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Notation

x : sparse signal, has ≤ k nonzero entries
b = Ax : CS measurements

`0-problem: min ‖x‖0, s.t. Ax = b. Exact recovery needs m ≥ 2k
for Gaussian A
`1-problem: min ‖x‖1, s.t. Ax = b. Needs a much bigger m
Also called Basis Pursuit
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Approach

Goal: to beat the `1-minimization, i.e., basis pursuit
Recover x from less measurements
Remain computationally tractable

Iterative approach:
If `1-minimization fails, detect good in the (wrong) solution
Remove the discoveries from the `1-norm.
T : remaining entries, ‖xT‖1 =

∑
i∈T |xi |,

T C : discoveries = correct ∪ wrong, out of `1-norm.
t = |T |
Solve

Truncate `1-problem: minx ‖xT‖1, s.t. Ax = b.
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A Simple Example
Setup:

n = 200, k = 25, m = 2k = 50, A is Gaussian random

Basis pursuit result: x (1)
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A Simple Example
Setup:

n = 200, k = 25, m = 2k = 50, A is Gaussian random

Basis pursuit result: x (1), threshold ε = ‖x (1)‖∞/3
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A Thresholding Framework

Initialize: j ← 1 and T = {1,2, . . . ,n}.
While not converged do

1 Truncated `1-minimization:

x (j) ← min ‖xT‖1 s.t. Ax = b.

2 Support detection by thresholding:

ε← ‖x (j)‖∞/3j ,

T ← {i : |x (j)
i | < ε}.
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Results of Iterative Thresholding

Basis pursuit result: x (1), threshold ε = ‖x (1)‖∞/3
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Results of Iterative Thresholding

Truncated `1-result: x (2), reduced threshold ε = ‖x (2)‖∞/32
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Results of Iterative Thresholding

Truncated `1-result: x (3), reduced threshold ε = ‖x (3)‖∞/33
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Results of Iterative Thresholding

Truncated `1-result: x (4), exact recovery!
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Robustness Test
Try tighter thresholds:

ε = ‖x (j)‖∞/5j .

j = 1, basis pursuit result:
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Robustness Test
Try tighter thresholds:

ε = ‖x (j)‖∞/5j .

j = 2, truncated `1-minimization result:
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Robustness Test
Try tighter thresholds:

ε = ‖x (j)‖∞/5j .

j = 3, truncated `1-minimization result:
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Robustness Test
Try tighter thresholds:

ε = ‖x (j)‖∞/5j .

j = 4, truncated `1-minimization result: exact recovery!
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Summary of Results

Q: Condition for an exact recovery?

Truncated Null Space Property (T-NSP) holds with γ < 1.

Q: How good is a support discovery?

= γ(j) − γ(j+1). To have γ(j) > γ(j+1):
(inc. correct discoveries) / (inc. wrong discoveries) > γ(j)

Q: Not knowing the exact solution
how to have enough correct discoveries?
thresholding for fast decaying signals. Ranking is not as robust.
how to measure improvement?
compute the size of tail.
when to stop?
tail is zero or small enough.
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Null Space Property

A sufficient condition for min{‖x‖1 : Ax = b} to yield the right x .

Observe {x : Ax = b} = x +N (A). We need ‖x‖1 < ‖x + v‖1 for
all v ∈ N (A).
Let S = {i : xi 6= 0}.

‖x + v‖1 = ‖xS + vS‖1 + ‖0 + vSC‖1

= (‖xS + vS‖1 − ‖xS‖1 + ‖vS‖1) + ‖xS‖1 + ‖vSC‖1 − ‖vS‖1

= (‖xS + vS‖1 − ‖xS‖1 + ‖vS‖1)︸ ︷︷ ︸
≥0

+‖x‖1 + ‖vSC‖1 − ‖vS‖1︸ ︷︷ ︸
≥0??

.

We need ‖vS‖1 < ‖vSC‖1.
A necessary condition for uniform exact recovery for all
|S|-sparse signals.
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Null Space Property

Definition (Cohen-Dahmen-DeVore and others)

A ∈ Rm×n has the Null Space Property (NSP) with order L and γ > 0
if

‖vS‖1 ≤ γ‖vSc‖1, ∀|S| ≤ L, v ∈ N (A).

Usage:
A has NSP with L and γ < 1⇒

Uniform exact recovery of all L-sparse signals
For k > L, a recovery error bound for k -sparse signals

Minimal γ is monotonic in L
NSP is weaker than RIP and can be obtained from RIP
NSP is more essential than RIP for basis pursuit (left multiplying
A by a nonsingular matrix changes RIP but not NSP)
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Truncated Null Space Property

Definition (Y.-Wang)

A ∈ Rm×n has the Truncated Null Space Property (T-NSP) with t , L,
and γ, written as T-NSP(t ,L, γ), if

‖vS‖1 ≤ γ‖vT\S‖1, ∀S ⊂ T , |S| ≤ L, |T | = t , v ∈ N (A).

Intuitively, T-NSP(t ,L, γ)⇔ all length-t subvectors of v ∈ N (A) satisfy
the inequality of NSP(L, γ)

Theorem (Y.-Wang)

For T given , if A satisfies T-NSP(|T |,L, γ) where γ < 1, then
truncated `1-minimization over the support of T yields an exact
recovery.
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Recoverability Improvement

Theorem (Y.-Wang)

Suppose A satisfies both T-NSP(t1,L1, γ1) and T-NSP(t2,L2, γ2)
where t2 < t1 and γ1 and γ2 are minimal. Then,

L1 − L2

(t1 − t2)− (L1 − L2)
> γ1 =⇒ γ2 < γ1.

Interpretation:
t1 = |T 1|: numbers of entries in T before detection
t2 = |T 2|: numbers of entries in T after detection
t1 − t2 = decrease in |T | = increase in the total discoveries
L1 − L2 = increase in the correct discoveries
γ2 < γ1: recoverability improved (recall γ < 1⇒ exact recovery)
To improve, it is sufficient to have
(inc. corr. discoveries) / (inc. false discoveries) > γ1

Result is in dependent of support detectors.
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To improve, it is sufficient to have
(inc. corr. discoveries) / (inc. false discoveries) > γ1

Result is in dependent of support detectors.
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Results for Random Sampling

Theorem (Y.-Wang, an extension to Candés-Tao and Zhang)

For Gaussian random A (or any rank-m matrix A such that BA> = 0
where B ∈ R(n−m)×m is Gaussian random), a sufficient condition for
exact recovery with high probability is

‖xT‖0 <
C2

4
m − d

1 + log n−d
m−d

,

where d = n − |T | and C is an independent constant.

Application: Bound C and show that

−1 <
∂RHS
∂d

< 0,

leaving room for incorrect discoveries.
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Numerical Results

Experiment 1: noiseless measurements
n = 100, m = 50
k = 9, . . . ,21. Each k had 200 trials.
x : sparse Gaussian signals
A: Gaussian random
Successful recovery declared if ‖x (j) − x‖∞ ≤ 10−3

Thresholds: ε = ‖x (j)‖∞/2j

Empirical exact recovery conditions:
Basis pursuit:

k ≤ m
5

With iterative support detection:

k ≤ m
3
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Numerical Results
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Numerical Results

Experiment 2: noisy measurements
n = 100, m = 50
k = 9,11,15,19. Each k had 200 trials.
x : sparse Gaussian signals
A: Gaussian random
b = Ax + z, where z ∼ N(0,0.001)

Logarithms of relative errors of x (j) to x are plotted
Thresholds: ε = ‖x (j)‖∞/2j
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Numerical Results
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Numerical Results

Experiment 3: sparse signals with nonzero = ±1, noiseless
measurements
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Excessive false detections!
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Numerical Results
Experiment 3: signals with Bernoulli nonzeros, noiseless
measurements
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Little improvement over basis pursuit.
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Conclusions
Effective support detection improves CS recovery

In particular, iterative thresholding is effective on sparse signals
with fast decaying distribution of nonzero values
Computationally tractable

one `1-minimization per iteration, can be warm-started
only a small number of iterations are needed
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On-going work
other types of signals: images, video, etc.

other priors: ‖Φx‖p, p ≤ 1, and TV (x)

further theoretical analysis is underway
apply to greedy algorithms (OMP, ROMP, CoSaMP, ...).
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