Enhanced Compressed Sensing based on Iterative Support Detection

Wotao Yin

Department of Computational and Applied Mathematics
Rice University

Joint work with Yilun Wang

Supported by ONR and NSF

Notation

- x: sparse signal, has $\leq k$ nonzero entries
- b = Ax: CS measurements

Notation

- x: sparse signal, has $\leq k$ nonzero entries
- b = Ax: CS measurements
- ℓ_0 -problem: min $||x||_0$, s.t. Ax = b. Exact recovery needs $m \ge 2k$ for Gaussian A
- ℓ_1 -problem: min $||x||_1$, s.t. Ax = b. Needs a much bigger m Also called *Basis Pursuit*

Outline

- Overview
 - The Approach
 - Simple Examples
- - Summary
 - The Null Space Property
 - Recoverability Improvement
- - Noiseless measurements
 - Noisy measurements
 - A failed case

Goal: to beat the ℓ_1 -minimization, i.e., basis pursuit

- Recover x from less measurements
- Remain computationally tractable

Goal: to beat the ℓ_1 -minimization, i.e., basis pursuit

- Recover x from less measurements
- Remain computationally tractable

Iterative approach:

• If ℓ_1 -minimization fails, detect *good* in the (wrong) solution

Goal: to beat the ℓ_1 -minimization, i.e., basis pursuit

- Recover x from less measurements
- Remain computationally tractable

Iterative approach:

- If ℓ_1 -minimization fails, detect *good* in the (wrong) solution
- Remove the discoveries from the ℓ_1 -norm.

Goal: to beat the ℓ_1 -minimization, i.e., basis pursuit

- Recover x from less measurements.
- Remain computationally tractable

Iterative approach:

- If ℓ_1 -minimization fails, detect *good* in the (wrong) solution
- Remove the discoveries from the ℓ₁-norm.

```
T: remaining entries, ||x_T||_1 = \sum_{i \in T} |x_i|,
T^{C}: discoveries = correct \cup wrong, out of \ell_{1}-norm.
t = |T|
```


Goal: to beat the ℓ_1 -minimization, i.e., basis pursuit

- Recover x from less measurements.
- Remain computationally tractable

Iterative approach:

- If ℓ_1 -minimization fails, detect *good* in the (wrong) solution
- Remove the discoveries from the ℓ₁-norm.

```
T: remaining entries, ||x_T||_1 = \sum_{i \in T} |x_i|,
T^{C}: discoveries = correct \cup wrong, out of \ell_{1}-norm.
t = |T|
```

Solve

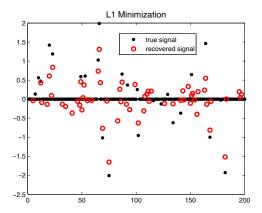
Truncate ℓ_1 -problem: $\min_x ||x_T||_1$, s.t. Ax = b.

A Simple Example

Setup:

• n = 200, k = 25, m = 2k = 50, A is Gaussian random

Basis pursuit result: $x^{(1)}$

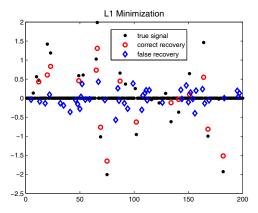


A Simple Example

Setup:

• n = 200, k = 25, m = 2k = 50, A is Gaussian random

Basis pursuit result: $x^{(1)}$

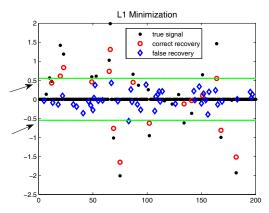


A Simple Example

Setup:

• n = 200, k = 25, m = 2k = 50, A is Gaussian random

Basis pursuit result: $x^{(1)}$, threshold $\epsilon = ||x^{(1)}||_{\infty}/3$



A Thresholding Framework

- Initialize: $j \leftarrow 1$ and $T = \{1, 2, \dots, n\}$.
- While not converged do
 - Truncated ℓ₁-minimization:

$$x^{(j)} \leftarrow \min \|x_T\|_1$$
 s.t. $Ax = b$.

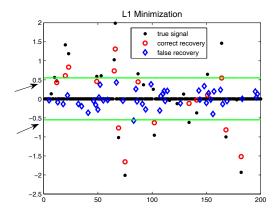
Support detection by thresholding:

$$\epsilon \leftarrow \|\mathbf{x}^{(j)}\|_{\infty}/3^{j}$$

$$T \leftarrow \{i : |x_i^{(j)}| < \epsilon\}.$$

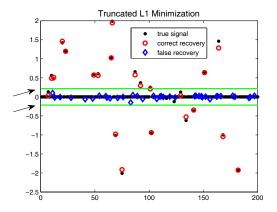
Results of Iterative Thresholding

Basis pursuit result: $x^{(1)}$, threshold $\epsilon = ||x^{(1)}||_{\infty}/3$



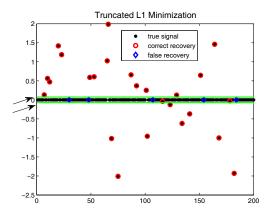
Results of Iterative Thresholding

Truncated ℓ_1 -result: $x^{(2)}$, reduced threshold $\epsilon = \|x^{(2)}\|_{\infty}/3^2$

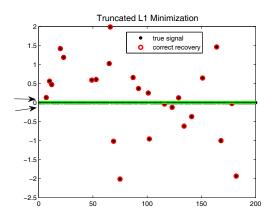


Results of Iterative Thresholding

Truncated ℓ_1 -result: $x^{(3)}$, reduced threshold $\epsilon = ||x^{(3)}||_{\infty}/3^3$



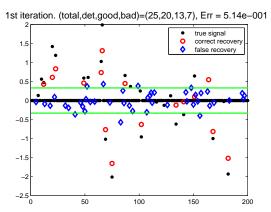
Truncated ℓ_1 -result: $x^{(4)}$, exact recovery!



Try tighter thresholds:

$$\epsilon = \|\mathbf{x}^{(j)}\|_{\infty}/5^{j}.$$

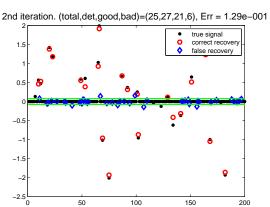
j = 1, basis pursuit result:



Try tighter thresholds:

$$\epsilon = \|\mathbf{x}^{(j)}\|_{\infty}/5^{j}.$$

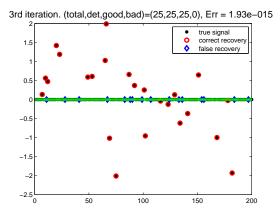
j=2, truncated ℓ_1 -minimization result:



Try tighter thresholds:

$$\epsilon = \|\mathbf{x}^{(j)}\|_{\infty}/5^{j}.$$

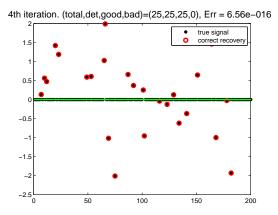
j = 3, truncated ℓ_1 -minimization result:



Try tighter thresholds:

$$\epsilon = \|\mathbf{x}^{(j)}\|_{\infty}/5^{j}.$$

j=4, truncated ℓ_1 -minimization result: exact recovery!



Outline

- - The Approach
 - Simple Examples
- Theoretical Results
 - Summary
 - The Null Space Property
 - Recoverability Improvement
- - Noiseless measurements
 - Noisy measurements
 - A failed case

Overview Theoretical Results Numerical Results Conclusions Summary The Null Space Property Recoverability Improvement

Summary of Results

Q: Condition for an exact recovery? *Truncated Null Space Property* (T-NSP) holds with γ < 1.

- Q: Condition for an exact recovery? *Truncated Null Space Property* (T-NSP) holds with γ < 1.
- Q: How good is a support discovery?

$$=\gamma^{(j)}-\gamma^{(j+1)}$$
. To have $\gamma^{(j)}>\gamma^{(j+1)}$: (inc. correct discoveries) / (inc. wrong discoveries) $>\gamma^{(j)}$

- Q: Condition for an exact recovery? Truncated Null Space Property (T-NSP) holds with $\gamma <$ 1.
- Q: How good is a support discovery?

$$= \gamma^{(j)} - \gamma^{(j+1)}$$
. To have $\gamma^{(j)} > \gamma^{(j+1)}$: (inc. correct discoveries) / (inc. wrong discoveries) $> \gamma^{(j)}$

- Q: Not knowing the exact solution
 - how to have enough correct discoveries?
 thresholding for fast decaying signals. Ranking is not as robust.

- Q: Condition for an exact recovery? *Truncated Null Space Property* (T-NSP) holds with γ < 1.
- Q: How good is a support discovery?

$$= \gamma^{(j)} - \gamma^{(j+1)}$$
. To have $\gamma^{(j)} > \gamma^{(j+1)}$: (inc. correct discoveries) / (inc. wrong discoveries) $> \gamma^{(j)}$

- Q: Not knowing the exact solution
 - how to have enough correct discoveries? thresholding for fast decaying signals. Ranking is not as robust.
 - how to measure improvement? compute the size of tail.

- Q: Condition for an exact recovery? *Truncated Null Space Property* (T-NSP) holds with γ < 1.
- Q: How good is a support discovery?

$$= \gamma^{(j)} - \gamma^{(j+1)}$$
. To have $\gamma^{(j)} > \gamma^{(j+1)}$: (inc. correct discoveries) / (inc. wrong discoveries) $> \gamma^{(j)}$

- Q: Not knowing the exact solution
 - how to have enough correct discoveries? thresholding for fast decaying signals. Ranking is not as robust.
 - how to measure improvement? compute the size of tail.
 - when to stop? tail is zero or small enough.

• A sufficient condition for $\min\{\|x\|_1 : Ax = b\}$ to yield the right x.

- A sufficient condition for $\min\{||x||_1 : Ax = b\}$ to yield the right x.
- Observe $\{x : Ax = b\} = x + \mathcal{N}(A)$. We need $||x||_1 < ||x + v||_1$ for all $v \in \mathcal{N}(A)$.

- A sufficient condition for $\min\{||x||_1 : Ax = b\}$ to yield the right x.
- Observe $\{x : Ax = b\} = x + \mathcal{N}(A)$. We need $||x||_1 < ||x + v||_1$ for all $v \in \mathcal{N}(A)$.
- Let $S = \{i : x_i \neq 0\}.$

$$||x + v||_{1} = ||x_{S} + v_{S}||_{1} + ||0 + v_{Sc}||_{1}$$

$$= (||x_{S} + v_{S}||_{1} - ||x_{S}||_{1} + ||v_{S}||_{1}) + ||x_{S}||_{1} + ||v_{Sc}||_{1} - ||v_{S}||_{1}$$

$$= (||x_{S} + v_{S}||_{1} - ||x_{S}||_{1} + ||v_{S}||_{1}) + ||x||_{1} + ||v_{Sc}||_{1} - ||v_{S}||_{1}.$$

$$\geq 0$$

We need $\|v_S\|_1 < \|v_{S^c}\|_1$.

Space Property

- A sufficient condition for $\min\{||x||_1 : Ax = b\}$ to yield the right x.
- Observe $\{x : Ax = b\} = x + \mathcal{N}(A)$. We need $||x||_1 < ||x + v||_1$ for all $v \in \mathcal{N}(A)$.
- Let $S = \{i : x_i \neq 0\}.$

$$||x + v||_{1} = ||x_{S} + v_{S}||_{1} + ||0 + v_{Sc}||_{1}$$

$$= (||x_{S} + v_{S}||_{1} - ||x_{S}||_{1} + ||v_{S}||_{1}) + ||x_{S}||_{1} + ||v_{Sc}||_{1} - ||v_{S}||_{1}$$

$$= (||x_{S} + v_{S}||_{1} - ||x_{S}||_{1} + ||v_{S}||_{1}) + ||x||_{1} + ||v_{Sc}||_{1} - ||v_{S}||_{1}.$$

$$\geq 0$$

We need $||v_S||_1 < ||v_{S^c}||_1$.

 A necessary condition for uniform exact recovery for all |S|-sparse signals.

Definition (Cohen-Dahmen-DeVore and others)

 $A \in \mathbb{R}^{m \times n}$ has the *Null Space Property* (*NSP*) with order L and $\gamma > 0$ if

$$\|\mathbf{v}_{\mathcal{S}}\|_{1} \leq \gamma \|\mathbf{v}_{\mathcal{S}^{c}}\|_{1}, \quad \forall |\mathcal{S}| \leq L, \mathbf{v} \in \mathcal{N}(A).$$

Definition (Cohen-Dahmen-DeVore and others)

 $A \in \mathbb{R}^{m \times n}$ has the *Null Space Property (NSP*) with order L and $\gamma > 0$ if

$$\|\mathbf{v}_{\mathcal{S}}\|_{1} \leq \gamma \|\mathbf{v}_{\mathcal{S}^{c}}\|_{1}, \quad \forall |\mathcal{S}| \leq L, \mathbf{v} \in \mathcal{N}(A).$$

- A has NSP with L and $\gamma < 1 \Rightarrow$
 - Uniform exact recovery of all L-sparse signals
 - For k > L, a recovery error bound for k-sparse signals

Definition (Cohen-Dahmen-DeVore and others)

 $A \in \mathbb{R}^{m \times n}$ has the *Null Space Property (NSP*) with order L and $\gamma > 0$ if

$$\|\mathbf{v}_{\mathcal{S}}\|_{1} \leq \gamma \|\mathbf{v}_{\mathcal{S}^{c}}\|_{1}, \quad \forall |\mathcal{S}| \leq L, \mathbf{v} \in \mathcal{N}(\mathbf{A}).$$

- A has NSP with L and $\gamma < 1 \Rightarrow$
 - Uniform exact recovery of all L-sparse signals
 - For k > L, a recovery error bound for k-sparse signals
- Minimal γ is monotonic in L

Definition (Cohen-Dahmen-DeVore and others)

 $A \in \mathbb{R}^{m \times n}$ has the *Null Space Property (NSP*) with order L and $\gamma > 0$ if

$$\|\mathbf{v}_{\mathcal{S}}\|_{1} \leq \gamma \|\mathbf{v}_{\mathcal{S}^{c}}\|_{1}, \quad \forall |\mathcal{S}| \leq L, \mathbf{v} \in \mathcal{N}(A).$$

- A has NSP with L and $\gamma < 1 \Rightarrow$
 - Uniform exact recovery of all L-sparse signals
 - For k > L, a recovery error bound for k-sparse signals
- Minimal γ is monotonic in L
- NSP is weaker than RIP and can be obtained from RIP

Definition (Cohen-Dahmen-DeVore and others)

 $A \in \mathbb{R}^{m \times n}$ has the *Null Space Property (NSP*) with order L and $\gamma > 0$ if

$$\|\mathbf{v}_{\mathcal{S}}\|_{1} \leq \gamma \|\mathbf{v}_{\mathcal{S}^{c}}\|_{1}, \quad \forall |\mathcal{S}| \leq L, \mathbf{v} \in \mathcal{N}(A).$$

- A has NSP with L and $\gamma < 1 \Rightarrow$
 - Uniform exact recovery of all L-sparse signals
 - For k > L, a recovery error bound for k-sparse signals
- Minimal γ is monotonic in L
- NSP is weaker than RIP and can be obtained from RIP
- NSP is more essential than RIP for basis pursuit (left multiplying A by a nonsingular matrix changes RIP but not NSP)

Truncated Null Space Property

Definition (Y.-Wang)

 $A \in \mathbb{R}^{m \times n}$ has the *Truncated Null Space Property* (T-NSP) with t, L, and γ , written as T-NSP(t, L, γ), if

$$\|\mathbf{v}_{\mathcal{S}}\|_{1} \leq \gamma \|\mathbf{v}_{T \setminus \mathcal{S}}\|_{1}, \quad \forall \mathcal{S} \subset T, |\mathcal{S}| \leq L, |T| = t, \mathbf{v} \in \mathcal{N}(A).$$

Intuitively, T-NSP $(t, L, \gamma) \Leftrightarrow$ all length-t subvectors of $v \in \mathcal{N}(A)$ satisfy the inequality of NSP (L, γ)

Truncated Null Space Property

Definition (Y.-Wang)

 $A \in \mathbb{R}^{m \times n}$ has the *Truncated Null Space Property* (T-NSP) with t, L, and γ , written as T-NSP(t, L, γ), if

$$\|\mathbf{v}_{\mathcal{S}}\|_{1} \leq \gamma \|\mathbf{v}_{T \setminus \mathcal{S}}\|_{1}, \quad \forall \mathcal{S} \subset T, |\mathcal{S}| \leq L, |T| = t, \mathbf{v} \in \mathcal{N}(A).$$

Intuitively, T-NSP(t, L, γ) \Leftrightarrow all length-t subvectors of $v \in \mathcal{N}(A)$ satisfy the inequality of NSP(L, γ)

Theorem (Y.-Wang)

For T given , if A satisfies T-NSP($|T|, L, \gamma$) where $\gamma < 1$, then truncated ℓ_1 -minimization over the support of T yields an exact recovery.

Theorem (Y.-Wang)

Suppose A satisfies both T-NSP(t^1, L^1, γ^1) and T-NSP(t^2, L^2, γ^2) where $t^2 < t^1$ and γ^1 and γ^2 are minimal. Then,

$$\frac{L^1 - L^2}{(t^1 - t^2) - (L^1 - L^2)} > \gamma^1 \Longrightarrow \gamma^2 < \gamma^1.$$

Theorem (Y.-Wang)

Suppose A satisfies both T-NSP(t^1, L^1, γ^1) and T-NSP(t^2, L^2, γ^2) where $t^2 < t^1$ and γ^1 and γ^2 are minimal. Then,

$$\frac{L^1 - L^2}{(t^1 - t^2) - (L^1 - L^2)} > \gamma^1 \Longrightarrow \gamma^2 < \gamma^1.$$

Interpretation:

• $t^1 = |T^1|$: numbers of entries in T before detection $t^2 = |T^2|$: numbers of entries in T after detection

Theorem (Y.-Wang)

Suppose A satisfies both T-NSP(t^1, L^1, γ^1) and T-NSP(t^2, L^2, γ^2) where $t^2 < t^1$ and γ^1 and γ^2 are minimal. Then,

$$\frac{L^{1} - L^{2}}{(t^{1} - t^{2}) - (L^{1} - L^{2})} > \gamma^{1} \Longrightarrow \gamma^{2} < \gamma^{1}.$$

- $t^1 = |T^1|$: numbers of entries in T before detection $t^2 = |T^2|$: numbers of entries in T after detection
- $t^1 t^2 =$ decrease in |T| = increase in the total discoveries

Theorem (Y.-Wang)

Suppose A satisfies both T-NSP(t^1, L^1, γ^1) and T-NSP(t^2, L^2, γ^2) where $t^2 < t^1$ and γ^1 and γ^2 are minimal. Then,

$$\frac{L^{1} - L^{2}}{(t^{1} - t^{2}) - (L^{1} - L^{2})} > \gamma^{1} \Longrightarrow \gamma^{2} < \gamma^{1}.$$

- $t^1 = |T^1|$: numbers of entries in T before detection $t^2 = |T^2|$: numbers of entries in T after detection
- $t^1 t^2 =$ decrease in |T| = increase in the total discoveries
- $L^1 L^2$ = increase in the correct discoveries

Theorem (Y.-Wang)

Suppose A satisfies both T-NSP(t^1, L^1, γ^1) and T-NSP(t^2, L^2, γ^2) where $t^2 < t^1$ and γ^1 and γ^2 are minimal. Then,

$$\frac{L^{1} - L^{2}}{(t^{1} - t^{2}) - (L^{1} - L^{2})} > \gamma^{1} \Longrightarrow \gamma^{2} < \gamma^{1}.$$

- $t^1 = |T^1|$: numbers of entries in T before detection $t^2 = |T^2|$: numbers of entries in T after detection
- $t^1 t^2 =$ decrease in |T| = increase in the total discoveries
- $L^1 L^2$ = increase in the correct discoveries
- $\gamma^2 < \gamma^1$: recoverability improved (recall $\gamma < 1 \Rightarrow$ exact recovery)
- To improve, it is sufficient to have (inc. corr. discoveries) / (inc. false discoveries) > γ^1

Overview Theoretical Results Numerical Results Conclusions Summary The Null Space Property Recoverability Improvement

Recoverability Improvement

Theorem (Y.-Wang)

Suppose A satisfies both T-NSP(t^1, L^1, γ^1) and T-NSP(t^2, L^2, γ^2) where $t^2 < t^1$ and γ^1 and γ^2 are minimal. Then,

$$\frac{L^{1} - L^{2}}{(t^{1} - t^{2}) - (L^{1} - L^{2})} > \gamma^{1} \Longrightarrow \gamma^{2} < \gamma^{1}.$$

- $t^1 = |T^1|$: numbers of entries in T before detection $t^2 = |T^2|$: numbers of entries in T after detection
- $t^1 t^2 =$ decrease in |T| = increase in the total discoveries
- $L^1 L^2 =$ increase in the correct discoveries
- $\gamma^2 < \gamma^1$: recoverability improved (recall $\gamma < 1 \Rightarrow$ exact recovery)
- To improve, it is sufficient to have (inc. corr. discoveries) / (inc. false discoveries) > γ^1
- Result is in dependent of support detectors.

Results for Random Sampling

Theorem (Y.-Wang, an extension to Candés-Tao and Zhang)

For Gaussian random A (or any rank-m matrix A such that $BA^{\top} = 0$ where $B \in \mathbb{R}^{(n-m)\times m}$ is Gaussian random), a sufficient condition for exact recovery **with high probability** is

$$\|x_T\|_0 < \frac{C^2}{4} \frac{m-d}{1+\log \frac{n-d}{m-d}},$$

where d = n - |T| and C is an independent constant.

Results for Random Sampling

Theorem (Y.-Wang, an extension to Candés-Tao and Zhang)

For Gaussian random A (or any rank-m matrix A such that $BA^{\top} = 0$ where $B \in \mathbb{R}^{(n-m)\times m}$ is Gaussian random), a sufficient condition for exact recovery **with high probability** is

$$\|x_T\|_0 < \frac{C^2}{4} \frac{m-d}{1+\log \frac{n-d}{m-d}},$$

where d = n - |T| and C is an independent constant.

Application: Bound C and show that

$$-1 < \frac{\partial RHS}{\partial d} < 0$$

leaving room for incorrect discoveries.

Outline

- Overview
 - The Approach
 - Simple Examples
- 2 Theoretical Results
 - Summary
 - The Null Space Property
 - Recoverability Improvement
- Numerical Results
 - Noiseless measurements
 - Noisy measurements
 - A failed case
- Conclusions

Numerical Results

Experiment 1: noiseless measurements

- *n* = 100, *m* = 50
- k = 9, ..., 21. Each k had 200 trials.
- x: sparse Gaussian signals
- A: Gaussian random
- Successful recovery declared if $||x^{(j)} x||_{\infty} \le 10^{-3}$
- Thresholds: $\epsilon = \|x^{(j)}\|_{\infty}/2^j$

Numerical Results

Experiment 1: noiseless measurements

- *n* = 100, *m* = 50
- k = 9, ..., 21. Each k had 200 trials.
- x: sparse Gaussian signals
- A: Gaussian random
- Successful recovery declared if $||x^{(j)} x||_{\infty} \le 10^{-3}$
- Thresholds: $\epsilon = \|x^{(j)}\|_{\infty}/2^j$

Empirical exact recovery conditions:

Basis pursuit:

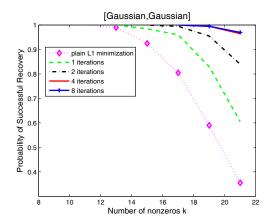
$$k \leq \frac{m}{5}$$

With iterative support detection:

$$k \leq \frac{m}{3}$$

Numerical Results

Percentage of Successful Recoveries

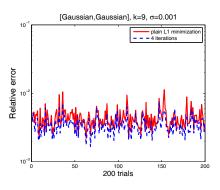


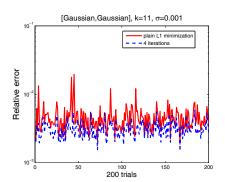
Numerical Results

Experiment 2: noisy measurements

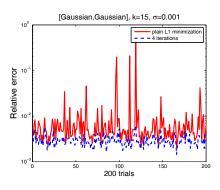
- n = 100, m = 50
- k = 9, 11, 15, 19. Each k had 200 trials.
- x: sparse Gaussian signals
- A: Gaussian random
- b = Ax + z, where $z \sim N(0, 0.001)$
- Logarithms of relative errors of $x^{(j)}$ to x are plotted
- Thresholds: $\epsilon = \|x^{(j)}\|_{\infty}/2^{j}$

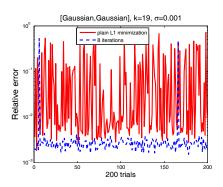
Numerical Results





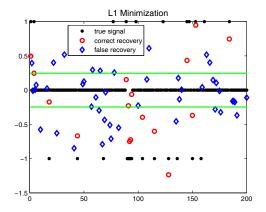
Numerical Results





Numerical Results

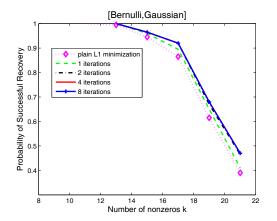
Experiment 3: sparse signals with nonzero $=\pm 1$, noiseless measurements



Excessive false detections!

Numerical Results

Experiment 3: signals with Bernoulli nonzeros, noiseless measurements



Little improvement over basis pursuit.

Outline

- Overview
 - The Approach
 - Simple Examples
- Theoretical Results
 - Summary
 - The Null Space Property
 - Recoverability Improvement
- Numerical Results
 - Noiseless measurements
 - Noisy measurements
 - A failed case
- 4 Conclusions

Conclusions

Conclusions

Effective support detection improves CS recovery

Conclusions

Conclusions

- Effective support detection improves CS recovery
- In particular, iterative thresholding is effective on sparse signals with fast decaying distribution of nonzero values

Conclusions

Conclusions

- Effective support detection improves CS recovery
- In particular, iterative thresholding is effective on sparse signals with fast decaying distribution of nonzero values
- Computationally tractable
 - one ℓ_1 -minimization per iteration, can be warm-started
 - only a small number of iterations are needed

On-going work

• other types of signals: images, video, etc.

On-going work

- other types of signals: images, video, etc.
- other priors: $\|\Phi x\|_p$, $p \le 1$, and TV(x)

On-going work

- other types of signals: images, video, etc.
- other priors: $\|\Phi x\|_p$, $p \le 1$, and TV(x)
- further theoretical analysis is underway

On-going work

- other types of signals: images, video, etc.
- other priors: $\|\Phi x\|_p$, $p \le 1$, and TV(x)
- further theoretical analysis is underway
- apply to greedy algorithms (OMP, ROMP, CoSaMP, ...).

Acknowledgements

Colleagues

Rice: Rich Baraniuk, Volkan Cevher, Kevin Kelly, Yin Zhang Columbia: Donald Goldfarb, Shigian Ma, Zaiwen Wen UCLA: Stan Osher, Jerome Darbon, Bin Dong, Yu Mao Los Alamos: Rick Chartrand, Simon Morgan

Alabama: Weihong Guo

Students: Junfeng Yang, Yilun Wang

Funding Agencies: ONR, NSF

CS Resources: www.dsp.ece.rice.edu/cs

Our algorithms: www.caam.rice.edu/~optimization/L1

Thank You!

