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A discontinuous Galerkin method is introduced for a system of time-dependent 3-D
mass transport equations on unstructured meshes using hexahedral elements. Linear ap-
proximating functions are employed which are defined locally on each element, providing
four degrees of freedom per element. In addition, we define a procedure for computing lo-
cally conservative velocities from fluxes defined on faces of elements. This implementation
is validated on a series of test cases.

1. Introduction

In this paper a discontinuous Galerkin (DG) formulation is developed for the 3-D un-
steady convection-diffusion equation. A unique property of this approach is that the DG
solution satisfies the mass conservation equation locally element by element. In addi-
tion, the flexibility of DG methods is an attractive feature for dynamic h-p refinements,
which include nonconforming adaptive meshes and variable local order of approximation.
Moreover, because they are highly local, DG methods only require communication be-
tween elements which share faces; thus they are well-suited for parallel computation. The
term DG method can refer to several finite element methods using discontinuous discrete
spaces, such as the Bassi and Rebay method [1], the Local Discontinuous Galerkin (LDG)
[2] method, the Oden, Babuska and Baumann method [3] the interior penalty Galerkin
methods of Wheeler [4], Douglas and Dupont [5], and the NIPG methods [6,7]. In Arnold,
Brezzi, Cockburn and Marini [8] a general framework of these methods is presented. Ap-
plication of these methods to a wide variety of problems can be found in [9].

2. Model Problem Formulation

The basic form of the mass conservation equation for system of species in a domain {2
is

aa?Jrv-(CiV) = V- (DVG)+ S8(C), in

(C;V —-DVC)-n = Cp;V-n, on Iy,




DVC;-n = 0, on Iy,

where C; is the ith species partial density, S; the external sources, V' the velocity field
and D the diffusion coefficient. The boundary of the domain is decomposed into an inflow
part [y, = {x € 02 : V- n < 0} and an outflow part ['yyy = 002 \ Ty.

3. Discontinuous Galerkin Formulation

In this section we define both semi-discrete and discrete time approximations. We first
establish notation. The domain (2 is subdivided into hexaedral elements {E}g. Let I’
be the union of interior faces of elements. We associate with each set 7, in I', a unit
normal vector my. For 7, in 02, the vector m; is outward to 0€2. The finite element
subspace consists of discontinuous piecewise linear polynomials. We now define for any
test function w, the average {w}, the jump [w]| and the upwind w, values.
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Based on the work in [11], we can formulate the semi-discrete scheme for a single specie
and for convenience drop the subscript i:
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The discretization in time is obtained by time lagging the flux terms corresponding to
the vertical faces. This standard technique for solving surface water problems has the
advantage of producing a block tridiagonal system. We write I' = ' U V¥ where I'F
is the union of the horizontal faces of the elements and I'V¥ the union of vertical faces.
The fully discrete scheme is then:
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4. Velocity Field Approximation

In many applications such as environmental modeling of surface water, flux face val-
ues are only provided, e.g. environmental modeling using CE-QUAL-ICM [10]. In the
DG method interior velocity distributions over each element are required. Here an ap-
proximation we developed given known flow rates across each edge plus the additional
constraint of local mass conservation on each element is described. In order to approxi-
mate the velocity field, the hexahedral is divided into two prisms. The prisms are formed
by projecting vertically in the direction. The velocity is assumed to vary as

Prism1{ 2~ % talz— a_:) Prism2{ 2= % +oa(r - a_:) (1)
vy =as + ¢ (y — 7) vy = as + ¢1(y — 7)

The above expressions involve eight unknowns which are found by considering the six
known flow rates across each face, plus local conservation of mass on each prism expressed
as, V-V = —(1/Vg)0Vg/0t = =6, where Vg is the volume of element E and ¢ is defined
as the rate of increase of volume per unit volume. Let us define by Q1,..., Q4 (resp.
ni,...,n4) the fluxes (resp. the outward normal vectors) over the vertical faces of the
hexaedral E and @5, Qs (resp. ms,ng) the fluxes (resp. outward normal vectors) across
the horizontal faces. A; denotes the area of the face with flux ;. Substituting the velocity
expressions given by (1) into the conservation equation yields the following values

—(Qs—@5) ¢ (Qs — Qs)

aTe= Ty, 2 BT Ty,

By writing n; = (ng,, ny,, n,,), the expressions for a;, as, by and b, are found to be
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Figure 1. 60 element test case: (left) rectangular elements, (right) quadrilateral elements.

5. Validation

For simplicity we consider only a system of two equations, namely temperature and
salinity.

5.1. One Dimensional Study

The initial conditions are uniform for both salinity and temperature with salinity set
to 10gm/m? and temperature set to 7°C. The salinity at inflow boundaries is linearly
ramped from 10 to 12 over a period of 1.5 days. The temperature at the inflow boundaries
remains at 7°C. However, the air temperature above the surface of the domain increases
during the simulation. This provides a heat flux source at the surface of the domain
which raises the temperature within the domain during the simulation. The first case
is a simple 1D flow with diffusion set to zero. The flow enters the domain at z = 0
and exits at z = 3.e®m. This solution was computed on three meshes. Each mesh was
divided into 20z3x1 elements. The first mesh was divided into rectangular elements and
aligned with the coordinate directions, the second was divided into quadrilateral elements
(see Fig. 1(b)), and the third was also divided into quadrilateral elements and rotated
30 degrees with respect to the x-axis. The mesh is three dimensional, although only
the (z,y) plane is shown in the figure. The velocity field is assumed constant at 1ms*
parallel to the x-axis on the first two meshes and rotated 30 degrees on the third mesh.
This simple case produces a 1D wave front that travels at a constant velocity in the
flow direction. Since the problem is physically the same for each case, the choice of
element shape and mesh orientation should have no effect on the solution. The computed
salinity for each of the above meshes is shown along with the results of the original
finite volume method in Fig. 2 at days. The analytical solution is also presented. The
figure shows that the results using the DG method are independent of choice of elements
and mesh orientation, and show excellent agreement with the analytical solution. The
constant approximation finite volume method shows a more smeared wave front due to the
artificial viscosity characteristic of first order methods. Fig. 2 also shows the computed
temperature distribution at days. At the inflow boundary the temperature remains at
7°C. The results of the DG method show a sharper drop and, similarly to the salinity
results, do not exhibit the smearing of the front as does the finite volume method. Fig. 3
shows the solutions for salinity and temperature, respectively, under mesh refinement in
the -direction using the DG method. Also shown in the figures are the solutions using
the finite volume method on the most refined mesh (80 x 3 x 1). The figures show that
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Figure 2. Solution of (left) salinity and (right) temperature for 1D flow at t = 3 days on
several meshes using linear DG and constant finite volume methods.
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Figure 3. Solution of (left) salinity and (right) temperature for 1D flow at ¢ = 3 days
under mesh refinement in z direction.
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Figure 4. Solution of (left) salinity and (right) temperature for 1D flow at ¢t = 3 days
under time refinement.
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Figure 5. Three day simulation of river flow, concentration contours.

the solution using the DG method is essentially independent of mesh size, except for the
10 x 3 x 1 mesh, which shows some slight overshoot in salinity near the wave front and tail.
The figures also indicate that the solution using the finite volume method improves under
mesh refinement. However, the solution for salinity is still smeared near the wave front
and tail, and the solution for temperature is smoothed near the minimum temperature
as compared to the DG method. However, as seen by comparing Fig. 2 and Fig. 3, the
DG method produces a more accurate solution on a coarser mesh. A time step sensitivity
study was performed on the 20 X 3 x 1 mesh. The results are shown in Fig. 4 for salinity
and temperature, respectively. The figures show that the solution converges under time
step refinement. For At = 3000, the solution has not yet converged. However, it is seen
that for At < 1000, the solution becomes insensitive to time step.

5.2. Three dimensional River Study
The next case simulates flow in a river or tributary. The initial and boundary conditions
are the same as the previous cases. In the previous cases, the velocity field was constant
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Figure 6. Salinity concentration at selected times (from left to right: ¢ = 0,5, 10 days).

in both magnitude and direction. This case was chosen to test the solution when the
velocity vector varies in direction. It is similar to the previous case in the sense that a
wave propagates through the domain at the local velocity. However, due to the geometry
of the flow, it is fully two-dimensional. Fig. 5 shows salinity contours at days on a 20x3x 1
mesh using a time step sec.

5.3. Chesapeake Bay Model

The salinity and temperature for the Chesapeake bay are computed using constant el-
ements. The initial conditions for the Chesapeake Bay model are non-uniform and given
in an input file for each element in the domain. The boundary conditions on salinity are
saltwater at ocean boundaries and freshwater at river boundaries. The boundary condi-
tions on temperature specify the temperature of the inflow at all boundaries. These are
given in input file. Additionally, the air temperature above the surface varies, providing
a heat flux boundary condition at the surface of the domain. The mesh has 2100 sur-
face elements and 10196 total elements. It is divided into 19 layers. Results for salinity
and temperature at selected times during the simulation are shown in Fig. 6 and Fig. 7
respectively.

6. Conclusions and Future Work

A Discontinuous Galerkin method for mass conservation equations has been developed
and validated. Computational experiments indicate that this approach is robust and can
treat sharp fronts. Theoretical results in [11] show that this method can be applied to
non-conforming grids which is very important in developing dynamic adaptive algorithms.
Present studies include investigating different time stepping schemes as well as treating
reactive transport.
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