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Numerical simulations of the miscible displacement are presented. Three different
schemes are considered, namely discontinuous Galerkin methods, mixed method cou-
pled with method of characteristic and mixed method coupled with high order Godunov
method. Both stable and unstable miscible displacement phenomena in heterogeneous
porous media are investigated.

1. Introduction

Remediating groundwater pollution can be a challenging and costly environmental prob-
lem. The importance of numerical simulations is evident in developing reliable predictions
of the transport of dissolved contaminants within the flow systems. In this paper, we study
the miscible displacement phenomena, that is the displacement of one incompressible fluid
(resident fluid) by another (solvent), in a porous medium 2 over the time interval I. The
mathematical model arising from the conservation of mass and momentum, consists of a
coupled system of equations:

K
p(c)
¢%+v.(u(;_p(u)w) — 0 in QxI.

-V Vp=Vu = 0, in QxI,

Here, p denotes the fluid pressure, ¢ the solvent concentration, u the Darcy velocity,
K the permeability tensor, p the fluid mixture viscosity, D the molecular diffusion and
mechanical dispersion tensor and ¢ the porosity of the medium. We assume the standard
nonlinear relations for y and D [1]: u(c) = po((1 — cine) + M %B¢iuc)~* where pyq is a
reference viscosity, ¢, the injected concentration and M is the mobility ratio, that is the
ratio of the resident fluid viscosity to the solvent viscosity; D(u) = (az|w|+ D) I + (0 —
a;)uu’ /|u|, where D,,, o, o; are the molecular diffusivity, longitudinal and transverse
dispersivities respectively. The following boundary conditions are associated with the
system of partial differential equations:

p = Do, in FDXIa
Vp-n = 0, in 'y x1I,

(cu—D(u)Ve)-n = cuu-n, in 'y xI,
D(u)Ve-n = 0, in T'_x1I,



where '} (resp. ') denotes the inflow (resp. outflow) part of the boundary:
Iy ={x€d:u-n>0}, I'_=00\TI,.

A collection of methods including standard Galerkin methods [2,3], mixed finite ele-
ments [4], modified method of characteristics [5-7] and high order Godunov method [8]
have been used for solving the miscible displacement problem. The continuous Galerkin
methods are not locally mass conservative. The mixed finite elements perform very well
in the case of diagonal permeability and tensor product grids. However, the mixed meth-
ods are limited in treating full permeability tensors and highly unstructured grids. The
usual characteristic and Godunov methods are used for approximating the concentration
equation. They are of low order.

Recently, discontinuous Galerkin methods have gained a lot of attention from the finite
element community. These methods have several appealing features: they conserve mass
locally on each element, they support local approximations of high order, they are robust
and local oscillations can be eliminated by the introduction of slope limiters, and they
are implementable on unstructured and even non-matching meshes. Optimal convergence
of these methods have been derived for single phase flow [9,10] and linear transport [11].
The goal of this work is to apply DG to the miscible displacement problem and to make
numerical comparisons with two standard schemes, namely mixed finite element method
coupled with characteristics method (CMM) and mixed finite element method coupled
with high order Godunov method (HOG). The DG scheme used in this work is described
in [12,13]. The first numerical comparisons between DG and mixed finite-high order
Godunov [12,13], showed that the DG concentration fronts can be sharper than the HOG
fronts. In this present work, comparisons with methods of characteristics known to be
less diffusive than HOG, are given.

The rest of the paper is as follows. In section 2, the physical parameters are defined. The
numerical results are presented in section 3. The last section contains some concluding
remarks.

2. Numerical Settings

In all the numerical results, the computational domain (0,1600)? is fixed. Dirichlet
boundary conditions are imposed along the vertical edges (py = 1.®Pa for z = 0 and
po = OPa for z = 1600). A unit concentration is injected at the inflow boundary (vertical
edge for z = 0). The coarse mesh (hg) consists of 8 x 8 squares. The refined meshes hy, hy
are obtained by successively refining the coarse mesh in an isotropic way. The molecular
diffusivity is D,, = 1.16e ?m?s !, the dispersivities are oy = 0.1m and oy = 0.01m. This
yields a longitudinal Peclet number of 16000 and a transverse Peclet number of 160000,
which means that the convective effects dominate the flow. The reference viscosity is
1o = lep. Since it has been observed experimentally that the pressure varies much slowly
than the concentration, we choose the time step for the concentration equation to be four
times smaller than the time step for the pressure equation.

We vary two important parameters: the permeability field and the mobility ratio M.
The mobility ratio is one of the factors that determine if the flow is stable or unstable.
In the case of mobility ratio equal to unity, the fluid mixture viscosity is independent of
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Figure 1. Concentration fronts: (a) M =1 and T = 1.4¢€% (b) M =50 and T = 8.¢5.

the solvent concentration, and the pressure and velocities field do not vary throughout
the simulation. In the case of mobility ratio larger than unity, small instabilities in the
flow will grow and the displacement is destabilized. In that case, formation of protusions
of the solvent develop through the resident fluid. These unstable phenomena are referred
to as viscous fingering [14].

The figures in the following section have been obtained by using the visualization pack-
age tool TECPLOT [15]. Since the HOG and CMM solutions are piecewise constants,
linear interpolants are constructed in a postprocessing step. We use 11 contour levels
ranging from 0 to 1 to represent the solvent concentration solutions.

3. Simulations

3.1. Uniform Permeabilities

We first consider the simple case where the permeability K is uniform and equal to
l.e 'm?. Comparisons of concentration fronts are shown on Figure 1. We choose to
approximate the DG concentration by piecewise discontinuous linear polynomials. All
methods yield similar fronts. In the case where the mobility ratio is 1, the pressure is
linear and constant over I, the velocity field is uniform u = (6.25¢™*,0)ms~'. Figure 1(a)
shows the fronts at the final time ¢, = 1.4¢%s. When the mobility ratio increases (M = 50),
the solvent front is more advanced and the maximum concentration is reached in all the
domain at t,. We show the concentration fronts at the time ¢; = 8.¢%s. This time, HOG
and CMM differs slightly. The pressure field varies in time due to the coupling with the
concentration equation.

3.2. Vertical Faults

A porous medium usually contains heterogeneities such as faults, shale lenses, pinch-
outs. Those can be characterized by rapid changes in the permeability fiels. In this
example, we assume that there are vertical patches of low permeability (1000 times smaller



Figure 2. Permeability field on the refine mesh h;.

than the rock matrix permeability). The distribution of permeability is shown on Figure 2.
The miscible displacement is simulated over [0, 1.4€%].

3.2.1. Stable Flow

In the case of stable flow (M = 1), the concentration contours obtained on the coarse
mesh are shown on Fig. 3.2.1. We can observe that the DG solvent concentration avoids
very well the zones of low permeability. The HOG solution is more diffusive. The CMM
solution is quite different. After refining the mesh twice (h2), the HOG and CMM contours
are similar to the DG contours on h0 (Figure 4). The DG method yields sharper solutions
because of the fact that the DG velocity field captures very well the heterogeneities of the
medium. Figure 3.2.1 and Figure 4 also show the velocity fields for all three schemes on hg
and hs type meshes. The grids shown on this figure are visualization, not computational
grids.

3.2.2. Unstable Flow

We now increase the mobility ratio (M = 50) and we observe that instabilities (or
viscous fingering) occur. In that case, we stop the simulations at ¢ = 2.8¢®s. The first
column of Figure 3.2.2 shows the concentration contours obtained with the three methods
on coarse and refined meshes. On the coarsest mesh, the three approximations yield
different results. The DG contours show that the solvent has avoided the regions of low
permeability and has reached the outflow boundary. The CMM front has only advanced
through half of the domain. The HOG front is faster than CMM’s but still slower than
DG’s. In order to conclude, one has to compare the solutions obtained in the asymptotic
range, this can be achieved by succcessively refining the grid. The more refined solutions
are shown in the second column of Figure 3.2.2. It appears that the HOG solution is very
close to the DG solution. However, there is more numerical diffusion associated with the
HOG method than with the DG method. The CMM solution on the refined mesh seems
to converge to the DG solution. The front has swept more than half of the domain. The
differences between CMM and the two other methods can be explained by the fact that
the asymptotic range has not been reached.
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Figure 3. Concentration contours (a) and velocity fields (b) in the case of stable flow

M =1 on coarse mesh hy.
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Figure 4. Concentration contours (a) and velocity fields (b) in the case of stable flow
M =1 on refined mesh hs.



Figure 5. Concentration contours in the case of unstable flow M = 50 on coarse and
refined meshes.



4. Conclusions

In this paper, we present numerical comparisons of miscible displacement for stable
and unstable flow. These results show that DG is a competitive method to the mixed
finite element method coupled with either characteristic method or high order Godunov
method. Sharper and more accurate fronts are obtained with the discontinuous Galerkin
method. The characteristic-mixed method yields poor solutions on the coarse mesh and
in the case of unstable flow, one needs to refine the mesh several times, in order to obtain
comparable solution to the high order Godunov or discontinuous Galerkin solutions.
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