Finite Element Assembly on Arbitrary Meshes

Matthew G Knepley 1 and Andy R Terrel 2

1Mathematics and Computer Science Division
Argonne National Laboratory
2Department of Computer Science
University of Chicago

March 12, 2008
SIAM Conference on Parallel Processing for Scientific Computing
Atlanta, Georgia
Rethinking the Mesh

Parallelism

FEM
Hierarchy Abstractions

- Generalize to a set of linear spaces
 - **Sieve** provides topology, can also model **Mat**
 - **Section** generalizes **Vec**
 - Spaces interact through an **Overlap** (just a **Sieve**)

- Basic operations
 - Restriction to finer subspaces, **restrict()**/**update()**
 - Assembly to the subdomain, **complete()**

- Allow reuse of geometric and multilevel algorithms
Combinatorial Topology gives us a framework for geometric computing.

- Abstract to a relation, **covering**, on sieve points
 - Points can represent any mesh element
 - Covering can be thought of as adjacency
 - Relation can be expressed in a DAG (Hasse Diagram)

- Simple query set:
 - provides a general API for geometric algorithms
 - leads to simpler implementations
 - can be more easily optimized
Combinatorial Topology gives us a framework for geometric computing.

- Abstract to a relation, **covering**, on sieve points
 - Points can represent any mesh element
 - Covering can be thought of as adjacency
 - Relation can be expressed in a DAG (Hasse Diagram)

- Simple query set:
 - provides a general API for geometric algorithms
 - leads to simpler implementations
 - can be more easily optimized
Combinatorial Topology gives us a framework for geometric computing.

- Abstract to a relation, covering, on sieve points
 - Points can represent any mesh element
 - Covering can be thought of as adjacency
 - Relation can be expressed in a DAG (Hasse Diagram)

- Simple query set:
 - provides a general API for geometric algorithms
 - leads to simpler implementations
 - can be more easily optimized
NO explicit references to element type
- A point may be any mesh element
- \texttt{getCone(point)}: adjacent (d-1)-elements
- \texttt{getSupport(point)}: adjacent (d+1)-elements

Transitive closure
- \texttt{closure(cell)}: The computational unit for FEM

Algorithms independent of mesh
- dimension
- shape (even hybrid)
- global topology
- data layout
Rethinking the Mesh

Unstructured Interface (after)

- **NO** explicit references to element type
 - A point may be any mesh element
 - `getCone(point)`: adjacent \((d-1)\)-elements
 - `getSupport(point)`: adjacent \((d+1)\)-elements

- **Transitive closure**
 - `closure(cell)`: The computational unit for FEM

- **Algorithms independent of mesh**
 - dimension
 - shape (even hybrid)
 - global topology
 - data layout
NO explicit references to element type
- A point may be any mesh element
- getCone(point): adjacent (d-1)-elements
- getSupport(point): adjacent (d+1)-elements

Transitive closure
- closure(cell): The computational unit for FEM

Algorithms independent of mesh
- dimension
- shape (even hybrid)
- global topology
- data layout
Incidence/covering arrows

$\text{cone}(0) = \{2, 3, 4\}$

$\text{support}(7) = \{2, 3\}$
Incidence/covering arrows

\[\text{cone}(0) = \{2, 3, 4\} \]

\[\text{support}(7) = \{2, 3\} \]
Rethinking the Mesh

Doublet Mesh

- Incidence/covering arrows
- $cone(0) = \{2, 3, 4\}$
- $support(7) = \{2, 3\}$
Incidence/covering arrows

\[\text{closure}(0) = \{0, 2, 3, 4, 7, 8, 9\} \]

\[\text{star}(7) = \{7, 2, 3, 0\} \]
Incidence/covering arrows

$\text{closure}(0) = \{0, 2, 3, 4, 7, 8, 9\}$

$\text{star}(7) = \{7, 2, 3, 0\}$
Incidence/covering arrows

meet(0, 1) = \{4\}

join(8, 9) = \{4\}
Incidence/covering arrows

\[\text{meet}(0, 1) = \{4\} \]

\[\text{join}(8, 9) = \{4\} \]
Section interface

- \(\text{restrict}(0) = \{ f_0 \} \)
- \(\text{restrict}(2) = \{ v_0 \} \)
- \(\text{restrict}(6) = \{ e_0, e_1 \} \)
Section interface
- \(\text{restrict}(0) = \{ f_0 \} \)
- \(\text{restrict}(2) = \{ v_0 \} \)
- \(\text{restrict}(6) = \{ e_0, e_1 \} \)
Section interface

- `restrict(0) = \{f_0\}`
- `restrict(2) = \{v_0\}`
- `restrict(6) = \{e_0, e_1\}`
Doublet Section

- **Section interface**
 - \(\text{restrict}(0) = \{f_0\}\)
 - \(\text{restrict}(2) = \{v_0\}\)
 - \(\text{restrict}(6) = \{e_0, e_1\}\)
Topological traversals: follow connectivity

- restrictClosure(0) = \{ v_0, e_0, e_1, e_2, e_3, e_4, e_5, v_0, v_1, v_2 \}
- restrictStar(7) = \{ v_0, e_0, e_1, e_4, e_5, f_0 \}
Topological traversals: follow connectivity

- $\text{restrictClosure}(0) = \{ f_0 e_0 e_1 e_2 e_3 e_4 e_5 v_0 v_1 v_2 \}$
- $\text{restrictStar}(7) = \{ v_0 e_0 e_1 e_4 e_5 f_0 \}$
Topological traversals: follow connectivity

- \(\text{restrictClosure}(0) = \{ f_0 e_0 e_1 e_2 e_3 e_4 e_5 v_0 v_1 v_2 \} \)
- \(\text{restrictStar}(7) = \{ v_0 e_0 e_1 e_4 e_5 f_0 \} \)
Outline

1. Rethinking the Mesh
2. Parallelism
3. FEM
Localization

- Restrict to patches (here an edge closure)
- Compute locally
Delta

- Restrict further to the overlap
- Overlap now carries twice the data
- Merge/reconcile data on the overlap
 - Addition (FEM)
 - Replacement (FD)
 - Coordinate transform (Sphere)
 - Linear transform (MG)
Update

- Update local patch data
- Completion = restrict → fuse → update, in parallel
Parallelism

Completion

- A ubiquitous parallel form of restrict \rightarrow fuse \rightarrow update
- Operates on Sections
 - Sieves can be "downcast" to Sections
- Based on two operations
 - Data exchange through overlap
 - Fusion of shared data
Completion has many uses:

- **FEM** accumulating integrals on shared faces
- **FVM** accumulating fluxes on shared cells
- **FDM** setting values on ghost vertices
 - distributing mesh entities after partition
 - redistributing mesh entities and data for load balance
 - accumulating matvec for a partially assembled matrix
Completion has many uses:

FEM accumulating integrals on shared faces

FVM accumulating fluxes on shared cells

FDM setting values on ghost vertices
 - distributing mesh entities after partition
 - redistributing mesh entities and data for load balance
 - accumulating matvec for a partially assembled matrix
Completion has many uses:

FEM accumulating integrals on shared faces

FVM accumulating fluxes on shared cells

FDM setting values on ghost vertices

- distributing mesh entities after partition
- redistributing mesh entities and data for load balance
- accumulating matvec for a partially assembled matrix
Completion has many uses:

FEM accumulating integrals on shared faces

FVM accumulating fluxes on shared cells

FDM setting values on ghost vertices
 - distributing mesh entities after partition
 - redistributing mesh entities and data for load balance
 - accumulating matvec for a partially assembled matrix
Completion has many uses:

FEM accumulating integrals on shared faces

FVM accumulating fluxes on shared cells

FDM setting values on ghost vertices
- distributing mesh entities after partition
- redistributing mesh entities and data for load balance
- accumulating matvec for a partially assembled matrix
Completion has many uses:

- **FEM** accumulating integrals on shared faces
- **FVM** accumulating fluxes on shared cells
- **FDM** setting values on ghost vertices
 - distributing mesh entities after partition
 - redistributing mesh entities and data for load balance
 - accumulating matvec for a partially assembled matrix
Completion has many uses:

FEM accumulating integrals on shared faces

FVM accumulating fluxes on shared cells

FDM setting values on ghost vertices
- distributing mesh entities after partition
- redistributing mesh entities and data for load balance
- accumulating matvec for a partially assembled matrix
Distributing a mesh means

- distributing the topology (Sieve)
- distributing data (Section)

However, a Sieve can be interpreted as a Section of cone(s)!
Mesh Distribution

Distributing a mesh means

- distributing the topology (Sieve)
- distributing data (Section)

However, a Sieve can be interpreted as a Section of `cone()` s!
Distributing a mesh means

- distributing the topology (Sieve)
- distributing data (Section)

However, a Sieve can be interpreted as a Section of cone()s!
Distributing a mesh means
- distributing the topology (Sieve)
- distributing data (Section)

However, a Sieve can be interpreted as a Section of \(\text{cone}(\) \) s!
Outline

1. Rethinking the Mesh
2. Parallelism
3. FEM
FEM Components

- Section definition
- Integration
- Assembly and Boundary conditions
Finite Element Integrator And Tabulator by Rob Kirby

http://fenicsproject.org/

FIAT understands

- Reference element shapes (line, triangle, tetrahedron)
- Quadrature rules
- Polynomial spaces
- Functionals over polynomials (dual spaces)
- Derivatives

Can build arbitrary elements by specifying the Ciarlet triple \((K, P, P')\)

FIAT is part of the FEniCS project
Finite Element Integrator And Tabulator by Rob Kirby

http://fenicsproject.org/

FIAT understands

- Reference element shapes (line, triangle, tetrahedron)
- Quadrature rules
- Polynomial spaces
- Functionals over polynomials (dual spaces)
- Derivatives

Can build arbitrary elements by specifying the Ciarlet triple \((K, P, P')\)

FIAT is part of the FEniCS project
FIAT Integration

The `quadrature.fiat` file contains:
- An element (usually a family and degree) defined by FIAT
- A quadrature rule

It is run
- automatically by `make`, or
- independently by the user

It can take arguments
- `--element_family` and `--element_order`, or
- `make` takes variables `ELEMENT` and `ORDER`

Then `make` produces `quadrature.h` with:
- Quadrature points and weights
- Basis function and derivative evaluations at the quadrature points
- Integration against dual basis functions over the cell
- Local dofs for Section allocation
Section Allocation

We only need the fiber dimension (# of unknowns) of each sieve point (piece of the mesh)

- Determined by discretization
 - By symmetry, only depend on point depth
 - Obtained from FIAT
 - Modified by BC
 - Decouples storage and parallelism from discretization
Section Allocation

We only need the fiber dimension (# of unknowns) of each sieve point (piece of the mesh)

- Determined by discretization
- By symmetry, only depend on point depth
- Obtained from FIAT
- Modified by BC
- Decouples storage and parallelism from discretization
Section Allocation

We only need the fiber dimension (# of unknowns) of each sieve point (piece of the mesh)

- Determined by discretization
- By symmetry, only depend on point depth
- Obtained from FIAT
- Modified by BC
- Decouples storage and parallelism from discretization
Section Allocation

We only need the fiber dimension (# of unknowns) of each sieve point (piece of the mesh)

- Determined by discretization
- By symmetry, only depend on point depth
- Obtained from FIAT
- Modified by BC
- Decouples storage and parallelism from discretization
Section Allocation

We only need the fiber dimension (# of unknowns) of each sieve point (piece of the mesh)

- Determined by discretization
- By symmetry, only depend on point depth
- Obtained from FIAT
- Modified by BC
- Decouples storage and parallelism from discretization
Kinds of Unknowns

We must map local unknowns to the global basis

- FIAT reports the kind of unknown
- Scalars are invariant
 - Lagrange
- Vectors transform as J^{-T}
 - Hermite
- Normal vectors require Piola transform and a choice of orientation
 - Raviart-Thomas
- Moments transform as $|J^{-1}|$
 - Nedelec
- May involve a transformation over the entire closure
 - Argyris
- Conjecture by Kirby relates transformation to affine equivalence
- We have not yet automated this step (FFC, Mython)
Kinds of Unknowns

We must map local unknowns to the global basis

- FIAT reports the kind of unknown
- Scalars are invariant
 - Lagrange
- Vectors transform as J^{-T}
 - Hermite
- Normal vectors require Piola transform and a choice of orientation
 - Raviart-Thomas
- Moments transform as $|J^{-1}|$
 - Nedelec
- May involve a transformation over the entire closure
 - Argyris
- Conjecture by Kirby relates transformation to affine equivalence
- We have not yet automated this step (FFC, Mython)
Kinds of Unknowns

We must map local unknowns to the global basis

- FIAT reports the kind of unknown
 - Scalars are invariant
 - Lagrange
 - Vectors transform as J^{-T}
 - Hermite
 - Normal vectors require Piola transform and a choice of orientation
 - Raviart-Thomas
 - Moments transform as $|J^{-1}|$
 - Nedelec
 - May involve a transformation over the entire closure
 - Argyris
 - Conjecture by Kirby relates transformation to affine equivalence
- We have not yet automated this step (FFC, Mython)
Kinds of Unknowns

We must map local unknowns to the global basis

- FIAT reports the kind of unknown
- Scalars are invariant
 - Lagrange
- Vectors transform as J^{-T}
 - Hermite
- Normal vectors require Piola transform and a choice of orientation
 - Raviart-Thomas
- Moments transform as $|J^{-1}|$
 - Nedelec
- May involve a transformation over the entire closure
 - Argyris
- Conjecture by Kirby relates transformation to affine equivalence
- We have not yet automated this step (FFC, Mython)
Kinds of Unknowns

We must map local unknowns to the global basis

- FIAT reports the kind of unknown
- Scalars are invariant
 - Lagrange
- Vectors transform as J^{-T}
 - Hermite
- Normal vectors require Piola transform and a choice of orientation
 - Raviart-Thomas
- Moments transform as $|J^{-1}|$
 - Nedelec
- May involve a transformation over the entire closure
 - Argyris
- Conjecture by Kirby relates transformation to affine equivalence
- We have not yet automated this step (FFC, Mython)
Kinds of Unknowns

We must map local unknowns to the global basis

- FIAT reports the kind of unknown
- Scalars are invariant
 - Lagrange
- Vectors transform as J^{-T}
 - Hermite
- Normal vectors require Piola transform and a choice of orientation
 - Raviart-Thomas
- Moments transform as $|J^{-1}|$
 - Nedelec
- May involve a transformation over the entire closure
 - Argyris
- Conjecture by Kirby relates transformation to affine equivalence
- We have not yet automated this step (FFC, Mython)
Kinds of Unknowns

We must map local unknowns to the global basis

- FIAT reports the kind of unknown
- Scalars are invariant
 - Lagrange
- Vectors transform as J^{-T}
 - Hermite
- Normal vectors require Piola transform and a choice of orientation
 - Raviart-Thomas
- Moments transform as $|J^{-1}|$
 - Nedelec
- May involve a transformation over the entire closure
 - Argyris
- Conjecture by Kirby relates transformation to affine equivalence
- We have not yet automated this step (FFC, Mython)
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
 <Compute cell geometry>
 <Retrieve values from input vector>
 for(q = 0; q < numQuadPoints; ++q) {
 <Transform coordinates>
 for(f = 0; f < numBasisFuncs; ++f) {
 <Constant term>
 <Linear term>
 <Nonlinear term>
 elemVec[f] *= weight[q] * detJ;
 }
 }
 <Update output vector>
}
<Aggregate updates>
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
 coords = mesh->restrict(coordinates, c);
 v0, J, invJ, detJ = computeGeometry(coords);
 <Retrieve values from input vector>
 for(q = 0; q < numQuadPoints; ++q) {
 <Transform coordinates>
 for(f = 0; f < numBasisFuncs; ++f) {
 <Constant term>
 <Linear term>
 <Nonlinear term>
 elemVec[f] *= weight[q]*detJ;
 }
 }
 <Update output vector>
}
cells = mesh->heightStratum(0);
for (c = cells->begin(); c != cells->end(); ++c) {
 <Compute cell geometry>
 <Retrieve values from input vector>
 for (q = 0; q < numQuadPoints; ++q) {
 <Transform coordinates>
 for (f = 0; f < numBasisFuncs; ++f) {
 <Constant term>
 <Linear term>
 <Nonlinear term>
 elemVec[f] *= weight[q] * detJ;
 }
 }
 <Update output vector>
}
<Aggregate updates>
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
 <Compute cell geometry>
 inputVec = mesh->restrict(U, c);
 for(q = 0; q < numQuadPoints; ++q) {
 <Transform coordinates>
 for(f = 0; f < numBasisFuncs; ++f) {
 <Constant term>
 <Linear term>
 <Nonlinear term>
 elemVec[f] *= weight[q]*detJ;
 }
 }
 <Update output vector>
}

<Aggregate updates>
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
 <Compute cell geometry>
 <Retrieve values from input vector>
 for(q = 0; q < numQuadPoints; ++q) {
 <Transform coordinates>
 for(f = 0; f < numBasisFuncs; ++f) {
 <Constant term>
 <Linear term>
 <Nonlinear term>
 elemVec[f] *= weight[q]*detJ;
 }
 }
 <Update output vector>
}
<Aggregate updates>
Integration

cells = mesh->heightStratum(0);
for (c = cells->begin(); c != cells->end(); ++c) {
 <Compute cell geometry>
 <Retrieve values from input vector>
 for (q = 0; q < numQuadPoints; ++q) {
 realCoords = J*refCoords[q] + v0;
 for (f = 0; f < numBasisFuncs; ++f) {
 <Constant term>
 <Linear term>
 <Nonlinear term>
 elemVec[f] *= weight[q]*detJ;
 }
 }
 <Update output vector>
}
<Aggregate updates>
FEM Integration

cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
 <Compute cell geometry>
 <Retrieve values from input vector>
 for(q = 0; q < numQuadPoints; ++q) {
 <Transform coordinates>
 for(f = 0; f < numBasisFuncs; ++f) {
 <Constant term>
 <Linear term>
 <Nonlinear term>
 elemVec[f] *= weight[q]*detJ;
 }
 }
 <Update output vector>
}

Aggregate updates
Integration

cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
 <Compute cell geometry>
 <Retrieve values from input vector>
 for(q = 0; q < numQuadPoints; ++q) {
 <Transform coordinates>
 for(f = 0; f < numBasisFuncs; ++f) {
 elemVec[f] += basis[q,f]*rhsFunc(realCoords);
 <Linear term>
 <Nonlinear term>
 elemVec[f] *= weight[q]*detJ;
 }
 }
 <Update output vector>
}

<Aggregate updates>
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
 <Compute cell geometry>
 <Retrieve values from input vector>
 for(q = 0; q < numQuadPoints; ++q) {
 <Transform coordinates>
 for(f = 0; f < numBasisFuncs; ++f) {
 <Constant term>
 <Linear term>
 <Nonlinear term>
 elemVec[f] *= weight[q]*detJ;
 }
 }
 <Update output vector>
}
<Aggregate updates>
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
 \texttt{<Compute cell geometry>}
 \texttt{<Retrieve values from input vector>}
 for(q = 0; q < numQuadPoints; ++q) {
 \texttt{<Transform coordinates>}
 for(f = 0; f < numBasisFuncs; ++f) {
 \texttt{<Constant term>}
 for(d = 0; d < \text{dim}; ++d)
 for(e) testDerReal[d] += invJ[e,d]*basisDer[q,e];
 for(g = 0; g < numBasisFuncs; ++g) {
 for(d = 0; d < \text{dim}; ++d)
 for(e) basisDerReal[d] += invJ[e,d]*basisDer[g,e];
 elemMat[f,g] += testDerReal[d]*basisDerReal[e];
 elemVec[f] += elemMat[f,g]*inputVec[g];
 }
 }
 }
 \texttt{<Nonlinear term>}
 elemVec[f] *= weight[q]*detJ;
}
\texttt{<Update output vector>}
\texttt{<Aggregate updates>}

cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
 <Compute cell geometry>
 <Retrieve values from input vector>
 for(q = 0; q < numQuadPoints; ++q) {
 <Transform coordinates>
 for(f = 0; f < numBasisFuncs; ++f) {
 <Constant term>
 <Linear term>
 <Nonlinear term>
 elemVec[f] *= weight[q]*detJ;
 }
 }
 <Update output vector>
}
<Aggregate updates>
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
 <Compute cell geometry>
 <Retrieve values from input vector>
 for(q = 0; q < numQuadPoints; ++q) {
 <Transform coordinates>
 for(f = 0; f < numBasisFuncs; ++f) {
 <Constant term>
 <Linear term>
 elemVec[f] += basis[q,f]*lambda*exp(inputVec[f])
 elemVec[f] *= weight[q]*detJ;
 }
 }
 <Update output vector>
}
<Aggregate updates>
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
 <Compute cell geometry>
 <Retrieve values from input vector>
 for(q = 0; q < numQuadPoints; ++q) {
 <Transform coordinates>
 for(f = 0; f < numBasisFuncs; ++f) {
 <Constant term>
 <Linear term>
 <Nonlinear term>
 elemVec[f] *= weight[q] * detJ;
 }
 }
 <Update output vector>
}
<Aggregate updates>
Integration

cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
 <Compute cell geometry>
 <Retrieve values from input vector>
 for(q = 0; q < numQuadPoints; ++q) {
 <Transform coordinates>
 for(f = 0; f < numBasisFuncs; ++f) {
 <Constant term>
 <Linear term>
 <Nonlinear term>
 elemVec[f] *= weight[q] * detJ;
 }
 }
 mesh->updateAdd(F, c, elemVec);
}
<Aggregate updates>
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
 <Compute cell geometry>
 <Retrieve values from input vector>
 for(q = 0; q < numQuadPoints; ++q) {
 <Transform coordinates>
 for(f = 0; f < numBasisFuncs; ++f) {
 <Constant term>
 <Linear term>
 <Nonlinear term>
 elemVec[f] *= weight[q]*detJ;
 }
 }
 <Update output vector>
}
<Aggregate updates>
cells = mesh->heightStratum(0);
for (c = cells->begin(); c != cells->end(); ++c) {
 <Compute cell geometry>
 <Retrieve values from input vector>
 for (q = 0; q < numQuadPoints; ++q) {
 <Transform coordinates>
 for (f = 0; f < numBasisFuncs; ++f) {
 <Constant term>
 <Linear term>
 <Nonlinear term>
 elemVec[f] *= weight[q]*detJ;
 } // for (f = 0; f < numBasisFuncs; ++f)
 } // for (q = 0; q < numQuadPoints; ++q)
 <Update output vector>
} // for (c = cells->begin(); c != cells->end(); ++c)}
Boundary Conditions

Dirichlet conditions may be expressed as

\[u|_\Gamma = g \]

and implemented by constraints on dofs in a Section

- The user provides a function.

Neumann conditions may be expressed as

\[\nabla u \cdot \hat{n}|_\Gamma = h \]

and implemented by explicit integration along the boundary

- The user provides a weak form.
Dirichlet Values

- Topological boundary is marked during generation
- Cells bordering boundary are marked using markBoundaryCells()
- To set values:
 1. Loop over boundary cells
 2. Loop over the element closure
 3. For each boundary point i, apply the functional N_i to the function g
- The functionals are generated with the quadrature information
- Section allocation applies Dirichlet conditions automatically
 - Values are stored in the Section
 - restrict() behaves normally, update() ignores constraints
Conclusions

Better mathematical abstractions bring concrete benefits

- Vast reduction in complexity
 - Operate directly at the equation and discretization level
 - Automatic generation of integration/assembly routines
 - Dimension independent code

- Expansion of capabilities
 - Parametric models
 - Optimized implementations of integration
 - Multigrid on arbitrary meshes
Better mathematical abstractions bring concrete benefits

- Vast reduction in complexity
 - Operate directly at the equation and discretization level
 - Automatic generation of integration/assembly routines
 - Dimension independent code

- Expansion of capabilities
 - Parametric models
 - Optimized implementations of integration
 - Multigrid on arbitrary meshes
Better mathematical abstractions bring concrete benefits

- Vast reduction in complexity
 - Operate directly at the equation and discretization level
 - Automatic generation of integration/assembly routines
 - Dimension independent code

- Expansion of capabilities
 - Parametric models
 - Optimized implementations of integration
 - Multigrid on arbitrary meshes
References

- **FEniCS Documentation:**
 http://www.fenics.org/wiki/FEniCS_Project
 - Project documentation
 - Users manuals
 - Repositories, bug tracking
 - Image gallery

- **Publications:**
 http://www.fenics.org/wiki/Related_presentations_and_publications
 - Research and publications that make use of FEniCS

- **PETSc Documentation:**
 http://www.mcs.anl.gov/petsc/docs
 - PETSc Users manual
 - Manual pages
 - Many hyperlinked examples
 - FAQ, Troubleshooting info, installation info, etc.
 - Publication using PETSc
Proof is not currently enough to examine solvers