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SUMMARY

This work presents a new scheme based on discontinuous approximation spaces for solving the miscible
displacement problem in porous media. Numerical comparisons are made between this scheme and the well
known mixed finite element and higher order Godunov methods. The simulations clearly show the advantages
of the discontinuous Galerkin methods for stable or unstable flow. Copyright c

�
2000 John Wiley & Sons, Ltd.
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1. Introduction

We consider the displacement of one incompressible fluid by another in a porous medium � in � ��� .
The invading and the displaced fluids are referred to as the solvent and the resident fluid; respectively.
Let � denote the time interval �
	������� . The classical equations governing the miscible displacement in
� over � are:
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where the dependent variables are � , the pressure in the fluid mixture, and � , the fraction volume of the
solvent in the fluid mixture. The permeability

�
of the medium measures the resistance of the medium

to fluid flow; � is the viscosity of the fluid mixture; " represents the Darcy velocity,
+

is the porosity of
the medium and 1 � " � is the coefficient of molecular diffusion and mechanical dispersion that depends
on " in a nonlinear fashion. A survey on simulating miscible displacement can be found in [3].

The boundary of the domain is decomposed into a Dirichlet part 8:9 and a Neumann part 8<; such
that 8<9>=?8�; #A@ and 8<9CBD8�; # , � . We also define the inflow part 8FEC�HG�IKJ , �ML "N��OQP 	SR
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and the outflow part 8�� � G�I J , � L " �/O�� 	�R , where O denotes the unit outward normal
vector to , � . We assume Dirichlet and Neumann boundary conditions for the pressure and Neumann
and mixed boundary conditions for the concentration. The viscosity of the fluid mixture is assumed
to follow the quarter-power mixing law, commonly applicable to hydrocarbon mixtures [5]: � ����� #
��� � E���� �	�
 0 ��� � �3� � E���� ��� � E�� where � 
 (resp. � � ) is the viscosity of the solvent (resp. resident fluid).
The stability of the flow is characterized by the mobility ratio, i.e. the ratio of the viscosity of the
resident fluid to the viscosity of the solvent. Instabilities in the flow will grow if the mobility ratio is
larger than unity. In that case, protusions referred to as viscous fingering develop through the resident
fluid. Another important physical parameter is the Peclet number that quantifies the convective effects
with respect to the dispersive effects.

2. Notation and scheme

Let ���� #���� �� � � �� ������� � � �;����� and �� � #!�"�  � � �  � ��������� �  ;$#�%� be two non-degenerate subdivisions

of � , that consist of triangles or quadrilaterals . The edges of � �� (resp. �  � ) are denoted by & � '
(resp. &  ' ). Let ( �� (resp. (  � ) denote the number of interior edges in � �� (resp. �  � ). On each edge& � ' (resp. &  ' ), a unit normal vector O � ' ( resp. O  ' ) is arbitrarily fixed, except on the boundary , �
where it coincides with the outward unit normal vector. The direction of O � ' uniquely defines the
jump of the function

+
: ) + � # ++* ,.- � +/* ,"0 if O � ' is from � � to � � . The average of

+
is defined by

G + R # � ++* ,1- 0 ++* ,�0 �	243 . For 5 � and 5  positive integers, one defines the following discrete spaces687 � �9� �� � # G�: L;: * , �< J=( 7 � � � �> �5�@?$A R � 6B7 # �C�  � � # G�: L;: * , #< JD( 7 # � �  > �5�E?�A�RF�
We now formally define two bilinear forms.
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0
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where � Z is the upwind value of the concentration on a given edge. We also define the functionals^ � �C:S� # LQ �R TVU W N\Q �R �
�
� �
���
� : �3O  ' � � � � ^  �9Y � # NE_ 4 �
����Y � LQ #R TVU@` N@Q #R �ba c "C��O  ' Y �

where � � is the Dirichlet datum for pressure and ��a c is the inflow datum for concentration. The
continuous in time Discontinuous Galerkin (DG) [6] method is given by the map �d(fe.g �h�e.g �QL
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) 	��� ��� 687 � �C� �� �-( 687 # �9�  � � determined by the relations for any . in �G ;$H<�dh e.g � . �bI( e.g � . � �K:S� # ^ � �C:S�5� ?�: J 6 7 � �C� �� �5� (1)

N _ + , h�e.g, . Y 0 X ;�H � � e.g � . �bI h e.g �	Y � # ^  �9Y �5� ?�Y J 6 7 # �9�  � �b� (2)

The initial concentration h e.g �
	 � is the
^ � projection of the initial concentration and the Darcy velocity

is defined by
� e.g # � � � 2 � �]h�e.g � � � ( e.g � We propose a time-stepping procedure that reflects the

fact that the velocity field varies more slowly in time than the concentration for reasonable physical
data. Thus, the pressure time step � . � � 	 will be chosen to be � times larger than the concentration
time step � .  � 	 . The procedure has been shown to be efficient for other finite element methods
applied to the miscible displacement problem [4]. We denote .�� #	� � .  and . > � # A
� . � . We now
describe the algorithm for advancing of one pressure time step. We assume that .�� # . > � for some
fixed indices � and A and that the approximation h8e.g � .�� � is known. Then, the pressure at time .

> �can be calculated as the solution of (1) for . # . � . The discretization in time of the concentration
equation for . � �� , where ��������� , is accomplished by deriving a modified version of the standard
backward-difference scheme procedure

N _ + h�e.g�� . � �� � � h�e.g � . � �� E � �
� .  Y 0 X ;$H<� � e.g I h e.g � . � �� �5�KY � # ^  �9Y �5� ?�Y J 6 7 # �9�  � �5�

where
� e.g is a linear extrapolation of

� e.g � . > � � and
� e.g � . > E �� � . For the first pressure step, this

extrapolation is not valid and we use a predictor-corrector technique. The use of slope limiters [2] is
also needed to prevent from numerical overshoots and undershoots to occur in the neighborhood of the
concentration front.

3. Numerical Experiments

In all experiments, the permeability field is randomly generated on the coarse mesh. We solve for
quadratic approximations of the pressure and the concentration.

We first consider the case where both flow and transport equations are solved on structured meshes.
In that case, we compare our simulations with those obtained from the Parallel Subsurface Simulator
(Parssim) developed at the University of Texas at Austin [1]. In Parssim, flow is simulated using the
mixed finite element method and transport is simulated using a higher order Godunov method. Figure 1
shows the permeability field and the concentration front obtained with the DG method in the case of
mobility ratio � and a low Peclet number. The iscontours � # 	\� 3�� obtained with DG and Parssim
for low and high Peclet number are shown in Fig. 2. The legend “DG h0-h1” means that flow is
solved on the coarse mesh and transport is solved on the mesh refined once. The DG concentration
fronts are comparable to those obtained by Parssim even though coarser meshes have been used for
DG. We also note that DG velocities are accurate enough to be computed on a coarser mesh than DG
concentrations. As we increase the mobility ratio (see Fig. 3), instabilities in the flow yield more fingers
in the concentration front. We also observe that DG velocities computed on the coarse mesh produce a
much more detailed concentration front than Parssim velocities computed on the coarse mesh.

We then consider the case where flow is solved on an unstructured mesh and transport is solved on
a structured mesh. The motivation for solving each equation on a different mesh lies in the fact that in
realistic media, the permeability field varies greatly in space in a very unstructured manner. However,
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PERM
9.233E-12
8.64521E-12
8.05743E-12
7.46964E-12
6.88186E-12
6.29407E-12
5.70629E-12
5.1185E-12
4.53071E-12
3.94293E-12
3.35514E-12
2.76736E-12
2.17957E-12
1.59179E-12
1.004E-12
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Z

(a) (b)

Figure 1: (a) Permeability field on coarse mesh. (b) DG Concentration front on mesh refined twice for
mobility ratio � and Peclet number � 	 .

PARSSIM h3-h3

DG h0-h2

DG h1-h1

DG h1-h2

PARSSIM h3-h3

DG h0-h2

DG h1-h1

DG h1-h2

(a) (b)

Figure 2: Comparisons between DG and Parssim concentration isocontours for mobility ratio � and
Peclet number (a) 40 and (b) 1600.

the porosity of the medium is assumed to be uniform, and structured meshes are prefered for solving
the concentration equation. Comparisons with Parssim are not possible since Parssim does not handle
unstructured meshes. Figure 4 shows the permeability field and the pressure field obtained in the case of
mobility ratio � . We compare our numerical results to the DG solution computed on the mesh refined
twice for both pressure and concentration, which we refer to as the fine solution. As the meshes for
concentration and pressure are successively refined, we observe that the isocontours converge to the
fine solution (see Fig. 5 (a)). In the case of high Peclet number, the front has more protusions (see Fig. 5
(b)). We repeat the experiments for unstable flow (see Fig. 6) and the same phenomena are observed.
However, the viscous fingers are more pronounced.
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DG h0-h0

PARSSIM h0-h0

DG h0-h1
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DG h0-h1

PARSSIM h1-h1
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Figure 3: Comparisons between DG and Parssim concentration isocontours for mobility ratio �3	 and
Peclet number (a) 40 and (b) 1600.
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Figure 4: (a) Permeability field on unstructured coarse mesh. (b) DG Pressure field on coarse
unstructured mesh.

4. Conclusions

In this work, we have shown numerically that the DG method is well suited for fluid flow problems
in porous media and in particular that it is competitive with other locally conservative methods for
solving the miscible displacement problem. First, DG velocities are accurate enough so that coarser
meshes can be used for solving the flow equation. Second, the DG method can capture the instabilities
of the flow. Finally, the DG method can handle unstructured meshes in an easy and natural way.
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DG h2-h2
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Figure 5: Isocontours of the DG concentration for mobility ratio � and for Peclet number (a) � 	 and (b)��� 	 	 .
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Figure 6: Isocontours of the DG concentration for mobility ratio � 	 and for Peclet number (a) � 	 and
(b) ��� 	 	 .
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