GPUs in Computational Science

Matthew Knepley

1Computation Institute
University of Chicago

Colloquium
Simula Research
Oslo, Norway, September 1, 2010
Collaborators

Chicago Automated Scientific Computing Group:

- **Prof. Ridgway Scott**
 - Dept. of Computer Science, University of Chicago
 - Dept. of Mathematics, University of Chicago

- **Peter Brune**, (biological DFT)
 - Dept. of Computer Science, University of Chicago

- **Dr. Andy Terrel**, (Rheagen)
 - Dept. of Computer Science and TACC, University of Texas at Austin
Simplifying Parallelization of Scientific Codes by a Function-Centric Approach in Python

Jon K. Nilsen, Xing Cai, Bjorn Hoyland, and Hans Petter Langtangen

- Python at the application level
- numpy for data structures
- petsc4py for linear algebra and solvers
- PyCUDA for integration (physics) and assembly
New Model for Scientific Software

Sympy

FFC/SyFi

PETSc

CUDA

OpenCL
What is Missing from this Scheme?

- Unstructured graph traversal
 - Iteration over cells in FEM
 - Use a copy via numpy, use a kernel via Queue
 - (Transitive) Closure of a vertex
 - Use a visitor and copy via numpy
- Depth First Search
 - Hell if I know
- Logic in computation
 - Limiters in FV methods
 - Can sometimes use tricks for branchless logic
 - Flux Corrected Transport for shock capturing
 - Maybe use WENO schemes which can be branchless
- Boundary conditions
 - Restrict branching to PETSc C numbering and assembly calls
- Audience???
What is Missing from this Scheme?

- Unstructured graph traversal
 - Iteration over cells in FEM
 - Use a copy via numpy, use a kernel via Queue
 - (Transitive) Closure of a vertex
 - Use a visitor and copy via numpy
- Depth First Search
 - Hell if I know

- Logic in computation
 - Limiters in FV methods
 - Can sometimes use tricks for branchless logic
 - Flux Corrected Transport for shock capturing
 - Maybe use WENO schemes which can be branchless
- Boundary conditions
 - Restrict branching to PETSc C numbering and assembly calls

- Audience???
What is Missing from this Scheme?

- Unstructured graph traversal
 - Iteration over cells in FEM
 - Use a copy via numpy, use a kernel via Queue
 - (Transitive) Closure of a vertex
 - Use a visitor and copy via numpy
- Depth First Search
 - Hell if I know

- Logic in computation
 - Limiters in FV methods
 - Can sometimes use tricks for branchless logic
 - Flux Corrected Transport for shock capturing
 - Maybe use WENO schemes which can be branchless
- Boundary conditions
 - Restrict branching to PETSc C numbering and assembly calls

Audience???
What is Missing from this Scheme?

- Unstructured graph traversal
 - Iteration over cells in FEM
 - Use a copy via numpy, use a kernel via Queue
 - (Transitive) Closure of a vertex
 - Use a visitor and copy via numpy
 - Depth First Search
 - Hell if I know

- Logic in computation
 - Limiters in FV methods
 - Can sometimes use tricks for branchless logic
 - Flux Corrected Transport for shock capturing
 - Maybe use WENO schemes which can be branchless
 - Boundary conditions
 - Restrict branching to PETSc C numbering and assembly calls

- Audience???
What is Missing from this Scheme?

- Unstructured graph traversal
 - Iteration over cells in FEM
 - Use a copy via numpy, use a kernel via Queue
 - (Transitive) Closure of a vertex
 - Use a visitor and copy via numpy
- Depth First Search
 - Hell if I know

- Logic in computation
 - Limiters in FV methods
 - Can sometimes use tricks for branchless logic
 - Flux Corrected Transport for shock capturing
 - Maybe use WENO schemes which can be branchless
- Boundary conditions
 - Restrict branching to PETSc C numbering and assembly calls

- Audience???
What is Missing from this Scheme?

- Unstructured graph traversal
 - Iteration over cells in FEM
 - Use a copy via numpy, use a kernel via Queue
 - (Transitive) Closure of a vertex
 - Use a visitor and copy via numpy
 - Depth First Search
 - Hell if I know

- Logic in computation
 - Limiters in FV methods
 - Can sometimes use tricks for branchless logic
 - Flux Corrected Transport for shock capturing
 - Maybe use WENO schemes which can be branchless

- Boundary conditions
 - Restrict branching to PETSc C numbering and assembly calls

Audience???
What is Missing from this Scheme?

- Unstructured graph traversal
 - Iteration over cells in FEM
 - Use a copy via numpy, use a kernel via Queue
 - (Transitive) Closure of a vertex
 - Use a visitor and copy via numpy

- Depth First Search
 - Hell if I know

- Logic in computation
 - Limiters in FV methods
 - Can sometimes use tricks for branchless logic
 - Flux Corrected Transport for shock capturing
 - Maybe use WENO schemes which can be branchless

- Boundary conditions
 - Restrict branching to PETSc C numbering and assembly calls

Audience???
What is Missing from this Scheme?

- Unstructured graph traversal
 - Iteration over cells in FEM
 - Use a copy via numpy, use a kernel via Queue
 - (Transitive) Closure of a vertex
 - Use a visitor and copy via numpy
 - Depth First Search
 - Hell if I know

- Logic in computation
 - Limiters in FV methods
 - Can sometimes use tricks for branchless logic
 - Flux Corrected Transport for shock capturing
 - Maybe use WENO schemes which can be branchless

- Boundary conditions
 - Restrict branching to PETSc C numbering and assembly calls

- Audience???
Outline

1 Introduction

2 Tools
 - numpy
 - petsc4py
 - PyCUDA
 - FEniCS

3 FEM on the GPU

4 PETSc-GPU

5 Conclusions
Outline

2 Tools
- numpy
- petsc4py
- PyCUDA
- FEniCS
numpy is ideal for building Python data structures

- Supports multidimensional arrays
- Easily interfaces with C/C++ and Fortran
- High performance BLAS/LAPACK and functional operations
- Python 2 and 3 compatible
- Used by petsc4py to talk to PETSc
Outline

2 Tools

- numpy
- petsc4py
- PyCUDA
- FEniCS
petcs4py provides Python bindings for PETSc

- Provides **ALL** PETSc functionality in a Pythonic way
 - Logging using the Python `with` statement
- Can use Python callback functions
 - `SNESSetFunction()`, `SNESSetJacobian()`
- Manages all memory (creation/destruction)
- Visualization with **matplotlib**
petsc4py Installation

- **Automatic**
 - `pip install --install-options=-user petsc4py`
 - **Uses** `$PETSC_DIR` **and** `$PETSC_ARCH`
 - **Installed into** `$HOME/.local`
 - No additions to `PYTHONPATH`

- **From Source**
 - `virtualenv python-env`
 - `source ./python-env/bin/activate`
 - **Now everything installs into your proxy Python environment**
 - `hg clone https://petsc4py.googlecode.com/hg petsc4py-dev`
 - `ARCHFLAGS="-arch x86_64" python setup.py sdist`
 - `ARCHFLAGS="-arch x86_64" pip install dist/petsc4py-1.1.2.tar.gz`
 - **ARCHFLAGS** only necessary on Mac OSX
petsc4py Examples

- `externalpackages/petsc4py-1.1/demo/bratu2d/bratu2d.py`
 - Solves Bratu equation (SNES ex5) in 2D
 - Visualizes solution with matplotlib

- `src/ts/examples/tutorials/ex8.py`
 - Solves a 1D ODE for a diffusive process
 - Visualize solution using `-vec_view_draw`
 - Control timesteps with `-ts_max_steps`
Tools

- numpy
- petsc4py
- PyCUDA
- FEniCS
PyCUDA and PyOpenCL

Python packages by Andreas Klöckner for embedded GPU programming

- Handles unimportant details automatically
 - CUDA compile and caching of objects
 - Device initialization
 - Loading modules onto card

- Excellent Documentation & Tutorial

- Excellent platform for Metaprogramming
 - Only way to get portable performance
 - Road to FLAME-type reasoning about algorithms
Code Template

```python
<%namespace name="pb" module="performanceBenchmarks" />

${pb.globalMod(isGPU)} void kernel(${pb gridSize(isGPU)}) float *output) {
  ${pb.gridLoopStart(isGPU, load, store)}
  ${pb.threadLoopStart(isGPU, blockDimX)}
  float G[${dim*dim}] = {${', '.join(['3.0']*(dim*dim))}};
  float K[${dim*dim}] = {${', '.join(['3.0']*(dim*dim))}};
  float product = 0.0;
  const int Ooffset = blockIdx*${numThreads};

  // Contract G and K
  % for n in range(numLocalElements):
  %   for alpha in range(dim):
  %     for beta in range(dim):
  %       gIdx = (n*dim + alpha)*dim + beta
  %       kIdx = alpha*dim + beta
  %       product += G[${gIdx}] * K[${kIdx}];
  %   endfor
  % endfor

  output[Ooffset+idx] = product;
  ${pb.threadLoopEnd(isGPU)}
  ${pb.gridLoopEnd(isGPU)}
  return;
}
```
We render code template into strings using a dictionary of inputs.

```python
args = { 'dim': self.dim,
        'numLocalElements': 1,
        'numThreads': self.threadBlockSize}
kernelTemplate = self.getKernelTemplate()
gpuCode = kernelTemplate.render(isGPU = True, **args)
cpuCode = kernelTemplate.render(isGPU = False, **args)
```
```c
__global__ void kernel(float *output) {
    const int gridIdx = blockIdx.x + blockIdx.y * blockDim.x;  
    const int idx     = threadIdx.x + threadIdx.y * 1;  // This is (i, j)
    float G[9] = {3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0};
    float K[9] = {3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0, 3.0};
    float product   = 0.0;
    const int Ooffset = gridIdx * 1;

    // Contract G and K
    product += G[0] * K[0];
    product += G[1] * K[1];
    product += G[4] * K[4];
    product += G[5] * K[5];
    product += G[7] * K[7];
    product += G[8] * K[8];
    output[Ooffset+idx] = product;
    return;
}
```
void kernel(int numInvocations, float *output) {
 for(int gridIdx = 0; gridIdx < numInvocations; ++gridIdx) {
 for(int i = 0; i < 1; ++i) {
 for(int j = 0; j < 1; ++j) {
 const int idx = i + j*1; // This is (i, j)

 float G[9] = {3.0,3.0,3.0,3.0,3.0,3.0,3.0,3.0,3.0};
 float K[9] = {3.0,3.0,3.0,3.0,3.0,3.0,3.0,3.0,3.0};
 float product = 0.0;

 const int Ooffset = gridIdx*1;

 // Contract G and K
 product += G[0] * K[0];
 product += G[1] * K[1];
 product += G[4] * K[4];
 product += G[5] * K[5];
 product += G[7] * K[7];
 product += G[8] * K[8];

 output[Ooffset+idx] = product;
 }
 }
 }
 return;
}
Creating a Module

CPU:

```python
# Output kernel and C support code
self.outputKernelC(cpuCode)
self.writeMakefile()
out, err, status = self.executeShellCommand(’make’)
```

```
\bigskip

GPU:

```
from pycuda.compiler import SourceModule

mod = SourceModule(gpuCode)
self.kernel = mod.get_function(’kernel’)
self.kernelReport(self.kernel, ’kernel’)
```

M. Knepley
Executing a Module

```python
import pycuda.driver as cuda
import pycuda.autoinit

blockDim = (self.dim, self.dim, 1)
start = cuda.Event()
end = cuda.Event()
grid = self.calculateGrid(N, numLocalElements)
start.record()
for i in range(iter):
 self.kernel(cuda.Out(output),
 block = blockDim, grid = grid)
end.record()
end.synchronize()
gpuTimes.append((start.time_till(end)*1e-3/iter)
```
2 Tools

- numpy
- petsc4py
- PyCUDA
- FEniCS
Weak Form Definition

Laplacian

# $P^k$ element

element = FiniteElement("Lagrange", domains[self.dim], k)

v = TestFunction(element)
u = TrialFunction(element)
f = Coefficient(element)

a = inner(grad(v), grad(u))*dx
L = v*f*dx
Element integrals are decomposed into analytic and geometric parts:

\[
\int_{\mathcal{T}} \nabla \phi_i(x) \cdot \nabla \phi_j(x) \, dx
\]

\[
= \int_{\mathcal{T}} \frac{\partial \phi_i(x)}{\partial x_\alpha} \frac{\partial \phi_j(x)}{\partial x_\alpha} \, dx
\]

\[
= \int_{\mathcal{T}_{\text{ref}}} \frac{\partial \xi_\beta}{\partial x_\alpha} \frac{\partial \phi_i(\xi)}{\partial \xi_\beta} \frac{\partial \xi_\gamma}{\partial x_\alpha} \frac{\partial \phi_j(\xi)}{\partial \xi_\gamma} |J| \, dx
\]

\[
= \frac{\partial \xi_\beta}{\partial x_\alpha} \frac{\partial \xi_\gamma}{\partial x_\alpha} |J| \int_{\mathcal{T}_{\text{ref}}} \frac{\partial \phi_i(\xi)}{\partial \xi_\beta} \frac{\partial \phi_j(\xi)}{\partial \xi_\gamma} \, dx
\]

\[
= G^{\beta\gamma}(\mathcal{T}) K_{\beta\gamma}^{ij}
\]

Coefficients are also put into the geometric part.
from ffc.analysis import analyze_forms
from ffc.compiler import compute_ir

parameters = ffc.default_parameters()
parameters['representation'] = 'tensor'
analysis = analyze_forms([a, L], {}, parameters)
ir = compute_ir(analysis, parameters)

a_K = ir[2][0][ 'AK'][0][0]
a_G = ir[2][0][ 'AK'][0][1]

K = a_K.A0.astype(numpy.float32)
G = a_G
Outline

1. Introduction
2. Tools
3. FEM on the GPU
4. PETSc-GPU
5. Conclusions
Element integrals are decomposed into analytic and geometric parts:

\[
\int_{\mathcal{T}} \nabla \phi_i(x) \cdot \nabla \phi_j(x) \, dx
\]

\[= \int_{\mathcal{T}} \frac{\partial \phi_i(x)}{\partial x_\alpha} \frac{\partial \phi_j(x)}{\partial x_\alpha} \, dx \]  \hspace{1cm} (6)

\[= \int_{\mathcal{T}_{\text{ref}}} \frac{\partial \xi_\beta}{\partial x_\alpha} \frac{\partial \phi_i(\xi)}{\partial \xi_\beta} \frac{\partial \xi_\gamma}{\partial x_\alpha} \frac{\partial \phi_j(\xi)}{\partial \xi_\gamma} |J| \, dx \]  \hspace{1cm} (7)

\[= \frac{\partial \xi_\beta}{\partial x_\alpha} \frac{\partial \xi_\gamma}{\partial x_\alpha} |J| \int_{\mathcal{T}_{\text{ref}}} \frac{\partial \phi_i(\xi)}{\partial \xi_\beta} \frac{\partial \phi_j(\xi)}{\partial \xi_\gamma} \, dx \]  \hspace{1cm} (8)

\[= G^{\beta \gamma}(\mathcal{T}) K^{ij}_{\beta \gamma} \]  \hspace{1cm} (9)

Coefficients are also put into the geometric part.
Form Decomposition

Additional fields give rise to multilinear forms.

\[
\int_T \phi_i(x) \cdot (\phi_k(x) \nabla \phi_j(x)) \, dA = \int_T \phi_i^\beta(x) \left( \phi_k^\alpha(x) \frac{\partial \phi_j^\beta(x)}{\partial x_\alpha} \right) \, dA \tag{11}
\]

\[
= \int_{T_{\text{ref}}} \phi_i^\beta(\xi) \phi_k^\alpha(\xi) \frac{\partial \xi_\gamma}{\partial x_\alpha} \frac{\partial \phi_j^\beta(\xi)}{\partial \xi_\gamma} |J| \, dA \tag{12}
\]

\[
= \frac{\partial \xi_\gamma}{\partial x_\alpha} |J| \int_{T_{\text{ref}}} \phi_i^\beta(\xi) \phi_k^\alpha(\xi) \frac{\partial \phi_j^\beta(\xi)}{\partial \xi_\gamma} \, dA \tag{13}
\]

\[
= G^{\alpha\gamma}(T) K_{ijk}^{\alpha\gamma} \tag{14}
\]

The index calculus is fully developed by Kirby and Logg in A Compiler for Variational Forms.
Isoparametric Jacobians also give rise to multilinear forms

\[ \int_{\mathcal{T}} \nabla \phi_i(x) \cdot \nabla \phi_j(x) \, dA \] (16)

\[ = \int_{\mathcal{T}} \frac{\partial \phi_i(x)}{\partial x_\alpha} \frac{\partial \phi_j(x)}{\partial x_\alpha} \, dA \] (17)

\[ = \int_{\mathcal{T}_{\text{ref}}} \frac{\partial \xi_\beta}{\partial x_\alpha} \frac{\partial \phi_i(\xi)}{\partial \xi_\gamma} \frac{\partial \phi_j(\xi)}{\partial \xi_\gamma} |J| \, dA \] (18)

\[ = |J| \int_{\mathcal{T}_{\text{ref}}} \phi_k J^\beta_\alpha \frac{\partial \phi_i(\xi)}{\partial \xi_\beta} \phi_l J^{\gamma_\alpha} \frac{\partial \phi_j(\xi)}{\partial \xi_\gamma} \, dA \] (19)

\[ = J^\beta_\alpha J^{\gamma_\alpha} |J| \int_{\mathcal{T}_{\text{ref}}} \phi_k \frac{\partial \phi_i(\xi)}{\partial \xi_\beta} \phi_l \frac{\partial \phi_j(\xi)}{\partial \xi_\gamma} \, dA \] (20)

\[ = G^{\beta_\gamma}_{kl}(\mathcal{T}) K^{ijkl}_{\beta_\gamma} \] (21)

A different space could also be used for Jacobians
Element matrix $K$ is now made up of small tensors

Contract all tensor elements with each the geometry tensor $G(\mathcal{T})$

<table>
<thead>
<tr>
<th>3 0</th>
<th>0 -1</th>
<th>1 1</th>
<th>-4 -4</th>
<th>0 4</th>
<th>0 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
<td>0 0</td>
</tr>
<tr>
<td>-1 0</td>
<td>0 3</td>
<td>1 1</td>
<td>0 0</td>
<td>0 4</td>
<td>-4 -4</td>
</tr>
<tr>
<td>3 0</td>
<td>3 3</td>
<td>-4 0</td>
<td>0 0</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>1 0</td>
<td>1 0</td>
<td>-4 0</td>
<td>0 0</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>1 0</td>
<td>1 0</td>
<td>-4 0</td>
<td>0 0</td>
<td>0 0</td>
<td></td>
</tr>
<tr>
<td>-4 0</td>
<td>0 0</td>
<td>-4 -4</td>
<td>8 4</td>
<td>0 -4</td>
<td>0 4</td>
</tr>
<tr>
<td>-4 0</td>
<td>0 0</td>
<td>0 0</td>
<td>4 8</td>
<td>-4 -8</td>
<td>4 0</td>
</tr>
<tr>
<td>0 0</td>
<td>0 4</td>
<td>0 0</td>
<td>0 -4</td>
<td>8 4</td>
<td>-8 -4</td>
</tr>
<tr>
<td>0 0</td>
<td>0 4</td>
<td>0 0</td>
<td>-4 -8</td>
<td>4 8</td>
<td>-4 0</td>
</tr>
<tr>
<td>0 0</td>
<td>0 -4</td>
<td>0 0</td>
<td>0 4</td>
<td>-8 -4</td>
<td>8 4</td>
</tr>
<tr>
<td>0 0</td>
<td>0 -4</td>
<td>-4 -4</td>
<td>4 0</td>
<td>-4 0</td>
<td>4 8</td>
</tr>
</tbody>
</table>
For $N$ elements, map blocks of $N_L$ elements to each Thread Block (TB)

- Launch grid must be $g_x \times g_y = \frac{N}{N_L}$
- TB grid will depend on the specific algorithm
- Output is size $N_{\text{basis}} \times N_{\text{basis}} \times N_L$

We can split a TB to work on multiple, $N_B$, elements at a time

- Note that each TB always gets $N_L$ elements, so $N_B$ must divide $N_L$
Mapping $G^{\alpha \beta} K_{\alpha \beta}^{ij}$ to the GPU

Kernel Arguments

```c
__global__
void integrateJacobian(float *elemMat,
 float *geometry,
 float *analytic)
```

- **geometry**: Array of $G$ tensors for each element
- **analytic**: $K$ tensor
- **elemMat**: Array of $E = G : K$ tensors for each element
We can interleave stores with computation, or wait until the end

- Waiting could improve coalescing of writes
- Interleaving could allow overlap of writes with computation

Also need to

- Coalesce accesses between global and local/shared memory
  (use `moveArray()`)
- Limit use of shared and local memory
Superior GPU memory bandwidth is due to both

<table>
<thead>
<tr>
<th></th>
<th>CPU</th>
<th>GPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bus Width (bits)</td>
<td>64</td>
<td>512</td>
</tr>
<tr>
<td>Bus Clock Speed (MHz)</td>
<td>400</td>
<td>1600</td>
</tr>
<tr>
<td>Memory Bandwidth (GB/s)</td>
<td>3</td>
<td>102</td>
</tr>
<tr>
<td>Latency (cycles)</td>
<td>240</td>
<td>600</td>
</tr>
</tbody>
</table>

Tesla always accesses blocks of 64 or 128 bytes
Choose strategies to minimize reductions

- Only reductions occur in summation for contractions
  - Similar to the reduction in a quadrature loop

- **Strategy #1**: Each thread uses all of $K$

- **Strategy #2**: Do each contraction in a separate thread
Each thread computes an entire element matrix, so that

\[ \text{blockDim} = (N_L/N_B, 1, 1) \]

We will see that there is little opportunity to overlap computation and memory access.
Read $K$ into shared memory (need to synchronize before access)

```c
__shared__ float K[${\text{dim}}^{\text{dim}}\times\text{numBasisFuncs}\times\text{numBasisFuncs}$];

${\text{fm.moveArray('K', 'analytic', dim^{\text{dim}}\times\text{numBasisFuncs}\times\text{numBasisFuncs}, ', numThreads})}$

__syncthreads();
```
Strategy #1
Geometry

- Each thread handles $N_B$ elements
- Read $G$ into local memory (not coalesced)
- Interleaving means writing after each thread does a single element matrix calculation

```c
float G[\{\text{dim}\times\text{dim}\times\text{numBlockElements}\}];

if (interleaved) {
 const int Goffset = (gridIdx*\{\text{numLocalElements}\} + idx)\{\text{dim}\times\text{dim}\};
 for n in range(\text{numBlockElements}){
 \{\text{fm.moveArray('G', 'geometry', \text{dim}\times\text{dim}, 'Goffset', blockNumber = n*\text{numLocalElements/numBlockElements}, localBlockNumber = n, isCoalesced = False)}\}
 }
} else {
 const int Goffset = (gridIdx*\{\text{numLocalElements/numBlockElements}\} + idx)\{\text{dim}\times\text{dim}\times\text{numBlockElements}\};
 \{\text{fm.moveArray('G', 'geometry', \text{dim}\times\text{dim}\times\text{numBlockElements}, 'Goffset', isCoalesced = False)}\}
}
We write element matrices out contiguously by TB

```c
const int matSize = numBasisFuncs * numBasisFuncs;
const int Eoffset = gridIdx * matSize * numLocalElements;

if (interleaved) {
    const int elemOff = idx * matSize;
    __shared__ float E[matSize * numLocalElements / numBlockElements];
} else {
    const int elemOff = idx * matSize * numBlockElements;
    __shared__ float E[matSize * numLocalElements];
}
```
matSize = numBasisFuncs * numBasisFuncs

if interleaveStores:
 for b in range(numBlockElements):
 # Do 1 contraction for each thread
 __syncthreads();
 fm.moveArray('E', 'elemMat',
 matSize * numLocalElements / numBlockElements,
 'Eoffset', numThreads, blockNumber = n, isLoad = 0)

else:
 # Do numBlockElements contractions for each thread
 __syncthreads();
 fm.moveArray('E', 'elemMat',
 matSize * numLocalElements,
 'Eoffset', numThreads, isLoad = 0)
Each thread computes a single element of an element matrix, so that

$$\text{blockDim} = (N_{\text{basis}}, N_{\text{basis}}, N_B)$$

This allows us to overlap computation of another element in the TB with writes for the first.
Strategy #2
Analytic Part

- Assign an (i, j) block of K to local memory
- N_B threads will simultaneously calculate a contraction

```c
const int Kidx = threadIdx.x + threadIdx.y*numBasisFuncs; // This is (i, j)
const int idx = Kidx + threadIdx.z*numBasisFuncs*numBasisFuncs;
const int Koffset = Kidx*dim*dim;
float K[dim*dim];

% for alpha in range(dim):
%    for beta in range(dim):
%        kIdx = alpha*dim + beta
%        K[kIdx] = analytic[Koffset+kIdx];
%    endfor
% endfor
```
Strategy #2
Geometry

- Store N_L G tensors into shared memory
- Interleaving means writing after each thread does a single element calculation

```cpp
const int Goffset = blockIdx * dim * dim * numLocalElements;
__shared__ float G[dim * dim * numLocalElements];
${fm.moveArray('G', 'geometry', dim * dim * numLocalElements, 'Goffset', numThreads)}
__syncthreads();
```
Strategy #2
Output

- We write element matrices out contiguously by TB
- If interleaving stores, only need a single product
- Otherwise, need N_L/N_B, one per element processed by a thread

```c
const int matSize = numBasisFuncs * numBasisFuncs;
const int Eoffset = gridIdx * matSize * numLocalElements;

if (interleaved) {
    float product = 0.0;
    const int elemOff = idx * matSize;
} else {
    float product[numLocalElements / numBlockElements];
    const int elemOff = idx * matSize * numBlockElements;
}
```
if interleaveStores:
 for n in range(numLocalElements/numBlockElements):
 # Do 1 contraction for each thread
 __syncthreads()
 # Do coalesced write of element matrix
 elemMat[Eoffset+idx+n*numThreads] = product
else:
 # Do numLocalElements/numBlockElements contractions
 # save results in product[]
 for n in range(numLocalElements/numBlockElements):
 elemMat[Eoffset+idx+n*numThreads] = product[n]
Results

GTX 285

CPU vs. GPU Flop Rate for 3D P_1 Lagrange

Element Blocksize = 32
CPU vs. GPU Flop Rate for 3D P_1 Lagrange

Element Blocksize = 32
Interleaving stores
Results
GTX 285, 2 Simultaneous Elements

CPU vs. GPU Flop Rate for 3D P_1 Lagrange

Element Blocksize = 32
Results
GTX 285, 2 Simultaneous Elements

CPU vs. GPU Flop Rate for 3D P_1 Lagrange

Element Blocksize = 32
Interleaving stores
Results

GTX 285

CPU vs. GPU Flop Rate for 3D P_1 Lagrange

Element Blocksize = 64
Results
GTX 285

CPU vs. GPU Flop Rate for 3D P_1 Lagrange

Element Blocksize = 64
Interleaving stores
Results
GTX 285, 2 Simultaneous Elements

CPU vs. GPU Flop Rate for 3D P_1 Lagrange

Element Blocksize = 64
Results
GTX 285, 2 Simultaneous Elements

CPU vs. GPU Flop Rate for 3D P_1 Lagrange

Element Blocksize = 64
Interleaving stores
CPU vs. GPU Flop Rate for 3D P_1 Lagrange

Element Blocksize = 128
Results

GTX 285

CPU vs. GPU Flop Rate for 3D P_1 Lagrange

Element Blocksize = 128
Interleaving stores
Results
GTX 285, 2 Simultaneous Elements

CPU vs. GPU Flop Rate for 3D P_1 Lagrange

Element Blocksize = 128
Results
GTX 285, 2 Simultaneous Elements

CPU vs. GPU Flop Rate for 3D P_1 Lagrange

Element Blocksize = 128
Interleaving stores
Results
GTX 285, 2 Simultaneous Elements

CPU vs. GPU Flop Rate for 3D P_1 Lagrange

Element Blocksize = 256
Results
GTX 285, 2 Simultaneous Elements

CPU vs. GPU Flop Rate for 3D P_1 Lagrange

Element Blocksize = 256
Interleaving stores
Results
GTX 285, 4 Simultaneous Elements

CPU vs. GPU Flop Rate for 3D P_1 Lagrange

Element Blocksize = 256
Results
GTX 285, 4 Simultaneous Elements

CPU vs. GPU Flop Rate for 3D P_1 Lagrange

Element Blocksize = 256
Interleaving stores
Outline

1. Introduction
2. Tools
3. FEM on the GPU
4. PETSc-GPU
5. Conclusions
Thrust is a CUDA library of parallel algorithms

- Interface similar to C++ Standard Template Library
- Containers (vector) on both host and device
- Algorithms: sort, reduce, scan
- Freely available, part of PETSc configure (-with-thrust-dir)
- Included as part of CUDA 4.0 installation
Cusp is a CUDA library for sparse linear algebra and graph computations

- Builds on data structures in Thrust
- Provides sparse matrices in several formats (CSR, Hybrid)
- Includes some preliminary preconditioners (Jacobi, SA-AMG)
- Freely available, part of PETSc configure (`-with-cusp-dir`)
Strategy: Define a new Vec implementation

- Uses Thrust for data storage and operations on GPU
- Supports full PETSc Vec interface
- Inherits PETSc scalar type
- Can be activated at runtime, -vec_type cuda
- PETSc provides memory coherence mechanism
PETSc Objects now hold a coherence flag

<table>
<thead>
<tr>
<th>Flag</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PETSC_CUDA_UNALLOCATED</td>
<td>No allocation on the GPU</td>
</tr>
<tr>
<td>PETSC_CUDA_GPU</td>
<td>Values on GPU are current</td>
</tr>
<tr>
<td>PETSC_CUDA_CPU</td>
<td>Values on CPU are current</td>
</tr>
<tr>
<td>PETSC_CUDA_BOTH</td>
<td>Values on both are current</td>
</tr>
</tbody>
</table>

Table: Flags used to indicate the memory state of a PETSc CUDA Vec object.
Also define new **Mat** implementations

- Uses **Cusp** for data storage and operations on GPU
- Supports full PETSc **Mat** interface, some ops on CPU
- Can be activated at runtime, `-mat_type aijcuda`
- Notice that parallel matvec necessitates off-GPU data transfer
Solvers come for **Free**

Preliminary Implementation of PETSc Using GPU,
Minden, Smith, Knepley, 2010

- All linear algebra types work with solvers
- Entire solve can take place on the GPU
 - Only communicate scalars back to CPU
- GPU communication cost could be amortized over several solves
- Preconditioners are a problem
 - Cusp has a promising AMG
PETSc only needs

Turn on CUDA
--with-cuda
Specify the CUDA compiler
--with-cudac='nvcc -m64'
Indicate the location of packages
--download-* will also work soon
--with-thrust-dir=/PETSc3/multicore/thrust
--with-cusp-dir=/PETSc3/multicore/cusp
Can also use double precision
--with-precision=single
Example
Driven Cavity Velocity-Vorticity with Multigrid

```
ex50 -da_vec_type seqcusp
   -da_mat_type aijcusp -mat_no_inode  # Setup types
   -da_grid_x 100 -da_grid_y 100        # Set grid size
   -pc_type none -pc_mg_levels 1        # Setup solver
   -preload off -cuda_synchronize       # Setup run
   -log_summary
```
Outline

1. Introduction
2. Tools
3. FEM on the GPU
4. PETSc-GPU
5. Conclusions
How Will Algorithms Change?

- Massive concurrency is necessary
 - Mix of vector and thread paradigms
 - Demands new analysis

- More attention to memory management
 - Blocks will only get larger
 - Determinant of performance
Results

Conclusions

Element Blocksize = 1
Results

9400M

CPU vs. GPU Flop Rate for 3D P_1 Lagrange

Element Blocksize = 2
Results

9400M

CPU vs. GPU Flop Rate for 3D P_1 Lagrange

Element Blocksize = 4

M. Knepley
GPU
9/1/10 61 / 63
CPU vs. GPU Flop Rate for 3D P_1 Lagrange

Element Blocksize = 8
Results

9400M

CPU vs. GPU Flop Rate for 3D P_1 Lagrange

Element Blocksize = 16
Results

9400M

CPU vs. GPU Flop Rate for 3D P_1 Lagrange

Element Blocksize = 16

Interleaving stores
Conclusions

Results

CPU vs. GPU Flop Rate for 3D P_1 Lagrange

Element Blocksize = 32
Results

9400M

CPU vs. GPU Flop Rate for 3D P_1 Lagrange

Element Blocksize = 32
Interleaving stores