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On the solution of incompressible two-phase �ow
by a p-version discontinuous Galerkin method
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SUMMARY

This paper presents a fully implicit scheme for approximating two-phase �ow in heterogeneous porous
media. The primary unknowns are the wetting phase pressure and non-wetting phase saturation. At
each time step, a Jacobian matrix is computed. Convergence of the scheme is shown via increase of
the polynomial degree. No slope limiters are needed. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The saturations of a wetting phase (sw) and non-wetting phase (sn) in incompressible two-
phase �ow in � ⊂ R2 are characterized by the transport equation

@
@t
(�s�) +∇ · u�= q�; �=w; n (1)

where u�= − ��K∇p� is the Darcy phase velocity, proportional to the gradient of the phase
pressure p�. The other coe�cients in the model are: � the porosity, q� a source term, ��
the phase mobility and K the permeability of the porous medium. The di�erence between the
phase pressures is the capillary pressure pc =pn − pw and we also assume that the sum of
the phase saturations is equal to one. The boundary of � is divided into three disjoint parts
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@�=�0 ∪�1 ∪�2, representing the in�ow, out�ow and no �ow boundary, respectively, where
we assume the following boundary conditions:

pw =pdir on �0 ∪ �1 (2)

sn = sdir on �0 (3)

�nK∇pc · n=0 on �1 (4)

uw · n= un · n=0 on �2 (5)

The vector n denotes the unit vector outward to the boundary.
Because of incompressibility, we can rewrite (1) into a pressure-saturation formulation [1],

in which the primary variables are the wetting phase pressure and non-wetting phase saturation

−∇ · (�w + �n)K∇pw − ∇ · �nK∇pc = qw + qn (6)

− @
@t
(�sn) +∇ · uw = qw (7)

The objective of this work is to present a class of discontinuous �nite element methods of high
order that would handle heterogeneous permeability �elds. Discontinuous Galerkin methods
are well-suited for �ow and transport problems in porous media because of their local mass
conservation property and their �exibility [2]. The non-symmetric interior penalty Galerkin
(NIPG) and symmetric interior penalty Galerkin (SIPG) methods have been successfully ap-
plied to �ow and transport problem [3–6]. There is little work in the literature on DG applied
to two-phase �ow: in Reference [7], mixed �nite elements are used with the combination of
DG for the convective term. In References [8, 9], the NIPG method is applied to a sequential
pressure-saturation formulation.
However, for convection-dominated problems, slope limiters [10, 11] are needed to prevent

unstable overshoot and undershoot due to the high order of polynomial. Unfortunately, it is
very complicated to design e�ective slope limiters for three-dimensional unstructured meshes
and there is no analysis available in two or three dimensions.
In our proposed method, the coupled non-linear equations are solved by a Newton–Raphson

method and one of the attractive features is that no slope limiters are used. Both symmetric
and non-symmetric formulations are presented in Section 2. Section 3 presents the numerical
experiments. Some conclusions follow.

2. FULLY IMPLICIT SCHEME

We now discretize the coupled equations (6) and (7) by a discontinuous Galerkin method
in space. For that, we �rst introduce a quasi-uniform mesh Eh= {E} of � that consists of
quadrilaterals. For any positive integer k, the discrete space is de�ned below

Vk = {v∈L2(�) : v|E ∈Pk(E) ∀E ∈Eh}
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where Pk(E) is the set of polynomials of total degree k over E. Di�erent orders are chosen for
pressure and saturation and we denote by kp (resp. ks) the polynomial order for the pressure
(resp. saturation). Let �h denote the set of interior edges of Eh. To each edge e= @Ei ∪ @Ej
with i¿j, we associate a unit normal vector ne from Ei to Ej that uniquely de�nes the jump
of v∈Vk as [v]= v|Ei − v|Ej . We also de�ne the average of v by {v}=0:5(v|Ei + v|Ej). For an
edge e that belongs to the boundary @�, the jump and average of v are de�ned to be the
trace of v. For the time discretization, the backward Euler method is used. The time interval
(0; T ) is divided into N subintervals of length �t=T=N . Finally, we denote by (· ; ·)E the L2
inner-product over the element E and by 〈·; ·〉e the L2 inner-product over the edge e.
The scheme is then: for i=1; : : : ; N �nd (piw; s

i
n)∈Vkp × Vks satisfying

Pressure equation:

∑

E ∈Eh

((�iw + �
i
n)K∇piw + �inK∇pic;∇v)E − ∑

e∈ �h∪�0∪�1
〈{(�iw + �in)K∇piw · ne}; [v]〉e

− ∑

e∈ �h∪�0
〈{�inK∇pic · ne}; [v]〉e + �

∑

e∈�h∪�0∪�1
〈{(�iw + �in)K∇v · ne}; [piw]〉e

+ �
∑

e∈�h∪�0
〈{�inK∇v · ne}; [pic]〉e +

∑

e∈�h∪�0∪�1

�
|e| 〈[p

i
w]; [v]〉e +

∑

e∈�h∪�0

�
|e| 〈[p

i
c]; [v]〉e

=
∑

E∈Eh

(qiw + q
i
n; v)E + �

∑

e∈�0∪�1
〈(�iw + �in)K∇v · ne; pdir〉e

+ �
∑

e∈�0
〈�inK∇v · ne; pc(sdir)〉e +

∑

e∈�0∪�1

�
|e| 〈pdir ; v〉e

+
∑

e∈�0

�
|e| 〈pc(sdir); v〉e ∀v∈Vkp

Saturation equation:

− 1
�t
(�sin; z) +

∑

E∈Eh

(�iwK∇piw;∇z)E − ∑

e∈ �h∪�0∪�1
〈{�iwK∇piw · ne}; [z]〉e

+ �
∑

e∈�h∪�0∪�1
〈{�iwK∇z · ne}; piw〉e +

∑

e∈�h∪�0∪�1

�
|e| 〈[p

i
w]; [v]〉e=(qiw; z)− 1

�t
(�si−1n ; z)

+ �
∑

e∈�0∪�1
〈�iwK∇z · ne; pdir〉e +

∑

e∈�0∪�1

�
|e| 〈pdir ; v〉e ∀z ∈Vks

The resulting scheme for the choice �=1 is referred as the NIPG method whereas the choice
�= − 1 yields the SIPG method. The parameter � is a positive constant in a stabilizing term
that penalizes the jump of the wetting phase pressure and the jump in the capillary pressure.
The coe�cients �iw; �

i
n and p

i
c depend on the non-wetting phase saturation in a non-linear
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fashion. Using the Brooks–Corey [12] model, we have

�iw =
(1− sin)11=3

�w
; �n =

(sin)
2(1− (1− sin)5=3)

�n
; pic =pd(1− sin)−1=3

where �w and �n are the phase viscosities and pd a constant entry pressure. The equa-
tions above are non-linear in piw and sin; thus a Newton–Raphson method is utilized and
a Jacobian matrix is computed at each time step. For convergence of the Newton–Raphson
algorithm, the choice of initial pressure and saturation is crucial, in particular for the �rst
time step. On one hand, the initial saturation is easily chosen to be equal to s0n = 1:0 − swr,
where swr is the residual wetting phase saturation, i.e. the amount of wetting phase always
present in the medium. On the other hand, the initial pressure p0w is the solution of the linear
problem

∑

E∈Eh

((�0w + �
0
n)K∇p0w;∇v)E − ∑

e∈�h∪�0∪�1
〈{(�0w + �0n)K∇p0w · ne}; [v]〉e

+ �
∑

e∈�h∪�0∪�1
〈{(�0w + �0n)K∇v · ne}; [p0w]〉e +

∑

e∈�h∪�0∪�1

�
|e| 〈[p

0
w][v]〉e

=
∑

E∈Eh

(q0w + q
0
n; v)E + �

∑

e∈�0∪�1
〈(�0w + �0n)K∇v · ne; pdir〉e +

∑

e∈�0∪�1

�
|e| 〈pdir ; v〉e

− ∑

E∈Eh

(�0nK∇p0c ;∇v)E +
∑

e∈�h∪�0
〈{�0nK∇p0c · ne}; [v]〉e

− � ∑

e∈�h∪�0
〈{�0nK∇v · ne}; [p0c]〉e − ∑

e∈�h∪�0

�
|e| 〈[p

0
c]; [v]〉e

+ �
∑

e∈�0
〈�0nK∇v · ne; pc(sdir)〉e +

∑

e∈�0

�
|e| 〈pc(sdir); v〉e

For the other time steps, the initial Newton iterates are taken to be the approximate solu-
tions at the previous time. In our numerical experiments, the Newton iterations converge
when the residuals are less than 10−7. In all simulations, the convergence of Newton’s
method is fast; the �rst Newton step converges with 7 iterations, then the successive Newton
steps converge with 4 iterations; and sometimes the last Newton step reaches convergence
after 3 iterations.

3. NUMERICAL EXAMPLES

We consider a domain (0; 100)2 with heterogeneous permeability K= kI with k=5×10−9 m2

in most of the domain except in an inclusion {37:56x6100} × {37:56y662:5} where
k=5 × 10−13m2 (see Figure 1). The domain has been subdivided into 64 rectangular ele-
ments. The wetting phase enters the domain through the left vertical boundary �0 = {0} ×
(0; 100) with the Dirichlet value sdir = 0:85. On �0, the pressure is pw =3 × 106 Pa. On
the out�ow boundary �1 = {100} × (0; 100), the pressure is set to pw =106 Pa. The resid-
ual wetting phase saturation is swr =0:2. The penalty parameter is �xed to �=0:1. The
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Figure 1. Heterogeneous permeability �eld.

Figure 2. Contours of pressure at 200 (left) and 600 (right) days: kp = 4.

other physical coe�cients are �=0:2; �w =0:001; �n = 0:01 and pd = 1000 Pa. Unless speci-
�ed otherwise, the basis functions for the discrete space Vk are the monomial functions x iy j

for i + j6k.
First, we show the evolution of the pressure from 200 days to 600 days in Figure 2. In

this case, kp = 4, ks = 2 and the NIPG method is used (i.e �=1). We also show the contours
of the wetting phase saturation at 600 and 900 days in Figures 3 and 4. Both pressure and
saturation contours take into account the heterogeneity of the permeability �eld; the low
permeability region acts as an impermeable zone where the wetting phase saturation does
not penetrate.
Second, we show numerical convergence of the NIPG scheme by increasing the polynomial

order. Figure 5 shows the contour of the pressure at 600 days and the saturation at 900 days
for the case where the pressure is approximated by piecewise cubics and the saturation by
piecewise linears. The wetting phase is �ooding the domain as if the permeability was uniform.
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Figure 3. Three-dimensional contours of saturation at 600 (left) and 900 (right) days: ks = 2.

Figure 4. Contours of saturation at 600 (left) and 900 (right) days (ks = 2).

Then, we increase both polynomial degrees by using quartic polynomials for pressure and
quadratic polynomials for saturation (Figure 6). The contour of the pressure is very slightly
modi�ed, but there is a signi�cant change in the saturation contour. By further increasing
the polynomial degree (kp = 5 and ks = 3), a more accurate approximate solution is obtained
(Figure 7). We then continue to increase the polynomial degrees kp; ks. To better see the
convergence, we plot the contour of the wetting phase pressure and saturation along the line
L=(0; 100)× {50} in Figure 8. Here, kp varies from 3 to 7 and ks varies from 1 to 5. The
pressure contours do not vary much for higher degree, but the saturation front is sharper as
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Figure 5. Pressure contour kp = 3 at 600 days (left) and saturation contours ks = 1 at 900 days (right).

Figure 6. Pressure contour kp = 4 at 600 days (left) and saturation contours ks = 2 at 900 days (right).

ks increases. Thus, we show that the p-version of this scheme converges numerically, even
on a very coarse mesh.
Next, we compare the symmetric and non-symmetric formulations for the case where the

pressure is approximated by quartics and saturation by quadratics. Figure 9 shows the pressure
contours at 600 days. The contour of the saturation along the line L is shown in Figure 10
at 300 and 900 days. We observe that both schemes yield the same approximate solutions.
The contours coincide with each other. This is also true for the other choices of polynomial
degrees. Figure 10 also shows some small oscillations at 900 days. These oscillations decrease
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Figure 7. Pressure contour kp = 5 at 600 days (left) and saturation contours ks = 3 at 900 days (right).
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Figure 8. Pressure (left) and saturation (right) contour along L at 200 days (top) and 300 days (bottom):
dotted line kp = 3; ks = 1, dash-dot-dotted line kp = 4; ks = 2, dash-dotted line kp = 5; ks = 3, dashed line

kp = 6; ks = 4, solid line kp = 7; ks = 5.
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Figure 9. SIPG (left) and NIPG (right) pressure contours at 600 days: kp = 4.

Figure 10. Comparison between NIPG and SIPG saturation at 300 and 900 days: ks = 2.

signi�cantly with re�ning the mesh and we think that these oscillations are the result of a too
coarse mesh and a long simulation time.
Finally, we study the e�ects of di�erent basis functions of Vk on the coarse mesh. We

compare monomial basis functions with Legendre polynomials. In Figures 11 and 12, the
pressure and saturation contours along the line L are shown. There is no noticeable di�erence

Copyright ? 2005 John Wiley & Sons, Ltd. Commun. Numer. Meth. Engng (in press)



Y. EPSHTEYN AND B. RIVI �ERE

X

P
R
E
S

0 20 40 60 80 100
1E+06

1.5E+06

2E+06

2.5E+06

3E+06

X

P
R
E
S

0 20 40 60 80 100
1E+06

1.5E+06

2E+06

2.5E+06

3E+06

X

P
R
E
S

200 40 60 80 100
1E+06

1.5E+06

2E+06

2.5E+06

3E+06

Figure 11. NIPG pressure at 200 days (dashed line) and 300 days (solid line): comparison between
monomial and Legendre basis functions: kp = 3 (left), kp = 4 (centre) and kp = 5 (right).
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Figure 12. NIPG saturation at 200 days (dashed line) and 300 days (solid line): comparison between
monomial and Legendre basis functions: ks = 1 (left), ks = 2 (centre) and ks = 3 (right).

between the two simulations. The two types of basis yield comparable numbers of Newton
iterations for convergence, and also similar simulation times.

4. CONCLUSIONS

This paper presents the p-convergence of a class of discontinuous �nite element methods
for a fully-implicit formulation of the two-phase �ow problem in heterogeneous medium. At
each time step, the Newton iterations converge very quickly. One of the surprising bene�ts
of solving fully coupled equations is that no slope limiters are needed to stabilize the high
order approximation. Comparisons between SIPG and NIPG show that they produce the same
numerical solutions.
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