FEniCS and Sieve Tutorial

Matthew G Knepley 1 and Andy R Terrel 2

1Mathematics and Computer Science Division
Argonne National Laboratory
2Department of Computer Science
University of Chicago

March 5, 2007
Workshop on Automating the Development of Scientific Computing Software
LSU, Baton Rouge, LA
Tutorial Goals

- Introduce FEniCS Automated Mathematical Modeling paradigm
- Enable students to develop new simulations with FEniCS
 - Demonstrate sample problems and typical operations
- Describe PETSc-Sieve project
 - High performance parallel infrastructure
Tutorial Goals

- Introduce FEniCS Automated Mathematical Modeling paradigm
- Enable students to develop new simulations with FEniCS
 - Demonstrate sample problems and typical operations
- Describe PETSc-Sieve project
 - High performance parallel infrastructure
Tutorial Goals

- Introduce FEniCS Automated Mathematical Modeling paradigm
- Enable students to develop new simulations with FEniCS
 - Demonstrate sample problems and typical operations
- Describe PETSc-Sieve project
 - High performance parallel infrastructure
Outline

1. FEM Concepts
2. Getting Started
3. Poisson
4. Stokes
5. Function and Operator Abstractions
6. Optimal Solvers
Find u on domain Ω, given f and BC

$$-\Delta u = f$$

$u = T_0$

$u' = 0$

$u' = 0$

$u = T_1$
Find u on domain Ω, given f and BC, such that for all v in the function space S

$$a(u,v) = (f,v)$$
Find u_h on a triangulation of domain Ω, given f and BC, such that for all v in the function space S

$$a(u_h, v) = (f, v)$$
Find u_h on a triangulation of domain Ω, given f and BC, such that for all v_h in the function space $V \subset S$

$$a(u_h,v_h) = (f,v_h)$$
\[
\begin{bmatrix}
A
\end{bmatrix}
\begin{bmatrix}
x
\end{bmatrix}
=

\begin{bmatrix}
b
\end{bmatrix}
\]
Outline

1. FEM Concepts

2. Getting Started
 - Quick Introduction to FEniCS
 - Quick Introduction to PETSc
 - Download & Install

3. Poisson

4. Stokes

5. Function and Operator Abstractions

6. Optimal Solvers
Outline

2 Getting Started

- Quick Introduction to FEniCS
- Quick Introduction to PETSc
- Download & Install
The FEniCS Project

- Started in 2003 as a collaboration between
 - Chalmers
 - University of Chicago
- Now spans
 - KTH
 - University of Oslo and Simula Research
 - University of Chicago and Argonne National Laboratory
 - Cambridge University
 - TU Delft
- Focused on Automated Mathematical Modelling
- Allows researchers to easily and rapidly develop simulations
DOLFIN: The simulation engine which pulls all the pieces together.
PETSc, Trilinos, MTL, uBlas, UMFPACK (separate projects outside FEniCS)
The FEniCS Project

FIAT: Finite element Integrator And Tabulator
SyFi: SYmbolic FInite elements
The FEniCS Project

FFC: Fenics Form Compiler, or SyFi
The FEniCS Project

DOLFIN Mesh Library

- Algebraic Solver
- Function Space
- Equation Descr.
- Domain Repr.
The FEniCS Project

- Algebraic Solver
- Function Space
- Equation Descr.
- Domain Repr.
- Other Params

FEM → Solution Field
Other projects

<table>
<thead>
<tr>
<th>Project</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UFC</td>
<td>Links equation discretization to algebraic solver</td>
</tr>
<tr>
<td>Viper</td>
<td>Uses pyvtk to produce quick plots</td>
</tr>
<tr>
<td>Instant</td>
<td>JIT C compiler for inline functions in python</td>
</tr>
<tr>
<td>Puffin</td>
<td>Educational project</td>
</tr>
<tr>
<td>FErari</td>
<td>Optimizations for evaluation of variational forms</td>
</tr>
<tr>
<td>Sieve</td>
<td>Abstractions for parallel mesh and function representation</td>
</tr>
</tbody>
</table>
Outlines

1. Getting Started
 - Quick Introduction to FEniCS
 - Quick Introduction to PETSc
 - Download & Install
What is PETSc?

A freely available and supported research code for the parallel solution of nonlinear algebraic equations

Free
- Download from http://www.mcs.anl.gov/petsc
- Free for everyone, including industrial users

Supported
- Hyperlinked manual, examples, and manual pages for all routines
- Hundreds of tutorial-style examples
- Support via email: petsc-maint@mcs.anl.gov

Usable from C, C++, Fortran 77/90, Matlab, Julia, and Python
What is PETSc?

- Portable to any parallel system supporting MPI, including:
 - Tightly coupled systems
 - Cray XT6, BG/Q, NVIDIA Fermi, K Computer
 - Loosely coupled systems, such as networks of workstations
 - IBM, Mac, iPad/iPhone, PCs running Linux or Windows

PETSc History

- Begun September 1991
- Over 60,000 downloads since 1995 (version 2)
- Currently 400 per month

PETSc Funding and Support

- Department of Energy
 - SciDAC, MICS Program, AMR Program, INL Reactor Program
- National Science Foundation
 - CIG, CISE, Multidisciplinary Challenge Program
PETSc has run implicit problems with over 500 billion unknowns
- UNIC on BG/P and XT5
- PFLOTRAN for flow in porous media

PETSc has run on over 290,000 cores efficiently
- UNIC on the IBM BG/P Jugene at Jülich
- PFLOTRAN on the Cray XT5 Jaguar at ORNL

PETSc applications have run at 23% of peak (600 Teraflops)
- Jed Brown on NERSC Edison
- HPGMG code
What Can We Handle?

- PETSc has run implicit problems with over 500 billion unknowns
 - UNIC on BG/P and XT5
 - PFLOTRAN for flow in porous media

- PETSc has run on over 290,000 cores efficiently
 - UNIC on the IBM BG/P Jugene at Jülich
 - PFLOTRAN on the Cray XT5 Jaguar at ORNL

- PETSc applications have run at 23% of peak (600 Teraflops)
 - Jed Brown on NERSC Edison
 - HPGMG code
What Can We Handle?

- PETSc has run implicit problems with over **500 billion** unknowns
 - UNIC on BG/P and XT5
 - PFLOTRAN for flow in porous media

- PETSc has run on over **290,000** cores efficiently
 - UNIC on the IBM BG/P Jugene at Jülich
 - PFLOTRAN on the Cray XT5 Jaguar at ORNL

- PETSc applications have run at 23% of peak (**600 Teraflops**)
 - Jed Brown on NERSC Edison
 - HPGMG code
Outline

2 Getting Started
- Quick Introduction to FEniCS
- Quick Introduction to PETSc
- Download & Install
Download and Install

 Debian Packages

- **UFC:**

  ```
  apt-get install ufc
  ```

- **FIAT:**

  ```
  apt-get install fiat
  ```

- **FFC:**

  ```
  apt-get install ffc
  ```

- **DOLFIN:**

  ```
  apt-get install dolfin
  ```

- **Viper:**

  ```
  apt-get install dolfin
  ```

You also need

```bash
deb http://www.fenics.org/debian/ unstable main
deb-src http://www.fenics.org/debian/ unstable main
```

in your `/etc/apt/source.list`, and the key

```bash
wget http://www.fenics.org/debian/pubring.gpg -O- | sudo apt-key add -
```
Download and Install

Source Tarballs

- **UFC:**
 http://www.fenics.org/pub/software/ufc/v1.0/ufc-1.1.tar.gz

- **FIAT:**
 http://www.fenics.org/pub/software/fiat/FIAT-0.3.4.tar.gz

- **FFC:**
 http://www.fenics.org/pub/software/ffc/v0.4/ffc-0.4.4.tar.gz

- **DOLFIN:**
 http://www.fenics.org/pub/software/dolfin/v0.7/dolfin-0.7.2.tar.gz

- **Viper:**
 http://www.fenics.org/pub/software/viper/v0.2/viper-0.2.tar.gz
Download and Install
Mercurial Repositories

- **UFC**:
 hg clone http://www.fenics.org/hg/ufc
 python setup.py install

- **FIAT**:
 hg clone http://www.fenics.org/hg/fiat
 python setup.py install

- **FFC**:
 hg clone http://www.fenics.org/hg/ffc
 python setup.py install

- **DOLFIN**:
 hg clone http://www.fenics.org/hg/dolfin
 See http://www.fenics.org/wiki/DOLFIN

- **Viper**:
 hg clone http://www.fenics.org/hg/viper
 python setup.py install
Cloning PETSc

- The full development repository is open to the public
 - https://bitbucket.org/petsc/petsc/

- Why is this better?
 - You can clone to any release (or any specific ChangeSet)
 - You can easily rollback changes (or releases)
 - You can get fixes from us the same day

- All releases are just tags:
 - Source at tag v3.4.4
Automatic Downloads

- Starting in 2.2.1, some packages are automatically
 - Downloaded
 - Configured and Built (in \$PETSC_DIR/externalpackages)
 - Installed with PETSc
- Currently works for
 - petsc4py
 - PETSc documentation utilities (Sowing, lgrind, c2html)
 - BLAS, LAPACK, BLACS, ScaLAPACK, PLAPACK
 - MPICH, MPE, OpenMPI
 - ParMetis, Chaco, Jostle, Party, Scotch, Zoltan
 - MUMPS, Spooles, SuperLU, SuperLU_Dist, UMFPack, pARMS
 - BLOPEX, FFTW, SPRNG
 - Prometheus, HYPRE, ML, SPAI
 - Sundials
 - Triangle, TetGen
 - FIAT, FFC, Generator
 - Boost
Outline

1. FEM Concepts
2. Getting Started
3. Poisson
 - Problem Statement
 - Higher Order Elements
 - Discontinuous Galerkin Methods
 - Error Checking
4. Stokes
5. Function and Operator Abstractions
6. Optimal Solvers

M. Knepley A. Terrel
Poisson

3 Problem Statement

- Higher Order Elements
- Discontinuous Galerkin Methods
- Error Checking
Simple Example: Poisson

\[-\Delta u = f \quad \text{on} \quad \Omega = [0, 1] \times [0, 1]\]

- Define our Form and compile (FIAT + FFC)
- Define our Simulation (DOLFIN)
 - Define our mesh
 - Assemble and solve
 - Post process (visualize, error, ...)
Simple Example: Poisson
Defining the form

```python
element = FiniteElement("Lagrange", "triangle", 1)

v = TestFunction(element)
u = TrialFunction(element)
f = Function(element)
g = Function(element)

a = dot(grad(v), grad(u)) * dx
L = v*f*dx
a = dot(grad(v), grad(u)) * dx
L = v*f*dx + v*g*ds
```

see `ffc/src/demo/Poisson.form`, and compile with

```bash
$ ffc Poisson.form
```
Simple Example: Poisson

Writing the Simulation: Define our mesh

```
UnitSquare mesh(32, 32);
```

- Need to give boundary conditions
- Could use other meshing tools and convert to Dolfin xml format
Simple Example: Poisson

Writing the Simulation: Assemble and solve

```cpp
// Create user defined functions
Source f(mesh); Flux g(mesh);
// Create boundary condition
Function u0(mesh, 0.0);
DirichletBoundary boundary;
DirichletBC bc(u0, mesh, boundary);
// Define PDE
PoissonBilinearForm a;
PoissonLinearForm L(f, g);
LinearPDE pde(a, L, mesh, bc);
// Solve PDE
Function u;
pde.solve(u);
```
Simple Example: Poisson

Writing the Simulation: Post process

// Plot solution
plot(u);

// Save solution to file
File file("poisson.pvd");
file « u;
Now let’s define our source term as:

\[f(x, y) = 500 \times \exp \left(-\frac{(x - 0.5)^2 + (y - 0.5)^2}{0.02} \right) \]

```cpp
class Source : public Function {
    Source(Mesh& mesh) : Function(mesh) {
    real eval(const real* x) const {
        real dx = x[0] - 0.5;
        real dy = x[1] - 0.5;
        return 500.0*exp(-(dx*dx + dy*dy)/0.02);
    }
};
```
Simple Example: Poisson

Boundary conditions given by

\[u(x, y) = 0 \quad \text{for} \quad x = 0 \]
\[\frac{du}{dn}(x, y) = 25 \sin(5\pi y) \quad \text{for} \quad x = 1 \]
\[\frac{du}{dn}(x, y) = 0 \quad \text{otherwise} \]

```cpp
class DirichletBoundary : public SubDomain {
    bool inside(const real* x, bool on_boundary) const {
        return x[0] < DOLFIN_EPS && on_boundary;
    }
};

class Flux : public Function {
    Flux(Mesh& mesh) : Function(mesh) {};
    real eval(const real* x) const {
        if (x[0] > DOLFIN_EPS)
            return 25.0 * sin(5.0 * DOLFIN_PI * x[1]);
        else return 0.0;
    }
};
```
Simple Example: Poisson

Include headers and your done¹

```cpp
#include <dolfin.h>
#include "Poisson.h"
using namespace dolfin;
```

¹See dolfin/src/demo/pde/poisson/cpp
Simple Example: Poisson

Simulate!
Outline

3 Poisson

- Problem Statement
- Higher Order Elements
- Discontinuous Galerkin Methods
- Error Checking
Example: High Order Poisson

This time use higher order Lagrangian elements

\[-\Delta u = f \quad \text{on} \quad \Omega = [0, 1] \times [0, 1]\]

- Define our Form and compile (FIAT + FFC)
- Define our Simulation (DOLFIN)
 - Define our mesh
 - Assemble and solve
 - Post process (visualize, error, ...)

M. Knepley A. Terrel
FEniCS and Sieve Tutorial
FEniCS’08 LSU
Example: High Order Poisson
Defining the form

\[
\text{element} = \text{FiniteElement}("\text{Lagrange}", \ "\text{triangle}\", \ p)
\]

\[
\text{v} = \text{TestFunction}(\text{element})
\]
\[
\text{u} = \text{TrialFunction}(\text{element})
\]
\[
\text{f} = \text{Function}(\text{element})
\]
\[
\text{g} = \text{Function}(\text{element})
\]

\[
\text{a} = \text{dot}(\text{grad} (\text{v}), \ \text{grad} (\text{u})) * dx
\]
\[
\text{L} = \text{v} * \text{f} * dx
\]

\[
\text{a} = \text{dot}(\text{grad} (\text{v}), \ \text{grad} (\text{u})) * dx
\]
\[
\text{L} = \text{v} * \text{f} * dx + \text{v} * \text{g} * ds
\]

Compile with

\[
\$ \ ffc \ \text{HOPoisson.form}
\]
Use the same DOLFIN code.

Simulate!
Poisson

- Problem Statement
- Higher Order Elements
- Discontinuous Galerkin Methods
- Error Checking
Example: Discontinuous Galerkin Poisson

\[-\Delta u = f \quad \text{on} \quad \Omega = [0, 1] \times [0, 1]\]

Using a discontinuous Galerkin formulation (interior penalty method).

- Define our Form and compile (FIAT + FFC)
- Define our Simulation (DOLFIN)
 - Define our mesh
 - Assemble and solve
 - Post process (visualize, error, ...)

M. Knepley A. Terrel
FEniCS and Sieve Tutorial
FEniCS’08 LSU
Example: Discontinuous Galerkin Poisson

Defining the form

```python
element = FiniteElement("Discontinuous Lagrange", "triangle", 1)

... 
n = FacetNormal("triangle")
h = MeshSize("triangle")
alpha = 4.0; gamma = 8.0
a = dot(grad(v), grad(u)) * dx
    - dot(avg(grad(v)), jump(u, n)) * dS
    - dot(jump(v, n), avg(grad(u))) * dS
    + alpha/h('+')*dot(jump(v, n), jump(u, n)) * dS
    - dot(grad(v), mult(u, n)) * ds
    - dot(mult(v, n), grad(u)) * ds + gamma/h*v*u*ds

see ffc/src/demo/PoissonDG.form, and compile with

$ ffc PoissonDG.form
```
// Create user defined functions
Source f(mesh); Flux g(mesh);
FacetNormal n(mesh);
AvgMeshSize h(mesh);
// Define PDE
PoissonBilinearForm a;
PoissonLinearForm L(f, g);
LinearPDE pde(a, L, mesh, bc);
// Solve PDE
Function u;
pde.solve(u);
Simulate!
Outline

3 Poisson
- Problem Statement
- Higher Order Elements
- Discontinuous Galerkin Methods
- Error Checking
Example: L2 Error Check

L2 Error:

\[||u - u_h||_{L^2(\Omega)} \]

- Define our Form and compile (FIAT + FFC)
- Add to our Simulation (DOLFIN)
 - Post process (visualize, error, ...)

Example: L2 Error Check

Defining the form

\[
P_0 = \text{FiniteElement}("\text{Discontinuous Lagrange}\), "\text{triangle}\"
\]
\[
\text{Element1} = \text{FiniteElement}("\text{Lagrange}\), "\text{triangle}\", 1)
\]
\[
U = \text{Function}() \quad \text{Element1}
\]
\[
u = \text{Function}() \quad \text{Element1}
\]
\[
v = \text{BasisFunction}() \quad \text{P0}
\]
\[
e = U - u
\]
\[
L = v * \text{dot}(e, e) * dx
\]

\$ ffc L2Error.form \$
Example: L2 Error Check

Writing the Simulation: Post process

```cpp
ExactSolution U_ex;
Vector tmp;
L2Error::LinearForm L2Error(U,u);
FEM::assemble(L2Error, tmp, mesh);
real error = sqrt(fabs(tmp.sum()));
```
1. FEM Concepts

2. Getting Started

3. Poisson

4. Stokes
 - Mixed Methods
 - Iterated Penalty Methods

5. Function and Operator Abstractions

6. Optimal Solvers
Stokes Equation

- Taylor-Hood
- Crouzeix-Raviart
- Iterated Penalty

\[-\Delta u + \nabla p = f\]
\[\nabla \cdot u = 0\]
Stokes Equations: Basic Fluids Modeling

Function Space Matters

\[
\frac{du}{dt} + u \cdot \nabla u = -\frac{\nabla p}{\rho} + \nu \Delta u
\]

Navier-Stokes
- Stokes Solver
- Nonlinear Solver
- Time Stepping

Stokes Equation
- Taylor-Hood
- Crouzeix-Raviart
- Iterated Penalty
Stokes Equations: Basic Fluids Modeling
Function Space Matters

Navier-Stokes
Stokes Solver
Nonlinear Solver
Time Stepping

Non-Newtonian Flow
- Oldroyd-B
- Grade 2
Stokes Equations: Basic Fluids Modeling

Function Space Matters

Stokes Equation
Taylor-Hood
Crouzeix-Raviart
Iterated Penalty

Navier-Stokes
Stokes Solver
Nonlinear Solver
Time Stepping

Non-Newtonian
Odroyd-B
Grade 2

Fluid Solid Interfaces
- Free Boundary Problems
- Couple to legacy Codes

M. Knepley A. Terrel
FEniCS and Sieve Tutorial
FEniCS’08 LSU
4 Stokes

- Mixed Methods
- Iterated Penalty Methods
Let \(V = H^1(\Omega)^n \) and \(\Pi = \{ q \in L^2(\Omega) : \int_\Omega q \, dx = 0 \} \). Given \(F \in V' \), find functions \(u \in V \) and \(p \in \Pi \) such that

\[
a(u, v) + b(v, p) = F(v) \quad \forall v \in V \\
b(u, q) = 0 \quad \forall q \in \Pi
\]

Where,

\[
a(u, v) := \int_\Omega \nabla u \cdot \nabla v \, dx, \\
b(v, q) := \int_\Omega (\nabla \cdot v) q \, dx
\]
Stokes Mixed Method
Defining the form

\[
P_2 = \text{VectorElement}("Lagrange", "triangle", 2)
\]
\[
P_1 = \text{FiniteElement}("Lagrange", "triangle", 1)
\]
\[
\text{TH} = P_2 + P_1
\]

\[
(v, q) = \text{TestFunctions}(\text{TH})
\]
\[
(u, p) = \text{TrialFunctions}(\text{TH})
\]

\[
f = \text{Function}(P_2)
\]

\[
a = (\text{dot}(\text{grad}(v), \text{grad}(u)) - \text{div}(v) \cdot p + q \cdot \text{div}(u)) \cdot \text{dx}
\]
\[
L = \text{dot}(v, f) \cdot \text{dx}
\]

see
dolfin/src/demo/pde/stokes/taylor-hood/cpp/Stokes.form

and compile with

\[
\$ \text{ffc} \ Stokes\ form
\]
Stokes Mixed Method

Define our mesh

Use a predefined mesh, can be made with Triangle, Gmsh, ... and converted to DOLFIN mesh form with dolfin-convert

Use a MeshFunction to mark up different dof on boundary

```cpp
// Read mesh and sub domain markers
Mesh mesh("dolfin-2.xml.gz");
MeshFunction<unsigned int> sub_domains(mesh,
    "subdomains.xml.gz");
```
// Create functions for boundary conditions
Noslip noslip(mesh); Inflow inflow(mesh);
Function zero(mesh, 0.0);

// Define sub systems for boundary conditions
SubSystem velocity(0);
SubSystem pressure(1);

// BC’s per field
DirichletBC bc0(noslip, sub_domains, 0, velocity);
DirichletBC bc1(inflow, sub_domains, 1, velocity);
DirichletBC bc2(zero, sub_domains, 2, pressure);
Array <BoundaryCondition*> bcs(&bc0, &bc1, &bc2);
Stokes Mixed Method
Assemble and solve

// Set up PDE
Function f(mesh, 0.0);
StokesBilinearForm a;
StokesLinearForm L(f);
LinearPDE pde(a, L, mesh, bcs);

// Solve PDE
Function u;
Function p;
pde.set("PDE linear solver", "direct");
pde.solve(u, p);
Stokes Mixed Method

Writing the Simulation: Post process

```c
// Plot solution
plot(u);
plot(p);

// Save solution to file
File file("velocity.pvd");
file « u;
File file("pressure.pvd");
file « p;
```
Stokes Mixed Method

// Functions for boundary condition for velocity
class Noslip : public Function {
public:
 Noslip(Mesh& mesh) : Function(mesh) {}
 void eval(real* values, const real* x) const {
 values[0] = 0.0;
 values[1] = 0.0;
 }
};
class Inflow : public Function {
public:
 Inflow(Mesh& mesh) : Function(mesh) {}
 void eval(real* values, const real* x) const {
 values[0] = -1.0;
 values[1] = 0.0;
 }
};
Simulate!
4 Stokes

- Mixed Methods
- Iterated Penalty Methods
Let $r \in \mathbb{R}$ and $\rho > 0$ define u^n and $p = w^n$ by

$$a(u^n, v) + r(\nabla \cdot u^n, \nabla \cdot v) = F(v) - (\nabla \cdot v, \nabla \cdot w^n)$$

$$w^{n+1} = w^n + \rho u^n$$
Element = `FiniteElement("Vector Lagrange", "triangle",`

\[\begin{align*}
U &= \text{TrialFunction}(\text{Element}) \\
v &= \text{TestFunction}(\text{Element}) \\
f &= \text{Function}(\text{Element}) \\
w &= \text{Function}(\text{Element}) \\
c &= \text{Constant}() \\
\end{align*} \]

\[\begin{align*}
\mathbf{a} &= (\text{dot}(\text{grad}(v), \text{grad}(U)) - c \times \text{div}(U) \times (\text{div}(v))) \times dx \\
\mathbf{L} &= \text{dot}(v, f) \times dx + \text{dot}(\text{div}(v), \text{div}(w)) \times dx
\end{align*} \]

\$ \text{fffc Stokes.form} \$
Setup is relatively the same.

```c
Function f(mesh, 0.0), w, u;
real rho, r, div_u_error;
Stokes::BilinearForm a(rho);
rho = r = 1.0e3;
w.init(mesh, a.trial());
```
But we iterate our solution based on L2Error.

```cpp
for(int j; j<MAX_ITERS; j++)
{
    Stokes::LinearForm L(f,w);
PDE pde(a, L, mesh, bcs);
    // Compute solution
    pde.solve(U);
    Vector tmp = w.vector() + r * (U.vector());
    w = Function(tmp);
    L2div::LinearForm div_u(U);
    FEM::assemble(div_u, tmp, mesh);
    div_u_error = sqrt(fabs(tmp.sum()));
    if (div_u_error < 5.0e-7) break;
}
```
Simulate!
Questions

Fenics Webpage:
http://www.fenics.org/
Join the mailing lists!
Outline

1. FEM Concepts
2. Getting Started
3. Poisson
4. Stokes
5. Function and Operator Abstractions
 - Linear Algebra & Iterative Solvers
 - Rethinking the Mesh
 - Parallelism
 - FEM
6. Optimal Solvers
Outline

5 Function and Operator Abstractions
- Linear Algebra & Iterative Solvers
- Rethinking the Mesh
- Parallelism
- FEM
Linear Algebra Abstractions

- Need clear interfaces to ALL levels in the conceptual hierarchy
- Abstractions allow reuse of iterative solvers (Krylov methods)
 - Vec and Mat objects
 - KSP uses only the action of Mat on Vec, MatMult()
- PETSc provides a range of data types
 - MPIAIJ, MPIAIJPERM, SuperLU, ...
 - Arbitrary user code accommodated using MATSHELL objects
Solver Choice

- Can choose solver at runtime
 - `-ksp_type bicgstab`

- Can customize solver
 - `-ksp_gmres_restart 500`
 - Inapplicable options are ignored (same with API calls)

- Monitoring
 - `-ksp_monitor -ksp_view`
Outline

5 Function and Operator Abstractions
- Linear Algebra & Iterative Solvers
- Rethinking the Mesh
- Parallelism
- FEM
Generalize to a set of linear spaces
- **Sieve** provides topology, can also model **Mat**
- **Section** generalizes **Vec**
- Spaces interact through an **Overlap** (just a **Sieve**)

Basic operations
- Restriction to finer subspaces, `restrict()`/`update()`
- Assembly to the subdomain, `complete()`

Allow reuse of geometric and multilevel algorithms
Unstructured Interface (before)

- Explicit references to element type
 - `getVertices(edgeID), getVertices(faceID)`
 - `getAdjacency(edgeID, VERTEX)`
 - `getAdjacency(edgeID, dim = 0)`

- No interface for transitive closure
 - Awkward nested loops to handle different dimensions

- Have to recode for meshes with different
 - dimension
 - shapes
Unstructured Interface (before)

- Explicit references to element type
 - `getVertices(edgeID), getVertices(faceID)`
 - `getAdjacency(edgeID, VERTEX)`
 - `getAdjacency(edgeID, dim = 0)`

- No interface for transitive closure
 - Awkward nested loops to handle different dimensions

- Have to recode for meshes with different
 - dimension
 - shapes
Unstructured Interface (before)

- Explicit references to element type
 - `getVertices(edgeID)`, `getVertices(faceID)`
 - `getAdjacency(edgeID, VERTEX)`
 - `getAdjacency(edgeID, dim = 0)`

- No interface for transitive closure
 - Awkward nested loops to handle different dimensions

- Have to recode for meshes with different
 - dimension
 - shapes
Combinatorial Topology gives us a framework for geometric computing.

- Abstract to a relation, covering, on sieve points
 - Points can represent any mesh element
 - Covering can be thought of as adjacency
 - Relation can be expressed in a DAG (Hasse Diagram)

- Simple query set:
 - provides a general API for geometric algorithms
 - leads to simpler implementations
 - can be more easily optimized
Combinatorial Topology gives us a framework for geometric computing.

- Abstract to a relation, covering, on sieve points
 - Points can represent any mesh element
 - Covering can be thought of as adjacency
 - Relation can be expressed in a DAG (Hasse Diagram)

- Simple query set:
 - provides a general API for geometric algorithms
 - leads to simpler implementations
 - can be more easily optimized
Combinatorial Topology gives us a framework for geometric computing.

- Abstract to a relation, covering, on sieve points
 - Points can represent any mesh element
 - Covering can be thought of as adjacency
 - Relation can be expressed in a DAG (Hasse Diagram)

- Simple query set:
 - provides a general API for geometric algorithms
 - leads to simpler implementations
 - can be more easily optimized
Unstructured Interface (after)

- **NO** explicit references to element type
 - A point may be any mesh element
 - `getCone(point)`: adjacent \((d-1)\)-elements
 - `getSupport(point)`: adjacent \((d+1)\)-elements

- Transitive closure
 - `closure(cell)`: The computational unit for FEM

- Algorithms independent of mesh
 - dimension
 - shape (even hybrid)
 - global topology
 - data layout
Unstructured Interface (after)

- **NO** explicit references to element type
 - A point may be any mesh element
 - `getCone(point)`: adjacent (d-1)-elements
 - `getSupport(point)`: adjacent (d+1)-elements

- Transitive closure
 - `closure(cell)`: The computational unit for FEM

- Algorithms independent of mesh
 - dimension
 - shape (even hybrid)
 - global topology
 - data layout
Unstructured Interface (after)

- **NO** explicit references to element type
 - A point may be any mesh element
 - `getCone(point)`: adjacent \((d-1)\)-elements
 - `getSupport(point)`: adjacent \((d+1)\)-elements

- Transitive closure
 - `closure(cell)`: The computational unit for FEM

- Algorithms independent of mesh
 - dimension
 - shape (even hybrid)
 - global topology
 - data layout
Doublet Mesh

- Incidence/covering arrows
 - $cone(0) = \{2, 3, 4\}$
 - $support(7) = \{2, 3\}$
Doublet Mesh

Incidence/covering arrows

\[cone(0) = \{2, 3, 4\}\]

\[support(7) = \{2, 3\}\]
Doublet Mesh

- Incidence/covering arrows
- \(cone(0) = \{2, 3, 4\} \)
- \(support(7) = \{2, 3\} \)
Incidence/covering arrows

\[\text{closure}(0) = \{0, 2, 3, 4, 7, 8, 9\} \]

\[\text{star}(7) = \{7, 2, 3, 0\} \]
Incidence/covering arrows

closure(0) = \{0, 2, 3, 4, 7, 8, 9\}

star(7) = \{7, 2, 3, 0\}
Incidence/covering arrows

\[\text{meet}(0, 1) = \{4\} \]

\[\text{join}(8, 9) = \{4\} \]
Doublet Mesh

Incidence/covering arrows

meet(0, 1) = \{4\}

join(8, 9) = \{4\}
Section interface

- \(\text{restrict}(0) = \{ f_0 \} \)
- \(\text{restrict}(2) = \{ v_0 \} \)
- \(\text{restrict}(6) = \{ e_0, e_1 \} \)
Doublet Section

- **Section interface**
 - $\text{restrict}(0) = \{ f_0 \}$
 - $\text{restrict}(2) = \{ v_0 \}$
 - $\text{restrict}(6) = \{ e_0, e_1 \}$
Section interface

- \(\text{restrict}(0) = \{ f_0 \} \)
- \(\text{restrict}(2) = \{ v_0 \} \)
- \(\text{restrict}(6) = \{ e_0, e_1 \} \)
Section interface

- \(\text{restrict}(0) = \{ f_0 \} \)
- \(\text{restrict}(2) = \{ v_0 \} \)
- \(\text{restrict}(6) = \{ e_0, e_1 \} \)
Topological traversals: follow connectivity

- \(\text{restrictClosure}(0) = \{ f_0, e_0, e_1, e_2, e_3, e_4, e_5, v_0, v_1, v_2 \} \)
- \(\text{restrictStar}(7) = \{ v_0, e_0, e_1, e_4, e_5, f_0 \} \)
Topological traversals: follow connectivity

- \textit{restrictClosure}(0) = \{ f_0 e_0 e_1 e_2 e_3 e_4 e_5 v_0 v_1 v_2 \}
- \textit{restrictStar}(7) = \{ v_0 e_0 e_1 e_4 e_5 f_0 \}
Topological traversals: follow connectivity

- \(\text{restrictClosure}(0) = \{ f_0 e_0 e_1 e_2 e_3 e_4 e_5 v_0 v_1 v_2 \} \)
- \(\text{restrictStar}(7) = \{ v_0 e_0 e_1 e_4 e_5 f_0 \} \)
Outline

5 Function and Operator Abstractions

- Linear Algebra & Iterative Solvers
- Rethinking the Mesh
- Parallelism
- FEM
Localization
- Restrict to patches (here an edge closure)
- Compute locally
Delta

- Restrict further to the overlap
- Overlap now carries twice the data
Fusion

- Merge/reconcile data on the overlap
 - Addition (FEM)
 - Replacement (FD)
 - Coordinate transform (Sphere)
 - Linear transform (MG)
Update

- Update local patch data
- Completion = restrict \rightarrow fuse \rightarrow update, in parallel
A ubiquitous parallel form of \textit{restrict} \rightarrow \textit{fuse} \rightarrow \textit{update}

- Operates on Sections
 - Sieves can be "downcast" to Sections

- Based on two operations
 - Data exchange through overlap
 - Fusion of shared data
Completion has many uses:

FEM accumulating integrals on shared faces

FVM accumulating fluxes on shared cells

FDM setting values on ghost vertices
- distributing mesh entities after partition
- redistributing mesh entities and data for load balance
- accumulating matvec for a partially assembled matrix
Completion has many uses:

FEM accumulating integrals on shared faces

FVM accumulating fluxes on shared cells

FDM setting values on ghost vertices
 - distributing mesh entities after partition
 - redistributing mesh entities and data for load balance
 - accumulating matvec for a partially assembled matrix
Completion has many uses:

FEM accumulating integrals on shared faces

FVM accumulating fluxes on shared cells

FDM setting values on ghost vertices
 - distributing mesh entities after partition
 - redistributing mesh entities and data for load balance
 - accumulating matvec for a partially assembled matrix
Completion has many uses:

FEM accumulating integrals on shared faces

FVM accumulating fluxes on shared cells

FDM setting values on ghost vertices
 - distributing mesh entities after partition
 - redistributing mesh entities and data for load balance
 - accumulating matvec for a partially assembled matrix
Completion has many uses:

FEM accumulating integrals on shared faces

FVM accumulating fluxes on shared cells

FDM setting values on ghost vertices
 - distributing mesh entities after partition
 - redistributing mesh entities and data for load balance
 - accumulating matvec for a partially assembled matrix
Completion has many uses:

FEM accumulating integrals on shared faces

FVM accumulating fluxes on shared cells

FDM setting values on ghost vertices
 - distributing mesh entities after partition
 - redistributing mesh entities and data for load balance
 - accumulating matvec for a partially assembled matrix
Completion has many uses:

FEM accumulating integrals on shared faces

FVM accumulating fluxes on shared cells

FDM setting values on ghost vertices

- distributing mesh entities after partition
- redistributing mesh entities and data for load balance
- accumulating matvec for a partially assembled matrix
Mesh Distribution

Distributing a mesh means

- distributing the topology (Sieve)
- distributing data (Section)

However, a Sieve can be interpreted as a Section of $\text{cone}()$ s!
Mesh Distribution

Distributing a mesh means

- distributing the topology (Sieve)
- distributing data (Section)

However, a Sieve can be interpreted as a Section of $\text{cone}(\cdot)$s!
Mesh Distribution

Distributing a mesh means

- distributing the topology (Sieve)
- distributing data (Section)

However, a Sieve can be interpreted as a Section of \texttt{cone()} s!
Mesh Distribution

Distributing a mesh means

- distributing the topology (Sieve)
- distributing data (Section)

However, a Sieve can be interpreted as a Section of $\text{cone}(\)$ s!
The Mesh Dual

Construct mesh dual by reversing sieve arrows taking the support() of each face taking the meet() of each cell pair
Mesh Partition

- 3rd party packages construct a vertex partition
- For FEM, partition dual graph vertices
- For FVM, construct hypergraph dual with faces as vertices
- Assign $\text{closure}(v)$ and $\text{star}(v)$ to same partition
2D Example

A simple triangular mesh
2D Example

Distributed Mesh
A simple hexahedral mesh
3D Example

Distributed Mesh
Outline

5 Function and Operator Abstractions
- Linear Algebra & Iterative Solvers
- Rethinking the Mesh
- Parallelism
- FEM
FEM Components

- Section definition
- Integration
- Assembly and Boundary conditions
FIAT

Finite Element Integrator And Tabulator by Rob Kirby

http://fenicsproject.org/

FIAT understands:
- Reference element shapes (line, triangle, tetrahedron)
- Quadrature rules
- Polynomial spaces
- Functionals over polynomials (dual spaces)
- Derivatives

Can build arbitrary elements by specifying the Ciarlet triple (K, P, P')

FIAT is part of the FEniCS project.
Finite Element Integrator And Tabulator by Rob Kirby

http://fenicsproject.org/

FIAT understands

- Reference element shapes (line, triangle, tetrahedron)
- Quadrature rules
- Polynomial spaces
- Functionals over polynomials (dual spaces)
- Derivatives

Can build arbitrary elements by specifying the Ciarlet triple \((K, P, P')\)

FIAT is part of the FEniCS project
FIAT Integration

The `quadrature.fiat` file contains:
- An element (usually a family and degree) defined by FIAT
- A quadrature rule

It is run
- automatically by `make`, or
- independently by the user

It can take arguments
- `-element_family` and `-element_order`, or
- `make` takes variables `ELEMENT` and `ORDER`

Then `make` produces `quadrature.h` with:
- Quadrature points and weights
- Basis function and derivative evaluations at the quadrature points
- Integration against dual basis functions over the cell
- Local dofs for Section allocation
Section Allocation

We only need the fiber dimension (# of unknowns) of each sieve point (piece of the mesh)

- Determined by discretization
 - By symmetry, only depend on point depth
 - Obtained from FIAT
 - Modified by BC
 - Decouples storage and parallelism from discretization
Section Allocation

We only need the fiber dimension (# of unknowns) of each sieve point (piece of the mesh).

- Determined by discretization
- By symmetry, only depend on point depth
 - Obtained from FIAT
 - Modified by BC
 - Decouples storage and parallelism from discretization
We only need the fiber dimension (# of unknowns) of each sieve point (piece of the mesh)

- Determined by discretization
- By symmetry, only depend on point depth
- Obtained from FIAT
 - Modified by BC
- Decouples storage and parallelism from discretization
Section Allocation

We only need the fiber dimension (# of unknowns) of each sieve point (piece of the mesh)

- Determined by discretization
- By symmetry, only depend on point depth
- Obtained from FIAT
- Modified by BC

Decouples storage and parallelism from discretization
Section Allocation

We only need the fiber dimension (# of unknowns) of each sieve point (piece of the mesh)

- Determined by discretization
- By symmetry, only depend on point depth
- Obtained from FIAT
- Modified by BC
- Decouples storage and parallelism from discretization
Kinds of Unknowns

We must map local unknowns to the global basis

- FIAT reports the kind of unknown
- Scalars are invariant
 - Lagrange
- Vectors transform as J^{-T}
 - Hermite
- Normal vectors require Piola transform and a choice of orientation
 - Raviart-Thomas
- Moments transform as $|J^{-1}|$
 - Nedelec
- May involve a transformation over the entire closure
 - Argyris
- Conjecture by Kirby relates transformation to affine equivalence
- We have not yet automated this step (FFC, Mython)
Kinds of Unknowns

We must map local unknowns to the global basis

- FIAT reports the kind of unknown
- Scalars are invariant
 - Lagrange
- Vectors transform as J^{-T}
 - Hermite
- Normal vectors require Piola transform and a choice of orientation
 - Raviart-Thomas
- Moments transform as $|J^{-1}|$
 - Nedelec
- May involve a transformation over the entire closure
 - Argyris
- Conjecture by Kirby relates transformation to affine equivalence
- We have not yet automated this step (FFC, Mython)
Kinds of Unknowns

We must map local unknowns to the global basis

- FIAT reports the kind of unknown
- Scalars are invariant
 - Lagrange
- Vectors transform as J^{-T}
 - Hermite
- Normal vectors require Piola transform and a choice of orientation
 - Raviart-Thomas
- Moments transform as $|J^{-1}|$
 - Nedelec
- May involve a transformation over the entire closure
 - Argyris
- Conjecture by Kirby relates transformation to affine equivalence
- We have not yet automated this step (FFC, Mython)
We must map local unknowns to the global basis

- FIAT reports the kind of unknown
 - Scalars are invariant
 - Lagrange
 - Vectors transform as J^{-T}
 - Hermite
- Normal vectors require Piola transform and a choice of orientation
 - Raviart-Thomas
- Moments transform as $|J^{-1}|$
 - Nedelec
- May involve a transformation over the entire closure
 - Argyris
- Conjecture by Kirby relates transformation to affine equivalence
- We have not yet automated this step (FFC, Mython)
Kinds of Unknowns

We must map local unknowns to the global basis

- FIAT reports the kind of unknown
- Scalars are invariant
 - Lagrange
- Vectors transform as J^{-T}
 - Hermite
- Normal vectors require Piola transform and a choice of orientation
 - Raviart-Thomas
- Moments transform as $|J^{-1}|$
 - Nedelec
- May involve a transformation over the entire closure
 - Argyris
- Conjecture by Kirby relates transformation to affine equivalence
- We have not yet automated this step (FFC, Mython)
Kinds of Unknowns

We must map local unknowns to the global basis

- FIAT reports the kind of unknown
- Scalars are invariant
 - Lagrange
- Vectors transform as J^{-T}
 - Hermite
- Normal vectors require Piola transform and a choice of orientation
 - Raviart-Thomas
- Moments transform as $|J^{-1}|$
 - Nedelec
- May involve a transformation over the entire closure
 - Argyris
- Conjecture by Kirby relates transformation to affine equivalence
- We have not yet automated this step (FFC, Mython)
Kinds of Unknowns

We must map local unknowns to the global basis

- FIAT reports the kind of unknown
- Scalars are invariant
 - Lagrange
- Vectors transform as J^{-T}
 - Hermite
- Normal vectors require Piola transform and a choice of orientation
 - Raviart-Thomas
- Moments transform as $|J^{-1}|$
 - Nedelec
- May involve a transformation over the entire closure
 - Argyris
- Conjecture by Kirby relates transformation to affine equivalence
- We have not yet automated this step (FFC, Mython)
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
 <Compute cell geometry>
 <Retrieve values from input vector>
 for(q = 0; q < numQuadPoints; ++q) {
 <Transform coordinates>
 for(f = 0; f < numBasisFuncs; ++f) {
 <Constant term>
 <Linear term>
 <Nonlinear term>
 elemVec[f] *= weight[q] * detJ;
 }
 }
 <Update output vector>
}
<Aggregate updates>
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
 coords = mesh->restrict(coordinates, c);
 v0, J, invJ, detJ = computeGeometry(coords);
 <Retrieve values from input vector>
 for(q = 0; q < numQuadPoints; ++q) {
 <Transform coordinates>
 for(f = 0; f < numBasisFuncs; ++f) {
 <Constant term>
 <Linear term>
 <Nonlinear term>
 elemVec[f] *= weight[q]*detJ;
 }
 }
 <Update output vector>
}
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
 <Compute cell geometry>
 <Retrieve values from input vector>
 for(q = 0; q < numQuadPoints; ++q) {
 <Transform coordinates>
 for(f = 0; f < numBasisFuncs; ++f) {
 <Constant term>
 <Linear term>
 <Nonlinear term>
 elemVec[f] *= weight[q] * detJ;
 }
 }
 <Update output vector>
}
<Aggregate updates>
cells = mesh->heightStratum(0);
for (c = cells->begin(); c != cells->end(); ++c) {
 <Compute cell geometry>
 inputVec = mesh->restrict(U, c);
 for (q = 0; q < numQuadPoints; ++q) {
 <Transform coordinates>
 for (f = 0; f < numBasisFuncs; ++f) {
 <Constant term>
 <Linear term>
 <Nonlinear term>
 elemVec[f] *= weight[q] * detJ;
 }
 }
 <Update output vector>
}
<Aggregate updates>
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
 <Compute cell geometry>
 <Retrieve values from input vector>
 for(q = 0; q < numQuadPoints; ++q) {
 <Transform coordinates>
 for(f = 0; f < numBasisFuncs; ++f) {
 <Constant term>
 <Linear term>
 <Nonlinear term>
 elemVec[f] *= weight[q]*detJ;
 }
 }
 <Update output vector>
}
<Aggregate updates>
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
 <Compute cell geometry>
 <Retrieve values from input vector>
 for(q = 0; q < numQuadPoints; ++q) {
 realCoords = J*refCoords[q] + v0;
 for(f = 0; f < numBasisFuncs; ++f) {
 <Constant term>
 <Linear term>
 <Nonlinear term>
 elemVec[f] *= weight[q]*detJ;
 }
 }
 <Update output vector>
}
<Aggregate updates>
cells = mesh->heightStratum(0);
for (c = cells->begin(); c != cells->end(); ++c) {
 <Compute cell geometry>
 <Retrieve values from input vector>
 for (q = 0; q < numQuadPoints; ++q) {
 <Transform coordinates>
 for (f = 0; f < numBasisFuncs; ++f) {
 <Constant term>
 <Linear term>
 <Nonlinear term>
 elemVec[f] *= weight[q] * detJ;
 }
 }
 <Update output vector>
}
<Aggregate updates>
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
 <Compute cell geometry>
 <Retrieve values from input vector>
 for(q = 0; q < numQuadPoints; ++q) {
 <Transform coordinates>
 for(f = 0; f < numBasisFuncs; ++f) {
 elemVec[f] += basis[q,f]*rhsFunc(realCoords);
 <Linear term>
 <Nonlinear term>
 elemVec[f] *= weight[q]*detJ;
 }
 }
 <Update output vector>
}
<Aggregate updates>
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
 <Compute cell geometry>
 <Retrieve values from input vector>
 for(q = 0; q < numQuadPoints; ++q) {
 <Transform coordinates>
 for(f = 0; f < numBasisFuncs; ++f) {
 <Constant term>
 <Linear term>
 <Nonlinear term>
 elemVec[f] *= weight[q] * detJ;
 }
 }
 <Update output vector>
}
<Aggregate updates>
Function and Operator Abstractions

Integration

cells = mesh->heightStratum(0);
for (c = cells->begin(); c != cells->end(); ++c) {
 <Compute cell geometry>
 <Retrieve values from input vector>
 for (q = 0; q < numQuadPoints; ++q) {
 <Transform coordinates>
 for (f = 0; f < numBasisFuncs; ++f) {
 <Constant term>
 for (d = 0; d < dim; ++d)
 for (e) testDerReal[d] += invJ[e,d]*basisDer[q,e];
 for (g = 0; g < numBasisFuncs; ++g) {
 for (d = 0; d < dim; ++d)
 for (e) basisDerReal[d] += invJ[e,d]*basisDer[g,e];
 elemMat[f,g] += testDerReal[d]*basisDerReal[e];
 elemVec[f] += elemMat[f,g]*inputVec[g];
 }
 elemVec[f] *= weight[q]*detJ;
 }
 }
 <Update output vector>
 <Aggregate updates>
}
cells = mesh->heightStratum(0);
for (c = cells->begin(); c != cells->end(); ++c) {
 // Compute cell geometry
 // Retrieve values from input vector
 for (q = 0; q < numQuadPoints; ++q) {
 // Transform coordinates
 for (f = 0; f < numBasisFuncs; ++f) {
 // Constant term
 // Linear term
 // Nonlinear term
 elemVec[f] *= weight[q] * detJ;
 }
 }
 // Update output vector
}
// Aggregate updates
cells = mesh->heightStratum(0);
for (c = cells->begin(); c != cells->end(); ++c) {
 <Compute cell geometry>
 <Retrieve values from input vector>
 for (q = 0; q < numQuadPoints; ++q) {
 <Transform coordinates>
 for (f = 0; f < numBasisFuncs; ++f) {
 <Constant term>
 <Linear term>
 elemVec[f] += basis[q,f]*lambda*exp(inputVec[f])
 elemVec[f] *= weight[q]*detJ;
 }
 }
 <Update output vector>
}
<Aggregate updates>
cells = mesh->heightStratum(0);
for (c = cells->begin(); c != cells->end(); ++c) {
 <Compute cell geometry>
 <Retrieve values from input vector>
 for (q = 0; q < numQuadPoints; ++q) {
 <Transform coordinates>
 for (f = 0; f < numBasisFuncs; ++f) {
 <Constant term>
 <Linear term>
 <Nonlinear term>
 elemVec[f] *= weight[q] * detJ;
 }
 }
 <Update output vector>
}
<Aggregate updates>
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
 <Compute cell geometry>
 <Retrieve values from input vector>
 for(q = 0; q < numQuadPoints; ++q) {
 <Transform coordinates>
 for(f = 0; f < numBasisFuncs; ++f) {
 <Constant term>
 <Linear term>
 <Nonlinear term>
 elemVec[f] *= weight[q]*detJ;
 }
 }
 mesh->updateAdd(F, c, elemVec);
}<Aggregate updates>
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
 <Compute cell geometry>
 <Retrieve values from input vector>
 for(q = 0; q < numQuadPoints; ++q) {
 <Transform coordinates>
 for(f = 0; f < numBasisFuncs; ++f) {
 <Constant term>
 <Linear term>
 <Nonlinear term>
 elemVec[f] *= weight[q]*detJ;
 }
 }
 <Update output vector>
}
<Aggregate updates>
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
 <Compute cell geometry>
 <Retrieve values from input vector>
 for(q = 0; q < numQuadPoints; ++q) {
 <Transform coordinates>
 for(f = 0; f < numBasisFuncs; ++f) {
 <Constant term>
 <Linear term>
 <Nonlinear term>
 elemVec[f] *= weight[q]*detJ;
 }
 }
 <Update output vector>
}
Distribution<Mesh>::completeSection(mesh, F);
Boundary Conditions

Dirichlet conditions may be expressed as

\[u|_\Gamma = g \]

and implemented by constraints on dofs in a Section

- The user provides a function.

Neumann conditions may be expressed as

\[\nabla u \cdot \hat{n}|_\Gamma = h \]

and implemented by explicit integration along the boundary

- The user provides a weak form.
Topological boundary is marked during generation

Cells bordering boundary are marked using

markBoundaryCells()

To set values:

1. Loop over boundary cells
2. Loop over the element closure
3. For each boundary point \(i \), apply the functional \(N_i \) to the function \(g \)

The functionals are generated with the quadrature information

Section allocation applies Dirichlet conditions automatically

Values are stored in the Section

\(\text{restrict}() \) behaves normally, \(\text{update}() \) ignores constraints
We would like the action of a dual basis vector (functional)

\[< \mathcal{N}_i, f > = \int_{\text{ref}} N_i(x)f(x)dV \]

- Projection onto \(P \)
- Code is generated from FIAT specification
 - Python code generation package inside PETSc
- Common interface for all elements
Outline

1 FEM Concepts
2 Getting Started
3 Poisson
4 Stokes
5 Function and Operator Abstractions
6 Optimal Solvers
 - Multigrid for Structured Meshes
 - Multigrid for Unstructured Meshes
I will define *optimal* as an $O(N)$ solution algorithm.

These are generally hierarchical, so we need:

- hierarchy generation
- assembly on subdomains
- restriction and prolongation
Why should I care?

1. Current algorithms do not efficiently utilize modern machines
2. Processor flops are increasing much faster than bandwidth
3. Multicore processors are the future
4. Optimal multilevel solvers are necessary
Why should I care?

1. Current algorithms do not efficiently utilize modern machines
2. Processor flops are increasing much faster than bandwidth
3. Multicore processors are the future
4. Optimal multilevel solvers are necessary
Why should I care?

1. Current algorithms do not efficiently utilize modern machines
2. Processor flops are increasing much faster than bandwidth
3. Multicore processors are the future
4. Optimal multilevel solvers are necessary
Why should I care?

1. Current algorithms do not efficiently utilize modern machines
2. Processor flops are increasing much faster than bandwidth
3. Multicore processors are the future
4. Optimal multilevel solvers are necessary
Why should I care?

1. Current algorithms do not efficiently utilize modern machines
2. Processor flops are increasing much faster than bandwidth
3. Multicore processors are the future
4. Optimal multilevel solvers are necessary

Claim: Hierarchical operations can be handled by a single interface
The more powerful the computer, the greater the importance of optimality.

Example:

- Suppose Alg_1 solves a problem in time CN^2, N is the input size.
- Suppose Alg_2 solves the same problem in time CN.
- Suppose Alg_1 and Alg_2 are able to use 10,000 processors.

In constant time compared to serial,

- Alg_1 can run a problem 100X larger.
- Alg_2 can run a problem 10,000X larger.

Alternatively, filling the machine’s memory,

- Alg_1 requires 100X time.
- Alg_2 runs in constant time.
Optimal Solvers

Multigrid

Multigrid is *optimal* in that it does $O(N)$ work for $\|r\| < \epsilon$

- Brandt, Briggs, Wan & Chan & Smith
- Constant work per level
 - Sufficiently strong solver
 - Need a constant factor decrease in the residual
- Constant factor decrease in dof
 - Log number of levels
- Sufficiently good interpolation
 - Preserves low modes
 - Cannot dump too much energy into high modes
Convergence to $||r|| < 10^{-9}||b||$ using GMRES(30)/ILU

<table>
<thead>
<tr>
<th>Elements</th>
<th>Iterations</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>10</td>
</tr>
<tr>
<td>256</td>
<td>17</td>
</tr>
<tr>
<td>512</td>
<td>24</td>
</tr>
<tr>
<td>1024</td>
<td>34</td>
</tr>
<tr>
<td>2048</td>
<td>67</td>
</tr>
<tr>
<td>4096</td>
<td>116</td>
</tr>
<tr>
<td>8192</td>
<td>167</td>
</tr>
<tr>
<td>16384</td>
<td>329</td>
</tr>
<tr>
<td>32768</td>
<td>558</td>
</tr>
<tr>
<td>65536</td>
<td>920</td>
</tr>
<tr>
<td>131072</td>
<td>1730</td>
</tr>
</tbody>
</table>
Linear Convergence of the Poisson Problem

Convergence to $\|r\| < 10^{-9}\|b\|$ using GMRES(30)/MG

<table>
<thead>
<tr>
<th>Elements</th>
<th>Iterations</th>
</tr>
</thead>
<tbody>
<tr>
<td>128</td>
<td>5</td>
</tr>
<tr>
<td>256</td>
<td>7</td>
</tr>
<tr>
<td>512</td>
<td>6</td>
</tr>
<tr>
<td>1024</td>
<td>7</td>
</tr>
<tr>
<td>2048</td>
<td>6</td>
</tr>
<tr>
<td>4096</td>
<td>7</td>
</tr>
<tr>
<td>8192</td>
<td>6</td>
</tr>
<tr>
<td>16384</td>
<td>7</td>
</tr>
<tr>
<td>32768</td>
<td>6</td>
</tr>
<tr>
<td>65536</td>
<td>7</td>
</tr>
<tr>
<td>131072</td>
<td>6</td>
</tr>
</tbody>
</table>
Outline

6 Optimal Solvers
 - Multigrid for Structured Meshes
 - Multigrid for Unstructured Meshes
Flow Control for a PETSc Application

Main Routine

- **PETSc**
 - Application Initialization
 - Function Evaluation
 - Jacobian Evaluation
 - Postprocessing
 - Timestepping Solvers (TS)
 - Nonlinear Solvers (SNES)
 - Linear Solvers (KSP)
 - Preconditioners (PC)
The SNES interface is based upon callback functions

- `FormFunction()`, set by `SNESSetFunction()`
- `FormJacobian()`, set by `SNESSetJacobian()`

When PETSc needs to evaluate the nonlinear residual $F(x)$,

- Solver calls the **user’s** function
- User function gets application state through the `ctx` variable
 - PETSc never sees application data
Higher Level Abstractions

The PETSc DA class is a topology and discretization interface.
- Structured grid interface
 - Fixed simple topology
- Supports stencils, communication, reordering
 - Limited idea of operators
- Nice for simple finite differences

The PETSc Mesh class is a topology interface.
- Unstructured grid interface
 - Arbitrary topology and element shape
- Supports partitioning, distribution, and global orders
Higher Level Abstractions

The PETSc DM class is a hierarchy interface.
- Supports multigrid
 - PCMG combines it with a multigrid preconditioner
- Abstracts the logic of multilevel methods

The PetscSection class is a helper class for data layout.
- Functions over unstructured grids
 - Arbitrary layout of degrees of freedom
- Enables distribution and assembly
A DMDA is more than a Mesh

A DMDA contains **topology**, **geometry**, and (sometimes) an implicit Q1 **discretization**.

It is used as a template to create

- Vectors (functions)
- Matrices (linear operators)
Multigrid with DM

Allows multigrid with some simple command line options

- `pc_type mg`, `pc_mg_levels`
- `pc_mg_type`, `pc_mg_cycle_type`, `pc_mg_galerkin`
- `mg_levels_1_ksp_type`, `mg_levels_1_pc_type`
- `mg_coarse_ksp_type`, `mg_coarse_pc_type`
- `da_refine`, `ksp_view`

Interface also works with GAMG and 3rd party packages like ML
Creating a DMDA

DMDACreate2d(comm, bdX, bdY, type, M, N, m, n, dof, s, lm[], ln[], DMDA *da)

bd: Specifies boundary behavior
- DM_BOUNDARY_NONE, DM_BOUNDARY_GHOSTED, or DM_BOUNDARY_PERIODIC

type: Specifies stencil
- DMDA_STENCIL_BOX or DMDA_STENCIL_STAR

M/N: Number of grid points in x/y-direction
m/n: Number of processes in x/y-direction
dof: Degrees of freedom per node
s: The stencil width
lm/n: Alternative array of local sizes
- Use NULL for the default
To evaluate a local function $f(x)$, each process requires
- its local portion of the vector x
- its \textit{ghost values}, bordering portions of x owned by neighboring processes
DMDA Global Numberings

<table>
<thead>
<tr>
<th>Proc 2</th>
<th>Proc 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>28</td>
</tr>
<tr>
<td>26</td>
<td>29</td>
</tr>
<tr>
<td>27</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>23</td>
</tr>
<tr>
<td>21</td>
<td>24</td>
</tr>
<tr>
<td>22</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>18</td>
</tr>
<tr>
<td>16</td>
<td>19</td>
</tr>
<tr>
<td>17</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>13</td>
</tr>
<tr>
<td>11</td>
<td>14</td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proc 0</th>
<th>Proc 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Natural numbering</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proc 2</th>
<th>Proc 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>28</td>
</tr>
<tr>
<td>22</td>
<td>29</td>
</tr>
<tr>
<td>23</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>26</td>
</tr>
<tr>
<td>19</td>
<td>27</td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>24</td>
</tr>
<tr>
<td>16</td>
<td>25</td>
</tr>
<tr>
<td>17</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>13</td>
</tr>
<tr>
<td>7</td>
<td>14</td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proc 0</th>
<th>Proc 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PETSc numbering</td>
</tr>
</tbody>
</table>

M. Knepley, A. Terrel

FEniCS and Sieve Tutorial

FEniCS’08 LSU
Global: Each vertex has a unique id belongs on a unique process

Local: Numbering includes vertices from neighboring processes

- These are called *ghost* vertices

<table>
<thead>
<tr>
<th></th>
<th>Proc 2</th>
<th>Proc 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proc 0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Local numbering

<table>
<thead>
<tr>
<th></th>
<th>Proc 2</th>
<th>Proc 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
</tr>
<tr>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proc 0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Global numbering
DMDA Vectors

- The **DMDA** object contains only layout (topology) information
 - All field data is contained in PETSc **Vecs**
- Global vectors are parallel
 - Each process stores a unique local portion
 - `DMCreateGlobalVector(DM da, Vec *gvec)`
- Local vectors are sequential (and usually temporary)
 - Each process stores its local portion plus ghost values
 - `DMCreateLocalVector(DM da, Vec *lvec)`
 - includes ghost and boundary values!
DMDA Local Function

User provided function calculates the nonlinear residual (in 2D)

```
(* If *) (DMDALocalInfo *info, PetscScalar ***x, PetscScalar **r, void *ctx)
```

info: All layout and numbering information

x: The current solution (a multidimensional array)

r: The residual

ctx: The user context passed to `DMDASNESSetFunctionLocal()`

The local DMDA function is activated by calling

```
DMDASNESSetFunctionLocal(dm, INSERT_VALUES, lfunc, &ctx)
```
Bratu Residual Evaluation

\[\Delta u + \lambda e^u = 0 \]

```c
ResLocal(DMDALocalInfo *info, PetscScalar **x, PetscScalar **f, void *ctx)
{
  for (j = info->ys; j < info->ys+info->ym; ++j) {
    for (i = info->xs; i < info->xs+info->xm; ++i) {
      u = x[j][i];
      if (i==0 || j==0 || i == M || j == N) {
        f[j][i] = 2.0*(hydhx+hxdhy)*u; continue;
      }
      u_xx = (2.0*u - x[j][i-1] - x[j][i+1])*hydhx;
      u_yy = (2.0*u - x[j-1][i] - x[j+1][i])*hxdhy;
      f[j][i] = u_xx + u_yy - hx*hy*lambda*exp(u);
    }
  }
}
```

\$PETSC_DIR/src/snes/examples/tutorials/ex5.c\$
User provided function calculates the Jacobian (in 2D)

\((\ast \text{ljac })(\text{DMDALocalInfo} \hspace{1em} \ast info, \hspace{1em} \text{PetscScalar} \ast \ast x, \hspace{1em} \text{Mat} J, \hspace{1em} \text{void} \hspace{1em} \ast ctx)\)

- **info**: All layout and numbering information
- **x**: The current solution
- **J**: The Jacobian
- **ctx**: The user context passed to `DASetLocalJacobian()`

The local DMDA function is activated by calling

\(\text{DMDASNES} \hspace{1em} \text{SetJacobianLocal}(\text{dm, ljac, &ctx})\)
Two-step process enables overlapping computation and communication

- DMGlobalToLocalBegin(da, gvec, mode, lvec)
 - gvec provides the data
 - mode is either INSERT_VALUES or ADD_VALUES
 - lvec holds the local and ghost values
- DMGlobalToLocalEnd(da, gvec, mode, lvec)
 - Finishes the communication

The process can be reversed with DALocalToGlobalBegin/End().
Both the box stencil and star stencil are available.

Box Stencil

Star Stencil

PETSc provides

\[\text{MatSetValuesStencil}(\text{Mat } A, m, \text{MatStencil } \text{idxm}[], n, \text{MatStencil } \text{idxn}[], \text{PetscScalar } \text{values}[], \text{InsertMode } \text{mode}) \]

- Each row or column is actually a \textbf{MatStencil}
 - This specifies grid coordinates and a component if necessary
 - Can imagine for unstructured grids, they are \textit{vertices}
- The values are the same logically dense block in row/col
DM supplies global residual and Jacobian to SNES
 - User supplies local version to DM
 - The `Rhs_*()` and `Jac_*()` functions in the example

Allows automatic parallelism

Allows grid hierarchy
 - Enables multigrid once interpolation/restriction is defined

Paradigm is developed in unstructured work
 - Solve needs scatter into contiguous global vectors (initial guess)

Handle Neumann BC using `KSPSetNullSpace()`
The Bratu Problem

\[\Delta u + \lambda e^u = f \quad \text{in} \quad \Omega \quad (1) \]
\[u = g \quad \text{on} \quad \partial \Omega \quad (2) \]

- Nonlinearly perturbed Poisson
- Can be treated as a nonlinear eigenvalue problem
- Has two solution branches until \(\lambda \approx 6.28 \)
A 2D Problem

Problem has:
- 1,640,961 unknowns (on the fine level)
- 8,199,681 nonzeros

Options

<table>
<thead>
<tr>
<th>Option</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>./ex5 -da_grid_x 21 -da_grid_y 21 -ksp_rtol 1.0e-9 -da_refine 6 -pc_type mg -pc_mg_levels 4 -snes_monitor -snes_view</td>
<td>Original grid is 21x21 Solver tolerance 6 levels of refinement 4 levels of multigrid Describe solver</td>
</tr>
</tbody>
</table>
A 3D Problem

Problem has:
- 1,689,600 unknowns (on the fine level)
- 89,395,200 nonzeros

<table>
<thead>
<tr>
<th>Options</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>./ex48 -M 5 -N 5</td>
<td>Coarse problem size</td>
</tr>
<tr>
<td>-da_refine 5</td>
<td>5 levels of refinement</td>
</tr>
<tr>
<td>-ksp_rtol 1.0e-9</td>
<td>Solver tolerance</td>
</tr>
<tr>
<td>-thi_mat_type baij</td>
<td>Needs SOR</td>
</tr>
<tr>
<td>-pc_type mg</td>
<td>4 levels of multigrid</td>
</tr>
<tr>
<td>-pc_mg_levels 4</td>
<td>Describe solver</td>
</tr>
<tr>
<td>-snes_monitor -snes_view</td>
<td></td>
</tr>
</tbody>
</table>
Outline

6 Optimal Solvers
- Multigrid for Structured Meshes
- Multigrid for Unstructured Meshes
Sections associate data to submeshes

- Name comes from section of a fiber bundle
 - Generalizes linear algebra paradigm
- Define `restrict()`, `update()`
- Define `complete()`
- Assembly routines take a Sieve and several Sections
 - This is called a Bundle
Global and Local

Local (analytical)
- Discretization/Approximation
 - FEM integrals
 - FV fluxes
- Boundary conditions
- Largely dim dependent (e.g. quadrature)

Global (topological)
- Data management
 - Sections (local pieces)
 - Completions (assembly)
- Boundary definition
- Multiple meshes
 - Mesh hierarchies
- Largely dim independent (e.g. mesh traversal)
Global and Local

Local (analytical)
- Discretization/Approximation
 - FEM integrals
 - FV fluxes
- Boundary conditions
 - Largely dim dependent (e.g. quadrature)

Global (topological)
- Data management
 - Sections (local pieces)
 - Completions (assembly)
- Boundary definition
- Multiple meshes
 - Mesh hierarchies
- Largely dim independent (e.g. mesh traversal)
Global and Local

Local (analytical)
- Discretization/Approximation
 - FEM integrals
 - FV fluxes
- Boundary conditions
- Largely dim dependent (e.g. quadrature)

Global (topological)
- Data management
 - Sections (local pieces)
 - Completions (assembly)
- Boundary definition
- Multiple meshes
 - Mesh hierarchies
- Largely dim independent (e.g. mesh traversal)
Global and Local

Local (analytical)
- Discretization/Approximation
 - FEM integrals
 - FV fluxes
- Boundary conditions
- Largely dim dependent (e.g. quadrature)

Global (topological)
- Data management
 - Sections (local pieces)
 - Completions (assembly)
- Boundary definition
- Multiple meshes
 - Mesh hierarchies
- Largely dim independent (e.g. mesh traversal)
Global and Local

Local (analytical)
- Discretization/Approximation
 - FEM integrals
 - FV fluxes
- Boundary conditions
- Largely dim dependent (e.g. quadrature)

Global (topological)
- Data management
 - Sections (local pieces)
 - Completions (assembly)
- Boundary definition
- Multiple meshes
 - Mesh hierarchies
- Largely dim independent (e.g. mesh traversal)
AMG

Why not use AMG?

- Of course we will try AMG
 - GAMG, -pc_type gamg
 - ML, -download-ml, -pc_type ml
 - BoomerAMG, -download-hypre, -pc_type hypre
 - pc_hypre_type boomeramg

- Problems with
 - vector character
 - anisotropy
 - scalability of setup time
Why not use AMG?

- Of course we will try AMG
 - GAMG, \(-\text{pc_type} \text{ gamg}\)
 - ML, \(-\text{download-ml, pc_type ml}\)
 - BoomerAMG, \(-\text{download-hypre, pc_type hypre}\)
 \(-\text{pc_hypre_type boomeramg}\)

- Problems with
 - vector character
 - anisotropy
 - scalability of setup time
Why not use AMG?

- Of course we will try AMG
 - GAMG, -pc_type gamg
 - ML, -download-ml, -pc_type ml
 - BoomerAMG, -download-hypre, -pc_type hypre
 - pc_hypre_type boomeramg

- Problems with
 - vector character
 - anisotropy
 - scalability of setup time
Unstructured Meshes

- Same \texttt{DMMG} options as the structured case
- Mesh refinement
 - Ruppert algorithm in Triangle and TetGen
- Mesh coarsening
 - Talmor-Miller algorithm in PETSc
- More advanced options
 - \texttt{-dmmg_refine}
 - \texttt{-dmmg_hierarchy}
- Current version only works for linear elements
Coarsening

- Users want to control the mesh
- Developed efficient, topological coarsening
 - Miller, Talmor, Teng algorithm
- Provably well-shaped hierarchy
Miller-Talmor-Teng Algorithm

Simple Coarsening

1. **Compute a spacing function** f for the mesh (Koebe)
2. Scale f by a factor $C > 1$
3. Choose a maximal independent set of vertices for new f
4. Retriangulate
Miller-Talmor-Teng Algorithm

Simple Coarsening

1. Compute a \textit{spacing function} f for the mesh (Koebe)
2. Scale f by a factor $C > 1$
3. Choose a maximal independent set of vertices for new f
4. Retriangulate
Miller-Talmor-Teng Algorithm

Simple Coarsening

1. Compute a \textit{spacing function} f for the mesh (Koebe)
2. Scale f by a factor $C > 1$
3. Choose a maximal independent set of vertices for new f
4. Retriangulate
Miller-Talmor-Teng Algorithm

Simple Coarsening

1. Compute a **spacing function** f for the mesh (Koebe)
2. Scale f by a factor $C > 1$
3. Choose a maximal independent set of vertices for new f
4. Retriangulate
Miller-Talmor-Teng Algorithm

Caveats

1. Must generate coarsest grid in hierarchy first
2. Must choose boundary vertices first (and protect boundary)
3. Must account for boundary geometry
Miller-Talmor-Teng Algorithm

Caveats

1. Must generate coarsest grid in hierarchy first
2. Must choose boundary vertices first (and protect boundary)
3. Must account for boundary geometry
Miller-Talmor-Teng Algorithm

Caveats

1. Must generate coarsest grid in hierarchy first
2. Must choose boundary vertices first (and protect boundary)
3. Must account for boundary geometry
GMG Performance

For simple domains, everything works as expected: Linear solver iterates are constant as system size increases:

![Graph showing KSP iterates vs mesh size for different domains (Square, Cube, Circle)].
GMG Performance

For simple domains, everything works as expected:
Work to build the preconditioner is constant as system size increases:

![Graph showing coarsening performance vs mesh size for Square, Cube, and Circle domains.](image-url)
Reentrant Problems

- Reentrant corners need nonuniform refinement to maintain accuracy
- Coarsening preserves accuracy in MG without user intervention
Reentrant Problems

- Reentrant corners need nonuniform refinement to maintain accuracy.
- Coarsening preserves accuracy in MG without user intervention.

![Reentrant Corner Error Graph]

- L2 Error vs. Iterations
- Graph shows comparison between unrefined and refined Pacman meshes.
Reentrant Problems

Exact Solution for reentrant problem: \(u(x, y) = r^{\frac{2}{3}} \sin\left(\frac{2}{3} \theta\right) \)
Reentrant Problems

Exact Solution for reentrant problem: \[u(x, y) = r^{\frac{2}{3}} \sin\left(\frac{2}{3} \theta\right) \]
Linear solver iterates are constant as system size increases:
Work to build the preconditioner is constant as system size increases:

Vertex Comparisons on Reentrant Domains

Comparisons Per Vertex

Mesh Size (Vertices)
Conclusions

Better mathematical abstractions bring concrete benefits

- Vast reduction in complexity
 - Operate directly at the equation and discretization level
 - Automatic generation of integration/assembly routines
 - Dimension independent code

- Expansion of capabilities
 - Parametric models
 - Optimized implementations of integration
 - Multigrid on arbitrary meshes
Better mathematical abstractions bring concrete benefits

- Vast reduction in complexity
 - Operate directly at the equation and discretization level
 - Automatic generation of integration/assembly routines
 - Dimension independent code

- Expansion of capabilities
 - Parametric models
 - Optimized implementations of integration
 - Multigrid on arbitrary meshes
Better mathematical abstractions bring concrete benefits

- Vast reduction in complexity
 - Operate directly at the equation and discretization level
 - Automatic generation of integration/assembly routines
 - Dimension independent code

- Expansion of capabilities
 - Parametric models
 - Optimized implementations of integration
 - Multigrid on arbitrary meshes
References

- **FEniCS Documentation:**
 http://www.fenics.org/wiki/FEniCS_Project
 - Project documentation
 - Users manuals
 - Repositories, bug tracking
 - Image gallery

- **Publications:**
 http://www.fenics.org/wiki/Related_presentations_and_publications
 - Research and publications that make use of FEniCS

- **PETSc Documentation:**
 http://www.mcs.anl.gov/petsc/docs
 - PETSc Users manual
 - Manual pages
 - Many hyperlinked examples
 - FAQ, Troubleshooting info, installation info, etc.
 - Publication using PETSc
Experimentation is Essential!

Proof is not currently enough to examine solvers
