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This work presents the coupling of two locally conservative methods for elliptic problems:
namely, the discontinuous Galerkin method and the mixed finite element method. The cou-
plings can be defined with or without interface Lagrange multipliers. The formulations are
shown to be equivalent. Optimal error estimates are given; penalty terms may or may not be
included. In addition, the analysis for non-conforming grids is also discussed.
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1. Introduction

Local mass conservation is an essential feature for many transient simulations in-
cluding subsurface flow models. Without this property, the mass error can accumu-
late, and the numerical solution exhibits increasing instability. Two efficient finite ele-
ment methods satisfy the local mass conservation property: namely the discontinuous
Galerkin (DG) method and the mixed finite element (MFE) method.

Because of their great flexibility, the DG methods have recently received much at-
tention from the finite element community, and several schemes have been introduced
and analyzed for elliptic equations in the last five years. Besides the local mass con-
servation, discontinuous finite element methods can handle unstructured and irregular
grids, full tensor coefficients, and also can easily take full advantage of the hp adaptivity
techniques. One should note that the scheme allows for non-conforming meshes, with
several “hanging nodes”. The DG methods we consider in the paper are based on the
work of Wheeler [18], Oden et al. [11], and Rivière et al. [14,15]. The bilinear form is
nonsymmetric and may or may not contain penalty terms. One can refer to [4,17] for
further information.

The MFE methods are very popular among the computational scientists and engi-
neers and a large number of papers have been dedicated to this method applied to elliptic
problems [5]. From a practical point of view, the lower order Raviart–Thomas spaces
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are preferred. In [3,16] it was shown that in that case, the MFE are equivalent to a finite
difference scheme, thus they are well suited for structured grids. Attempts have been
made to apply the MFE on irregular grids [2]. However, the implementation as well as
the use of higher order MFE approximation spaces can be complex in such cases.

The goal of this work is to present and analyze the coupling of DG and MFE
methods for an elliptic equation. The advantage of this multinumerics approach lies in
the ability of choosing a particular scheme for a particular subdomain. In the regions
containing faults and highly variable permeability fields, the DG methods have the ad-
vantage to handle full tensors and locally refined unstructured grids. In the subdomains
with tensor product grids, the MFE should be used. Each subdomain will be meshed,
and we allow for non-conforming meshes in the DG region. The proposed coupling can
be formulated with the addition of Lagrange multipliers, and thus can be run in parallel
very efficiently.

Being able to couple different numerical methods is sometimes a challenging task.
The mathematical literature contains a great number of articles on that subject, and we
remark on work done on coupling discontinuous finite element methods with other nu-
merical schemes. Another discontinuous method is referred to as the local discontinuous
Galerkin (LDG) method [6,7,9]. In that case, the elliptic equation is written in a mixed
form and both pressure and velocity are approximated. LDG was first coupled with the
conforming finite element method by Alotto et al. [1] and Perugia and Schōtzau [12].
This work was extended to transport problems by Dawson and Proft [10]. Recently,
Cockburn and Dawson [8] coupled the LDG with the MFE for elliptic equations and
proved error estimates. Our work is the first paper on coupling the DG methods de-
scribed and analyzed in [11,14,15] with another numerical method.

The outline of the paper is as follows: after this introduction, we describe in sec-
tion 2 the model problem, some notation, and the appropriate approximation results. In
section 3, we introduce the scheme defining the coupling. The error estimates are proven
in section 4. A domain decomposition formulation is introduced in section 5. Extensions
of the different schemes to penalty methods are presented in section 6, and we finish the
paper with some concluding remarks.

2. Model problem and notation

Let � be a polygonal domain in R
d , d = 2, 3, and let the boundary of the domain

∂� be the union of two disjoint sets �D and �N. We denote by n the unit normal vector
to each edge of ∂� exterior to �. For f given in L2(�), p0 given in H 1/2(�D) and g

given in L2(�N), we consider the following elliptic problem:

−∇ · (K∇p) + αp = f in �, (1.1)

p = p0 on �D, (1.2)

−K∇p · n = g on �N. (1.3)
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Figure 1. Example of subdomains.

For Darcy flow problems, p denotes the fluid pressure, K a permeability tensor, and f a
general source function. We assume that K is symmetric positive definite and that α is
a positive constant. We can rewrite (1.1)–(1.3) in mixed form by introducing the Darcy
velocity u, e.g.,

u = −K∇p in �, (2.1)

∇ · u + αp = f in �, (2.2)

p = p0 on �D, (2.3)

u · n = g on �N. (2.4)

We subdivide � into non-degenerate triangles in 2D, tetrahedra in 3D, and denote by EDG
h

(respectively EMFE
h ) the set of elements on which the DG method (respectively the MFE

method) is applied. We also define �DG = ⋃
E∈EDG

h
E and �MFE = ⋃

E∈EMFE
h

E. We
assume that the partition on �MFE is a conforming one but there is no restriction on the
geometry of the decomposition of �DG. Let � be the interface composed of edges in 2D,
faces in 3D, shared by elements of �DG and �MFE. A simple illustration is given in the
case of two subdomains in figure 1. A DG element edge at the interface � may consist
of one or several MFE element edges. Let �DG (respectively �MFE) denote the skeleton
of the mesh of �DG (respectively �MFE), that is the union of open segments that coincide
with interior edges of elements. Let �D

DG (respectively �D
MFE) be the union of Dirichlet

edges that belong to ∂�DG (respectively ∂�MFE). Similarly, we define �N
DG and �N

MFE.
We also associate with each segment (or face) ea in �DG a unit normal vector na . For ea

in �, the vector na is outward to ∂�DG and is denoted by n�.
Based on [14], we define for s � 0 and m � 1

Ws,m
(
EDG

h

) = {
φ ∈ Lm(�DG): φ|E ∈ Ws,m(E) ∀E ∈ EDG

h

}

and we denote it by H s(EDG
h ) when m = 2. We associate to H s(EDG

h ) the “broken” norm
|||φ|||2s = ∑

E ‖φ‖2
s,E , where ‖ · ‖s,E is the usual Sobolev norm. We will use the usual
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notation (·, ·)E and 〈·, ·〉� for the L2 inner product on E and �, respectively. We now
define the average and the jump for φ ∈ H s(EDG

h ), s > 1/2

{φ} = 1
2 (φ|E1 + φ|E2), [φ] = (φ|E1) − (φ|E2), ∀ea = ∂E1 ∩ ∂E2,

{φ} = (φ|E1), [φ] = (φ|E1), ∀ea ∈ ∂E1 ∩ ∂�DG.

We recall the definition of H(div, �MFE):

H(div, �MFE) = {
v ∈ (

L2(�MFE)
)d

: ∇ · v ∈ L2(�MFE)
}
.

We now define standard approximation spaces for both methods. In the case of DG, for r

positive integer, we consider the space

Dr = {
φ ∈ L2(�DG): φ|E ∈ Pr(E) ∀E ⊂ �DG

}
, (3)

where Pr (E) denotes the set of polynomials of degree less than or equal to r on each el-
ement E. We associate to �MFE the standard Raviart–Thomas spaces of order k, defined
by

V h = {
v ∈ H(div, �MFE): v(x) = pk(x) + qk(x)x, ∀x ∈ E,

pk ∈ (
Pk(E)

)d
, qk ∈ Pk(E), ∀E ∈ EMFE

h , v · n = 0 on �N
MFE

}
,

Wh = {
w ∈ L2(�MFE): w|E ∈ Pk(E) ∀E ∈ EMFE

h

}
.

We associate the norm ||| · |||�DG,�MFE to the product space Dr ×V h ×Wh as defined below

∣∣∣∣∣∣(φ, v, w)
∣∣∣∣∣∣2

�DG,�MFE
= ∣∣∣∣∣∣K1/2∇φ

∣∣∣∣∣∣2
0,�DG

+ ∥∥α1/2φ
∥∥2

0,�DG

+∥∥K−1/2v
∥∥2

0,�MFE
+ ∥∥α1/2w

∥∥2
0,�MFE

.

We modify the approximation result proved in [15], so that it can be applied to
nonconforming grids.

Lemma 1. For h small enough, let p ∈ H s(EDG
h ) for s � 2 and let r � 2. There exists

an interpolant of p, pI ∈ Dr such that for each E in EDG
h and each edge (or face) e that

is divided into disjoint open sets γ 1, . . . , γ se , the following properties hold:∫
γ j

K∇(
p − pI|E

) · nE = 0, j = 1, . . . , se, (4)

∥∥∇ i
(
p − pI

)∥∥
0,�DG

� Chµ−i , i = 0, 1, 2, (5)

where nE is a unit outward normal vector to E, µ = min(r + 1, s) and C independent
of h.

Proof. We follow the construction of pI, as given in [15]. We first show (4) and (5) in
the case of a constant tensor K and for triangles and tetrahedra.
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The case of triangles. Let E be a triangle with vertices a1, a2, a3, opposite sides e1,
e2, e3, and unit exterior normal vectors n1, n2, n3. Let λ1, λ2, λ3 be the barycentric
coordinates of a1, a2, and a3 in E. We assume that each edge ei is divided into disjoint
open sets γ 1

i , . . . , γ
sei

i . First, we will show that given f in H s(E) with s � 2, there
is a polynomial q1 in P2(E) such that

∫
γ

j

1
K∇(q1 − f ) · n1 = 0, j = 1, . . . , se1 ,

and
∫

e2
K∇q1 · n2 = ∫

e3
K∇q1 · n3 = 0. For this, consider the polynomial q1 =

4q1(a12)λ1(1 − λ1), where a12 is the midpoint of e3 = [a1, a2]. It is easy to check that
each component of ∇q1 = 4q1(a12)∇λ1(1 − 2λ1) has zero mean-value on e2 and e3, and
(∇λ1)λ1 vanishes on e1. Therefore, q1(a12) is determined by the conditions

4q1(a12)

∫
γ

j

1

K∇λ1 · n1 =
∫

γ
j

1

K∇f · n1, j = 1, . . . , se1 .

But

∇λ1 = −n1

2

|e1|
|E| . (6)

Therefore,

−2q1(a21)
(
Kn1, n1

) |e1||γ j

1 |
|E| =

∫
γ

j

1

K∇f · n1, j = 1, . . . , se1 .

By summing over j , we obtain

q1(a21) = −1

2

|E|
|e1|2

1

(Kn1, n1)

∫
e1

K∇f · n1.

Hence,

∣∣q1(a12)
∣∣ � C

γ0

∣∣∣∣
∫

e1

K∇f · n1

∣∣∣∣ � C
γ1

γ0
h

1/2
E

∥∥∥∥∂f

∂n

∥∥∥∥
0,e1

.

Therefore, for i = 0, 1, 2,

∥∥∇ iq1

∥∥
0,E

� C|E|1/2h−i
E

∣∣q1(a12)
∣∣ � C|E|1/2h

1/2−i

E

∥∥∥∥∂f

∂n

∥∥∥∥
0,e1

. (7)

Similarly, we construct polynomials q2 and q3 in P2(E) such that
∫

γ
j
i

K∇qi · ni =
∫

γ
j
i

K∇f · ni , for i = 2, 3, j = 1, . . . , sei
,

∫
e1

K∇q2 · n1 =
∫

e3

K∇q2 · n3 = 0,

∫
e1

K∇q3 · n1 =
∫

e2

K∇q3 · n2 = 0,
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and such that (7) hold for q2 and q3, with respect to e2 and e3. Let q = q1 + q2 + q3,
constructed with f = p − p̃, where p̃ is an approximation of p satisfying (5), and set
pI = q + p̃. Then pI satisfies (4), and we derive for i = 0, 1, 2:

|pI − p|i,E � |q|i,E + |p̃ − p|i,E
� Ch

µ−i

E ‖p‖s,E + |p̃ − p|i,E,

which has the same order of approximation as |p̃ − p|i,E .

The case of tetrahedra. The situation is much the same for tetrahedra. Let E be a
tetrahedron with vertices a1, a2, a3, a4, opposite faces e1, e2, e3, e4, and unit exterior
normal vectors n1, n2, n3, n4. Let λ1, λ2, λ3, λ4 be the barycentric coordinates of a1, a2,
a3, and a4 in E. Again, we will show that given f in H s(E) with s � 2, there is a
polynomial q1 in P2(E) such that

∫
γ

j

1
K∇(q1 − f ) · n1 = 0, j = 1, . . . , se1 ,

∫
ei

K∇q1·ni

= 0 for i = 2, 3, 4. For this, consider the polynomial

q1 = q1(a1)λ1(3λ1 − 2).

It is easy to check that each component of ∇q1:

∇q1 = q1(a1)∇λ1(6λ1 − 2)

has zero mean-value on e2, e3, e4, and (∇λ1)λ1 vanishes on e1. Therefore, q1(a1) is
determined by the condition:

−2q1(a1)

∫
γ

j

1

K∇λ1 · n1 =
∫

γ
j

1

K∇f · n1,

and since (6) is valid in 3D, we sum over j and obtain:

q1(a1) = |E|
|e1|2

1

(Kn1, n1)

∫
e1

K∇f · n1,

and for i = 0, 1, 2, we obtain the analogue of (7):

∥∥∇ iq1

∥∥
0,E

� C|E|1/2h−i
E

∣∣q1(a1)
∣∣ � C|E|1/2h−i

E

∥∥∥∥∂f

∂n

∥∥∥∥
0,e1

.

The proof finishes exactly as the proof of corollary 5.2 in [15], where the case of a
general tensor K is considered. �

We also recall the approximation results associated with the % and L2 projections
associated with MFE [5].

Lemma 2. There is a projection operator % : H(div, �MFE) → V h with the properties:∫
�MFE

∇ · (%z − z)w = 0, ∀w ∈ Wh, (8)
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‖%z − z‖0,�MFE � Chk+1‖z‖k+1,�MFE, (9)

‖%z − z‖0,ea
� Chk+1‖z‖k+1,∞,e, ∀ea ∈ �MFE, (10)∫

ea

(%z − z)w = 0, ∀w ∈ Wh, ∀ea ∈ �MFE. (11)

Lemma 3. Let Ph : L2(�MFE) → Wh be the L2 projection operator. Then,∫
�MFE

(Phq − q)w = 0, ∀w ∈ Wh, (12)

‖Phq − q‖s,�MFE � Chj−s‖q‖j,�MFE , 0 � s < j, 0 � j � k + 1. (13)

Finally, we recall the trace and inverse inequalities that hold on each element E

and for any e ∈ ∂E:

∀φ ∈ H 1(E), ‖φ‖2
0,e � C

(
h−1‖φ‖2

0,E + h‖∇φ‖2
0,E

)
, (14)

∀φ ∈ H 2(E), ‖∇φ · n‖2
0,e � C

(
h−1‖∇φ‖2

0,E + h
∥∥∇2φ

∥∥2
0,E

)
, (15)

∀φ ∈ Pr(E), ‖φ‖0,e � Ch−1/2‖φ‖0,E, (16)

∀φ ∈ Pr(E), ‖∇φ · n‖0,e � Ch−1/2‖∇φ‖0,E. (17)

3. Scheme

In this section, we discuss the variational problem and show that the coupled
scheme is consistent and has a unique solution. We first define the bilinear forms
aDG :Dr × Dr → R, aMFE : V h × Wh → R and bMFE : V h × Wh → R:

aDG(ψ, φ) =
∑

E∈EDG
h

∫
E

(K∇ψ∇φ + αψφ)

−
∑

ea∈�DG∪�D
DG

∫
ea

{K∇ψ · na}[φ] +
∑

ea∈�DG∪�D
DG

∫
ea

{K∇φ · na}[ψ],

aMFE(v, z) =
∫

�MFE

K−1v · z,

bMFE(v, w) =
∫

�MFE

w∇ · v.

We consider the following scheme: find (P DG, UMFE, P MFE) ∈ Dr × V h × Wh such
that

aDG
(
P DG, φ

) = (f, φ)�DG − 〈UMFE · n�, φ〉�

+
∫

�D
DG

K∇φ · np0 −
∫

�N
DG

gφ, ∀φ ∈ Dr , (18.1)
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aMFE
(
UMFE, v

) − bMFE
(
v, P MFE) = −〈v · n, p0〉�D

MFE
+ 〈

v · n�, P DG〉
�
,

∀v ∈ V h, (18.2)

bMFE
(
UMFE, w

) + (
αP MFE, w

)
�MFE

= (f, w)�MFE, ∀w ∈ Wh. (18.3)

We approximate the pressure p by P DG on �DG and by P MFE on �MFE. The Darcy
velocity is approximated by −K∇P DG on �DG and by UMFE on �MFE.

Lemma 4. Let (p, u) be the solution of (2.1)–(2.4). If p|�DG ∈ H 2(EDG
h ), then

(p|�DG, u|�MFE, p|�MFE) is a solution of (18.1)–(18.3).

Proof. We first show that p|�DG satisfies (18.1). We multiply (1.1) by a test function φ,
and we integrate on each element E and sum over all elements in EDG

h .

∑
E∈EDG

h

∫
E

(K∇p∇φ + αpφ) −
∑

ea∈�DG

∫
ea

(K∇p ·na)[φ]−
∫

∂�DG

(K∇p ·n)φ =
∫

�DG

f φ.

Using the Neumann boundary conditions and the definition of the velocity, we can
rewrite

∑
E∈EDG

h

∫
E

(K∇p∇φ + αpφ) −
∑

ea∈�DG∪�D
DG

∫
ea

{K∇p · na}[φ]

=
∫

�DG

f φ −
∫

�N
DG

gφ −
∫

�

u · n.

We then note that [p] = 0 and we add the Dirichlet boundary condition. Thus, we
clearly have (18.1). Second, we show that (18.2) and (18.3) hold. We multiply (2.1) by
v ∈ V h and integrate by parts the second term:

aMFE(u, v) − bMFE(v, p) +
∫

∂�MFE

pv · n = 0.

Using the Dirichlet boundary conditions and noting that n = −n�, we obtain

aMFE(u, v) − bMFE(v, p) = −
∫

�D
MFE

p0v · n +
∫

�

pv · n�.

The equality (18.3) is obtained in a straightforward manner by multiplying (2.2) by a
test function. �

Lemma 5. The solution to (18.1)–(18.3) exists and is unique.

Proof. Since (18.1), (18.2), and (18.3) yield a square system of linear equations in
finite dimension, it suffices to show uniqueness of the solution. For that, we set f = 0
and p0 = 0 and we choose φ = P DG, v = UMFE, and w = P MFE in (18.1)–(18.3).
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We then obtain

aDG
(
P DG, P DG) = −

∫
�

UMFE · n�P DG,

∥∥K−1/2UMFE
∥∥2

0,�MFE
−

∫
�MFE

P MFE∇ · UMFE =
∫

�

UMFE · n�P DG,∫
�MFE

P MFE∇ · UMFE + ∥∥α1/2P MFE
∥∥2

0,�MFE
= 0.

By adding the three equations above, we obtain:∣∣∣∣∣∣(P DG, UMFE, P MFE)∣∣∣∣∣∣2
�DG,�MFE

= 0.

Since α > 0, then P DG, UMFE and P MFE are zero everywhere. �

4. A priori error estimates

In this section, we state and prove our main result, that is the estimate of the error
in the ||| · |||�DG,�MFE norm.

Theorem 1. Let s � 2 and k � 0. Assume p|�DG ∈ H s(EDG
h ), p|�MFE ∈ H k+1(�MFE)

and u|�MFE ∈ (H k+1(�MFE))2 satisfy (2.1)–(2.4). Then, for µ = min(r + 1, s), and
r � 2, there exists a constant C independent of h such that∣∣∣∣∣∣(p − P DG, u − UMFE, p − P MFE

)∣∣∣∣∣∣
�DG,�MFE

� C
(
hµ−1‖p‖s,�DG + hk+1(‖u‖k+1,∞,�MFE + ‖u‖k+1,�MFE + ‖p‖k+1,�MFE

))
.

Proof. Let pI be the interpolant of p|�DG as defined in lemma 2.1 and let %u and Php

be the % and the L2 projections defined in lemma 2.2 and lemma 2.3. Let us denote the
numerical errors ξDG = P DG − pI, ξMFE = P MFE −Php and ζ = UMFE − %u. We have
the following error equations:

aDG(ξDG, φ) = aDG
(
p − pI, φ

) − 〈(
UMFE − u

) · n�, φ
〉
�
,

aMFE(ζ , v) − bMFE(v, ξMFE) = aMFE(u − %u, v) − bMFE(v, p − Php)

+ 〈
P DG − p, v · n�

〉
�
,

bMFE(ζ , w) + (αξMFE, w)�MFE = bMFE(u − %u, w) + (
α(p − Php), w

)
�MFE

.

We now choose φ = ξDG, v = ζ and w = ξMFE, and we add all the equations:∣∣∣∣∣∣(ξDG, ζ , ξMFE)
∣∣∣∣∣∣2

�DG,�MFE

= aDG
(
p − pI, ξDG

) + aMFE(u − %u, ζ )

− bMFE(ζ , p − Php) − 〈
(%u − u) · n�, ξDG

〉
�

+ 〈
P DG − p, ζ · n�

〉
�

+ bMFE(u − %u, ξMFE) + (
α(p − Php), ξMFE

)
�MFE= R1 + R2 + · · · + R7.



278 B. Rivière, M. Wheeler / Coupling methods for single phase flow

We note that the terms R3 and R6 are zero by the properties of Ph and % operators. We
will bound the terms R1, R2, and R7 by following the approach in [15] and the standard
MFE analysis. Finally, we will estimate the coupling terms R4 and R5. We have

R1 =
∑

E∈EDG
h

∫
E

K∇(
p − pI

)∇ξDG + α
(
p − pI

)
ξDG

−
∑

ea∈�DG∪�D
DG

∫
ea

{
K∇(

p − pI
) · na

}[ξDG] +
∑

ea∈�DG∪�D
DG

∫
ea

{K∇ξDG · na}
[
p − pI

]
.

We estimate the first two terms by using Cauchy–Schwarz and approximation result (5)

∣∣∣∣
∑

E

∫
E

K∇(
p − pI

)∇ξDG

∣∣∣∣ �
∣∣∣∣∣∣K1/2∇(

p − pI
)∣∣∣∣∣∣

0,�DG

∣∣∣∣∣∣K1/2∇ξDG

∣∣∣∣∣∣
0,�DG

� 1

8

∣∣∣∣∣∣K1/2∇ξDG

∣∣∣∣∣∣2
0,�DG

+ Ch2µ−2‖p‖2
s,�DG

,∣∣∣∣
∑

E

α
(
p − pI

)
ξDG

∣∣∣∣ �
∥∥α1/2

(
p − pI

)∥∥
0,�DG

∥∥α1/2ξDG

∥∥
0,�DG

� 1

8

∥∥α1/2ξDG

∥∥2
0,�DG

+ Ch2µ‖p‖2
s,�DG

.

We now consider the edge (or face) integral terms of R1. We assume that ea = ∂E1
a ∩∂E2

a

where E1
a and E2

a are two elements of EDG
h . We note that ea can be a subset of an edge

(or face) of E1
a (see figure 2). Define ca = c1 −c2, where ci = (1/|Ei|)

∫
Ei

ξDG, i = 1, 2.
Then, we have

∥∥[ξDG] − ca

∥∥
0,ea

�
∥∥ξDG|E1

a
− c1

∥∥
0,ea

+ ∥∥ξDG|E2
a
− c2

∥∥
0,ea

� Ch1/2|||∇ξDG|||0,E1
a∪E2

a
. (19)

Based on property (4) satisfied by pI|E1
a

and pI|E2
a
, we obtain

∫
ea

{
K∇(

p − pI
) · na

}[ξDG] = 1

2

∫
ea

(
K∇(

p − pI|E1
a

) · na

)([ξDG] − ca

)

+ 1

2

∫
ea

(
K∇(

p − pI|E2
a

) · na

)([ξDG] − ca

)

� 1

2

∥∥K∇(
p − pI|E1

a

) · na

∥∥
0,ea

‖[ξDG] − ca‖0,ea

+ 1

2

∥∥K∇(
p − pI|E2

a

) · na

∥∥
0,ea

∥∥[ξDG] − ca

∥∥
0,ea

.
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Figure 2. Example of nonconforming mesh.

Therefore by (19) and (5), we obtain∣∣∣∣
∫

ea

{
K∇(

p − pI) · na

}[ξDG]
∣∣∣∣ � C|||∇ξDG|||0,E1

a∪E2
a
hµ−3/2h1/2‖p‖s,E1

a∪E2
a
.

If ea is a Dirichlet face, i.e., ea ⊂ ∂E1
a , a similar bound is obtained with the constant

ca = c1. Summing over all ea yields:

∑
ea∈�DG∪�D

DG

∫
ea

{
K∇(

p − pI) · na

}[ξDG] � 1

8

∣∣∣∣∣∣K1/2∇ξDG

∣∣∣∣∣∣2
0,�DG

+ Ch2µ−2‖p‖2
s,�DG

.

Finally, by using the approximation result (5) and the inverse inequality (17), we deduce

∑
ea∈�DG∪�D

DG

∫
ea

{K∇ξDG · na}
[
p − pI] � 1

8

∣∣∣∣∣∣K1/2∇ξDG

∣∣∣∣∣∣2
0,�DG

+ Ch2µ−2‖p‖2
s,�DG

.

We then conclude that

|R1| � 1

2

∣∣∣∣∣∣K1/2∇ξDG

∣∣∣∣∣∣2
0,�DG

+ Ch2µ−2‖p‖2
s,�DG

.

We bound R2 and R7 by using the Cauchy–Schwarz inequality and the approximation
results (9) and (13).

|R2| � C‖u − %u‖0,�MFE

∥∥K−1/2ζ
∥∥

0,�MFE

� 1

8

∥∥K−1/2ζ
∥∥2

0,�MFE
+ Ch2k+2‖u‖2

k+1,�MFE
,

|R7| � C‖p − Php‖0,�MFE

∥∥α1/2ξMFE

∥∥
0,�MFE

� 1

8

∥∥α1/2ξMFE

∥∥2
0,�MFE

+ Ch2k+2‖p‖2
k+1,�MFE

.

By adding and subtracting %u and pI in R4 and R5, we can write

R4 + R5 = −〈
(%u − u) · n�, ξDG

〉
�

+ 〈pI − p, ζ · n�〉�.
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Let us denote � = ⋃
a eMFE

a , where each edge (or face) eMFE
a belongs to an element

of �MFE. Let us assume that eMFE
a ⊂ ∂EDG with EDG ⊂ �DG and let us define ca =

(1/|EDG|) ∫
EDG ξDG. Based on property (11) and the fact that the total number of faces

eMFE
a belonging to � is O(h−1), we have

−〈
(%u − u) · n�, ξDG

〉
�

= −
∑

a

∫
eMFE
a

(%u − u) · n�(ξDG − ca)

�
∑

a

‖ξDG − ca‖0,eMFE
a

∥∥(%u − u) · n�

∥∥
0,eMFE

a

� C
∑

a

h1/2
∥∥K1/2∇ξDG

∥∥
0,EDGhk+1‖u‖∞,k+1,eMFE

a

� Chk+3/2
∣∣∣∣∣∣K1/2∇ξDG

∣∣∣∣∣∣
0,�DG

(∑
a

‖u‖2
∞,k+1,eMFE

a

)1/2

� 1

8

∣∣∣∣∣∣K1/2∇ξDG

∣∣∣∣∣∣2
0,�DG

+ Ch2k+2‖u‖2
∞,k+1,�.

We now bound the last term by using the approximation result (5) and the inverse esti-
mate (16)

∣∣〈pI − p, ζ · n�〉�

∣∣ �
∑
ea∈�

∥∥pI − p
∥∥

0,ea
‖ζ · na‖0,ea

�
∑
ea∈�

hµ−1/2‖p‖s,EDG
k

h−1/2‖ζ‖0,EMFE
k

� 1

8

∥∥K−1/2ζ
∥∥2

0,�MFE
+ Ch2µ−2‖p‖2

s,�DG
.

The theorem is obtained by combining all the previous bounds and by using triangle
inequalities. �

A straightforward application of theorem 4.1 gives the following result.

Corollary 1. With the assumptions of theorem 4.1, and if r = k + 1, then∣∣∣∣∣∣(p − P DG, u − UMFE, p − P MFE
)∣∣∣∣∣∣

�DG,�MFE
� Chk+1.

5. Application to domain decomposition

In this section, we consider a hybridized form of the method (18.1)–(18.3). Two
Lagrange multipliers are defined on the interface: a flux multiplier is introduced in the
DG variational form and a pressure multiplier is introduced on the interblock boundaries
for the MFE variational form. The meshes at the interface can be non-matching. Stan-
dard domain decomposition algorithms may be employed. Let -F

h and -D
h be finite di-
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mensional subspaces of L2(�). We then solve for P DG ∈ Dr , UMFE ∈ V h, P MFE ∈ Wh,
λF ∈ -F

h, and λD ∈ -D
h satisfying

aDG
(
P DG, φ

)
= (f, φ)�DG + 〈

λF, φ
〉
�

+
∫

�D
DG

K∇φ · nap0 −
∫

�N
DG

gφ, ∀φ ∈ Dr , (20.1)

aMFE
(
UMFE, v

) − bMFE
(
v, P MFE

) = −〈v · n, p0〉�D
MFE

+ 〈
v · n�, λD

〉
�
,

∀v ∈ V h, (20.2)

bMFE
(
UMFE, w

) + (
αP MFE, w

)
�MFE

= (f, w)�MFE, ∀w ∈ Wh, (20.3)〈
UMFE · n� + λF, µF〉

�
= 0, ∀µF ∈ -F

h, (20.4)〈
λD − P DG, µD

〉
�

= 0, ∀µD ∈ -D
h . (20.5)

Lemma 6. There exists a unique solution to the problem (20.1)–(20.5) if one of the two
following assumptions hold

(a) λF = −UMFE · n�, λD = P DG,

(b) Tr(Dr ) ⊂ -F
h, Tr(V h · n�) ⊂ -D

h ,

where T r denotes the trace operator on �.

Proof. Let f = p0 = g = 0 and choose φ = P DG, v = UMFE, and w = P MFE. We
add the equations (20.1)–(20.3) and we obtain

aDG
(
P DG, P DG) + aMFE

(
UMFE, UMFE) + (

αP MFE, P MFE)
�MFE

=
∫

�

λFP DG +
∫

�

UMFE · n�λD.

Therefore, based on assumption (a) or (b), (20.4) and (20.5), we can rewrite the previous
equation ∣∣∣∣∣∣(P DG, UMFE, P MFE

)∣∣∣∣∣∣2 = 0.

This implies that P DG = UMFE = P MFE = 0. Therefore, we obtain〈
λF, φ

〉
�

= 0, ∀φ ∈ Dr ,〈
λD, v · n�

〉
�

= 0, ∀v ∈ V h.

We conclude that λF and λD are zero. �

Theorem 2. Let (P DG
1 , UMFE

1 , P MFE
1 ) be solution to (18.1)–(18.3). Let (P DG

2 , UMFE
2 ,

P MFE
2 , λF, λD) be solution to (20.1)–(20.5). Then, if either (a) or (b) holds, we have

P DG
1 = P DG

2 , UMFE
1 = UMFE

2 , P MFE
1 = P MFE

2 ,

λF = −UMFE
1 · n�, λD = P DG

1 .
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Proof. By substracting the equations of the non-mortar formulation from the associated
equations of the mortar formulation, we can write for any (φ, v, w) ∈ Dr × V h × Wh:

aDG
(
P DG

1 − P DG
2 , φ

) = −〈
UMFE

1 · n�, φ
〉
�

− 〈
λF, φ

〉
�
,

aMFE
(
UMFE

1 − UMFE
2 , v

) − bMFE
(
v, P MFE

1 − P MFE
2

) = 〈
v · n�, P DG

1 − λD
〉
�
,

bMFE
(
UMFE

1 − UMFE
2 , w

) + (
α
(
P MFE

1 − P MFE
2

)
, w

)
�MFE

= 0.

We set φ = P DG
1 − P DG

2 , v = UMFE
1 − UMFE

2 , and w = P MFE
1 − P MFE

2 , and we add the
equations:

∣∣∣∣∣∣(P DG
1 − P DG

2 , UMFE
1 − UMFE

2 , P MFE
1 − P MFE

2

)∣∣∣∣∣∣2

= − 〈
UMFE

1 · n�, P DG
1 − P DG

2

〉
�

− 〈
λF, P DG

1 − P DG
2

〉
�

+ 〈(
UMFE

1 − UMFE
2

) · n�, P DG
1 − λD〉

�
. (21)

It is easily shown that if assumption (a) holds, then the right-hand side of (21) is equal
to zero. We now assume that assumption (b) holds. Since (P DG

1 − P DG
2 )|� ∈ -F, we can

rewrite∣∣∣∣∣∣(P DG
1 − P DG

2 , UMFE
1 − UMFE

2 , P MFE
1 − P MFE

2

)∣∣∣∣∣∣2

= −
∫

�

(
UMFE

1 − UMFE
2

) · n�

(
P DG

1 − P DG
2

) +
∫

�

(
UMFE

1 − UMFE
2

) · n�

(
P DG

1 − λD)

=
∫

�

(
UMFE

1 − UMFE
2

) · n�

(
P DG

2 − λD
)
.

Since ((UMFE
1 − UMFE

2 ) · n�)|� ∈ -D, we conclude
∣∣∣∣∣∣(P DG

1 − P DG
2 , UMFE

1 − UMFE
2 , P MFE

1 − P MFE
2

)∣∣∣∣∣∣2 = 0.

Therefore, we are left with〈
λF + UMFE

1 · n�, φ
〉
�

= 0, ∀φ ∈ Dr ,〈
λD − P DG

1 , v · n�

〉
�

= 0, ∀v ∈ V h,

which finishes the proof. �

As noted above, the scheme (18.1)–(18.3) is a particular case of the formulation
(20.1)–(20.5).

6. Penalty formulations

A variation of the DG method discussed in this paper, is the Non-symmetric Inte-
rior Penalty Galerkin (NIPG) method. The analysis of NIPG for elliptic problems can
be found in [14,15]. The bilinear form of this method differs from the bilinear form of
DG by the addition of penalty terms. The local mass error is known and can be taken
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into account to obtain a locally mass conservative velocity field [13]. The penalty terms
have the following form

J
β

0 (φ, ψ) =
∑

ea∈�NIPG

σk

|ea|β
∫

ea

[φ][ψ],

where | · | denotes the measure. Unlike the DG method, the NIPG method is stable for
linears, and the penalty parameter σk needs only to be positive. The coupling of NIPG
with MFE is defined as follows:

aDG
(
P NIPG, φ

) + J
β

0

(
P NIPG, φ

)
= (f, φ)�DG − 〈

UMFE · n�, φ
〉
�

+
∫

�D
DG

K∇φ · nap0 −
∫

�N
DG

gφ, ∀φ ∈ Dr ,

aMFE
(
UMFE, v

) − bMFE
(
v, P MFE

)
= −〈v · n, p0〉�D

MFE
+ 〈

v · n�, P NIPG
〉
�
, ∀v ∈ V h,

bMFE
(
UMFE, w

) + (
αP MFE, w

)
�MFE

= (f, w)�MFE, ∀w ∈ Wh.

The results proved in section 4 hold true.
The flexibility of discontinuous finite element methods allows for the use of differ-

ent degrees of approximation in different elements. The user can specify the degree and
can also choose the regions where the DG, NIPG, or MFE methods would be used.

7. Conclusions

In this paper, we present a new class of locally conservative multinumeric ap-
proaches based on discontinuous and mixed finite element methods for nonconforming
andunstructured grids. We show stability and convergence of the methods and introduce
a formulation with Lagrange multipliers for an efficient parallel implementation.
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