Structural Engineering Modeling Issues

Sami A. Kilic

CS Dept., Purdue University

28 January 2005
Extraction of Structural Matrices

\[M \cdot \ddot{u} + C \cdot \dot{u} + K \cdot u = f \]

Difficulty arises due to the fact that most structural mechanics finite element analysis packages do not allow the user to output the Mass (M), Damping (C), and Stiffness (K) matrices.

Nastran was chosen as a tool due to its flexibility for outputting the structural matrices through its user interface module.
Sap2000 Model of the Building
Converted Nastran model of the Building
Nonlinear Response

\[M \cdot \ddot{u}(t) + C \cdot \dot{u}(t) + K(u,t) \cdot u(t) = f(t) \]

Due to the presence of nonlinear behavior, linear superposition principles do not apply.

Modal analysis can not be used for nonlinear response.

In addition, frequency response analysis is not possible. The solution has to be done in the time domain.

The only applicable method is direct transient response analysis in the time domain.
Modal Dynamic Analysis

\[M \cdot \ddot{u} + C \cdot \dot{u} + K \cdot u = f \]

\[u(t) = P \cdot X(t) \]

\[\tilde{M} \cdot \ddot{X}(t) + \tilde{C} \cdot \dot{X}(t) + \tilde{K} \cdot X(t) = \tilde{f}(t) \]

\[\tilde{M} = P^T \cdot M \cdot P \]

\[\tilde{C} = P^T \cdot C \cdot P \]

\[\tilde{K} = P^T \cdot K \cdot P \]

\[\tilde{f} = P^T \cdot f \]

Mode shapes obtained from undamped free vibration:

\[M \cdot \ddot{u} + K \cdot u = 0 \]

\[u = \phi \cdot \sin \omega(t - t_0) \]

\[K \cdot \phi = \omega^2 M \cdot \phi \]

\[\Phi = [\phi_1 \quad \phi_2 \quad \ldots \quad \phi_n] \]

\[\Omega = \begin{bmatrix}
\omega_1^2 \\
\omega_2^2 \\
\vdots \\
\omega_n^2
\end{bmatrix} \]

\[K \cdot \Phi = \Omega^2 \cdot M \cdot \Phi \]

\[\Phi^T \cdot K \cdot \Phi = \Omega^2 \]

\[\Phi^T \cdot M \cdot \Phi = I \quad \text{(mass normalized)} \]

\[\dot{X}(t) + \Phi^T C \Phi \cdot \dot{X}(t) + \Omega^2 \cdot X(t) = \Phi^T \cdot f(t) \]
Damping Effects

Modal damping:

\[\phi_i^T \cdot C \cdot \phi_i = 2 \omega_i \xi_i \delta_{ij} \]

\[\ddot{x}_i(t) + 2 \omega_i \xi_i \dot{x}_i(t) + \omega^2 x_i(t) = f_i(t) \]

Rayleigh damping (mass and stiffness proportional):

\[C = \alpha M + \beta K \]

* Nastran allows modeling viscous damping effects by using discrete damper elements.
Viscous and Structural Damping. Two types of damping are generally used for linear-elastic materials: viscous and structural. The viscous damping force is proportional to velocity, and the structural damping force is proportional to displacement. Which type to use depends on the physics of the energy dissipation mechanism(s) and is sometimes dictated by regulatory standards.

The viscous damping force \(f_v \) is proportional to velocity and is given by

\[
f_v = b \dot{u} \quad \text{Eq. 2-6}
\]

where:

\(b \) = viscous damping coefficient
\(\dot{u} \) = velocity

The structural damping force \(f_s \) is proportional to displacement and is given by

\[
f_s = i \cdot G \cdot k \cdot u \quad \text{Eq. 2-7}
\]

where:

\(G \) = structural damping coefficient
\(k \) = stiffness
\(u \) = displacement
\(i \) = \(\sqrt{-1} \) (phase change of 90 degrees)

For a sinusoidal displacement response of constant amplitude, the structural damping force is constant, and the viscous damping force is proportional to the forcing frequency.
Figure 6.1 Structural Damping Versus Viscous Damping (Constant Oscillatory Displacement)
Transmit Analysis - Implicit Time Integration

\[M \cdot \ddot{u}_{t+\Delta t} + C \cdot \dot{u}_{t+\Delta t} + K \cdot u_{t+\Delta t} = f_{t+\Delta t} \]

Linear acceleration assumption:

\[\ddot{u}_{t+\Delta t} = \ddot{u}_t + [(1 - \delta) \cdot \ddot{u}_t + \delta \cdot \ddot{u}_{t+\Delta t}] \cdot \Delta t \]

\[u_{t+\Delta t} = u_t + \dot{u}_t \cdot \Delta t + [(1/2 - \alpha) \cdot \ddot{u}_t + \alpha \cdot \ddot{u}_{t+\Delta t}] \cdot \Delta t^2 \]

Compute effective stiffness matrix and force vector and solve for unknown displacements:

\[\tilde{K} \cdot u_{t+\Delta t} = \tilde{f}_{t+\Delta t} \]

\[LDL^T \cdot u_{t+\Delta t} = \tilde{f}_{t+\Delta t} \]
Implicit Time Integration (C’td.)

\[\hat{K} \cdot u_{t+\Delta t} = \hat{f}_{t+\Delta t} \]

\[\hat{K} = K + a_0 \cdot M + a_1 \cdot C \]

\[\hat{f}_{t+\Delta t} = f_{t+\Delta t} + M \cdot [a_0 u_t + a_2 \dot{u}_t + a_3 \ddot{u}_t] + C \cdot [a_1 u_t + a_4 \dot{u}_t + a_5 \ddot{u}_t] \]

Integration constants:

\[a_0 = \frac{1}{\alpha \cdot \Delta t^2} \quad a_2 = \frac{1}{\alpha \cdot \Delta t} \quad a_4 = \frac{\delta}{\alpha} - 1 \]

\[a_1 = \frac{\delta}{\alpha \cdot \Delta t} \quad a_3 = \frac{1}{2\alpha} - 1 \quad a_5 = \frac{\Delta t}{2} \left(\frac{\delta}{\alpha} - 2 \right) \]

Velocity and acceleration:

\[\dot{u}_{t+\Delta t} = \dot{u}_t + a_6 \cdot \ddot{u}_t + a_7 \cdot \dddot{u}_{t+\Delta t} \]

\[\dddot{u}_{t+\Delta t} = a_0 \cdot (u_{t+\Delta t} - u_t) - a_2 \cdot \dot{u}_t - a_3 \cdot \ddot{u}_t \]

\[a_6 = \Delta t \cdot (1 - \delta) \]

\[a_7 = \delta \cdot \Delta t \]