations hold for \(n > 1, \)

\[\|P_k u_n - x^*\| \leq \sigma_k(r_n), \quad 0 \leq k \leq m. \]

where \(r_n \in T^p \) and \(Pu_{n-1} \in Z(r_n). \)
Theorem

If the following conditions hold

\[u_0 \in Z(r_0), \]
\[PFZ(r) \subset Z(\tilde{\omega}(r)), \]
\[\| F_k u - F_{k+1} u \| \leq \omega_k(r), \]

for all \(r \in T^p, u \in Z(r), \text{ and } k = 0, \ldots, m - 1, \text{ then} \]

1. \(u_0 \) is admissible, and \(\exists x^* \in X \) such that \((P_k u_n)_{n \geq 0} \rightarrow x^* \),
2. and the following relations hold for \(n > 1 \),

\[Pu_n \in Z(\tilde{\omega}(r_0)), \]
\[\| P_k u_n - P_{k+1} u_n \| \leq \omega_k^{(n)}(r_0), \quad 0 \leq k \leq m - 1, \]
\[\| P_k u_n - x^* \| \leq \sigma_k(\tilde{\omega}(r_0)), \quad 0 \leq k \leq m; \]
Non-asymptotic Convergence

Convergence Theory

Multidimensional Induction Theorem

Theorem

If the following conditions hold

\[u_0 \in Z(r_0), \]
\[PFZ(r) \subset Z(\omega \circ \psi(r)), \]
\[\| F_0 u - F_1 u \| \leq r, \]
\[\| F_1 u - F_2 u \| \leq \psi(r), \]

for all \(r \in T^p, u \in Z(r), \) and \(k = 0, \ldots, m - 1, \) then

1. \(u_0 \) is admissible, and \(\exists x^* \in X \) such that \((P_k u_n)_{n \geq 0} \rightarrow x^*, \)

2. and the following relations hold for \(n > 1, \)

\[Pu_n \in Z(\tilde{\omega}(r_0)), \]
\[\| P_k u_n - P_{k+1} u_n \| \leq \omega_k^{(n)}(r_0), \quad 0 \leq k \leq m - 1, \]
\[\| P_k u_n - x^* \| \leq \sigma_k(\tilde{\omega}(r_0)), \quad 0 \leq k \leq m; \]
Composition Newton Methods

Theorem

Suppose that we have two nonlinear solvers

- $\mathcal{M}, Z_1, \omega,$
- $\mathcal{N}, Z_0, \psi,$

and consider $\mathcal{M} - R \mathcal{N}$, meaning a single step of \mathcal{N} for each step of \mathcal{M}.

Concretely, take \mathcal{M} to be the Newton iteration, and \mathcal{N} the Chord method. Then the assumptions of the theorem above are satisfied using $Z = Z_1$ and

$$\omega(r) = \{\psi(r), \omega \circ \psi(r)\},$$

giving us the existence of a solution, and both a priori and a posteriori bounds on the error.
Example

\[f(x) = x^2 + (0.0894427)^2 \]

<table>
<thead>
<tr>
<th>n</th>
<th>(|x_{n+1} - x_n|)</th>
<th>(|x_{n+1} - x_n| - w^{(n)}(r_0))</th>
<th>(|x_n - x^*| - s(w^{(n)}(r_0)))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.9990e+00</td>
<td>< 10^{-16}</td>
<td>< 10^{-16}</td>
</tr>
<tr>
<td>1</td>
<td>9.9850e-01</td>
<td>< 10^{-16}</td>
<td>< 10^{-16}</td>
</tr>
<tr>
<td>2</td>
<td>4.9726e-01</td>
<td>< 10^{-16}</td>
<td>< 10^{-16}</td>
</tr>
<tr>
<td>3</td>
<td>2.4470e-01</td>
<td>< 10^{-16}</td>
<td>< 10^{-16}</td>
</tr>
<tr>
<td>4</td>
<td>1.1492e-01</td>
<td>< 10^{-16}</td>
<td>< 10^{-16}</td>
</tr>
<tr>
<td>5</td>
<td>4.5342e-02</td>
<td>< 10^{-16}</td>
<td>< 10^{-16}</td>
</tr>
<tr>
<td>6</td>
<td>1.0251e-02</td>
<td>< 10^{-16}</td>
<td>< 10^{-16}</td>
</tr>
<tr>
<td>7</td>
<td>5.8360e-04</td>
<td>< 10^{-16}</td>
<td>< 10^{-16}</td>
</tr>
<tr>
<td>8</td>
<td>1.9039e-06</td>
<td>< 10^{-16}</td>
<td>< 10^{-16}</td>
</tr>
<tr>
<td>9</td>
<td>2.0264e-11</td>
<td>< 10^{-16}</td>
<td>< 10^{-16}</td>
</tr>
<tr>
<td>10</td>
<td>0.0000e+00</td>
<td>< 10^{-16}</td>
<td>< 10^{-16}</td>
</tr>
</tbody>
</table>
Matrix iterations also 1D scalar once you diagonalize

Pták's nondiscrete induction and its application to matrix iterations, Liesen, IMA J. Num. Anal.,
1. Nonlinear Solvers
2. Discretization
3. Conclusions
4. Non-asymptotic Convergence
5. AMR
Mesh Refinement in PETSc

Structured
- DMDA
 - Uniform

Unstructured
- DMPLex
 - Uniform
 - Triangle
 - [C]Tetgen

M. Knepley (Rice)
Mesh Refinement in PETSc

Structured
- DMDA
 - Uniform

Unstructured
- DMplex
 - Uniform
 - Triangle
 - [C]Tetgen

Tree-structured
- DMForest
 - p4est
The p4est library (lead developer Carsten Burstedde) provides scalable AMR routines via a *forest-of-octrees/quadtrees*:

- a unstructured hexahedral mesh (“the forest”);
- where each hexahedron contains an arbitrarily refined octree;
- space-filling curve (SFC) orders elements;
- philosophy: as-simple-as-possible coarse mesh describes geometry, refinement captures all detail.

not a framework: does not have numerical methods

- Used for parallelism by Deal.II
- Tight integration with solvers (e.g., multilevel) is still the domain of experts (next slide)
Integrating solvers with p4est (or any format)

- **Comparison** of numerical methods (discretizations (FE/FV), solvers (FAS/NASM/etc.)) requires implementation of numerical methods.
- Implementations for exotic formats can be expensive (man hours) and error prone.
- Numerical methods we are interested in are naturally described with operations on unstructured meshes (DMPIlex).

```c
DoSomething_p4est (DM dmp4est) {
  if (dmp4est->ops->dosomething) { /* optimized implementation */
    (dmp4est->ops->dosomething) (dmp4est);
  } else {
    DM dmplex;
    DMConvert (dmp4est, &dmplex);
    DoSomething (dmplex);
    DMDestroy (&dmplex);
  }
}
```
Integrating solvers with p4est (or any format)

- **Comparison** of numerical methods (discretizations (FE/FV), solvers (FAS/NASM/etc.)) requires **implementation** of numerical methods.
- Implementations for exotic formats can be expensive (man hours) and error prone.
- Numerical methods we are interested in are naturally described with operations on unstructured meshes (DMPlex).

```c
DoSomething_p4est (DM dmp4est)
{
    if (dmp4est->ops->dosomething) {
        /* optimized implementation */
        (dmp4est->ops->dosomething) (dmp4est);
    } else {
        DM dmplex;

        DMConvert (dmp4est, &dmplex);
        DoSomething (dmplex);
        DMDestroy (&dmplex);
    }
}
```
DMPlux is designed for conformal meshes...

Vertices

Edges

Cells

Depth 0

Depth 1

Depth 2
Nonconformal, Unstructured Meshes

...but now can handle nonconformal with parent/child relationships.
Nonconformal, Unstructured Meshes

...for arbitrary elements.
Hanging Nodes

Hanging-node continuity constraints are computed for arbitrary finite elements via dual-space functional mapping.

To enforce continuity at the interface (gray), each reference-cell functional σ_r for K_i is pushed-forward via $\varphi_j^{-1} \circ \varphi_i$ and evaluated at each shape function ψ_s for cell K_j, creating the constraint matrix C_{rs}.