Non Conforming Methods for Transport with Nonlinear
Reaction

Béatrice Riviére and Mary F. Wheeler

ABSTRACT. The transport equation is solved by a discontinuous Galerkin
method, that is locally conservative and that allows for non-conforming meshes.
The convective fluxes are upwinded. hp error estimates are derived in L (L?)
and L2(H?!) for the continuous in time scheme. A class of fully discrete schemes
is presented and analyzed.

1. Introduction

There is a need for efficient and accurate algorithms for simulating the transport
of species through a porous medium on general geometries. Applications include
study of radioactive nuclear decay, which is essential in the performance assessment
of nuclear storage facilities, remediation of industrial pollutants contaminating the
ground, and oil recovery processes.

Currently, there exists several well known schemes such as higher order Go-
dunov [I, E, K], MUSCL [Y, J], Essentially Non-Oscillatory (ENO) [P, S], control
volume [F, N, Q], and characteristic [M, O, X, L, B]. These schemes possess
one or more deficiencies. These schemes are either not extendible to unstructured
and/or non-conforming grids, are at best second order convergent in regions with
smooth solutions, involve dual grids which are very complicated in three dimen-
sional simulations, or are not locally conservative.

In this paper, we formulate and analyze a family of methods known discon-
tinuous Galerkin (DG) methods for solving the transport problem with nonlin-
ear reactions. These methods have the following appealing features: 1) they are
element-wise conservative; 2) they support local approximations of high order; 3)
they are robust and local oscillations can be eliminated by the introduction of slope
limiters; 4) they are implementable on unstructured and even non matching meshes;
and, 5) with the appropriate meshing, they are capable of delivering exponential
rates of convergence.

There are a variety of methods using discontinuous discrete spaces such as
the Bassi and Rebay method [D] and the Local Discontinuous Galerkin (LDG)
[H, A] method, the Oden, Babuska and Baumann method [R], the interior penalty
Galerkin methods [Z] [ Wheeler and Douglas], and the NIPG methods [V, W]. In
Arnold, Brezzi, Cockburn and Marini [C] a general framework of these methods is
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presented. Application of these methods to a wide variety of problems can be found
in [AA]. In this paper we restrict our attention to the Oden, Babuska, Baumann
formulation. With minor modifications, the theorems proved in this paper apply
to NIPG and to the interior penalty Galerkin method.

The paper is organized as follows. In the following section, we describe the
mathematical model and define notation. The DG scheme is introduced in section
3. Section 4 contains the analysis of the semidiscrete solution. In section 5, the
error estimates for a class of fully discrete schemes are derived. The last section
contains some concluding remarks.

2. Model Problem and Scheme

The domain € is polygonal and bounded in IR?,d = 2,3. Let u be a velocity
field that satisfies V -« = 0 and that varies in space. We decompose the boundary
of the domain into an inflow part I';, and an outflow part I'oyt, 02 = [in U Lout,
where iy = {z € 00 :u-n <0}, and Loyt = {z € 8N : u - n > 0}. The transport
of a contaminant through a porous medium is modelized by the following partial
differential equations.

(2.1) ¢ct +V - (uc—D(u)Ve) = f(e), in Q x (0,77,

(2.2) (uc —D(u)Ve)'n = wcy-n, onliy x(0,T],
(2.3) —D(u)Ve-n = 0, on Dy x (0,77,

(2.4) ¢(0,-) = ¢, in.

Here, c is the concentration of the contaminant, f(c) a general nonlinear reaction
source function, D(u) a diffusion-dispersion tensor. We assume that f is Lipschitz
in ¢ and that D(u) is symmetric, positive definite in Q uniformly with respect to
z. The porosity ¢ is the fraction of the volume of the medium occupied by pores,
and it is assumed to be bounded below and above by positive constants. The
concentrations ¢, and ¢y are respectively the concentration at the inflow boundary
and the concentration at the initial time.

We now establish some notation for the spatial discretization. Let &, = {E}g
be a non degenerate subdivision of {2, made of triangles in 2D and tetrahedra in
3D. We allow for a non conforming partition of the domain. Let h be the maximum
diameter of the elements. Let I" be the skeleton of the mesh of €2, that is the union
of the open sets that coincide with interior edges (or faces) of elements. We also
associate with each set 4 in I, a unit normal vector ny. For ~y; in 91, the vector
ny is outward to 9€2. We define for s > 0 and m > 1,

W™ (&) = {v € L™(Q) : v|p € W™ (E) VE € &),

and we denote it by H*(E,) when m = 2. The usual Sobolev norm of H* on E C R¢
is denoted by || - ||s,z. The L? inner product is denoted by (-,-)g. If E = Q, then
we simply write (-,-). The norm associated with H?(&) is the “broken” norm
I-12 = > gee, Il - 5 - For a,breal and Y Sobolev space, we define the space

b
L5 bY) = {0l y) = / lw(t, )% < oo}
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We define for w € H*(E), s > 1/2, the average {w}, the jump [w] and the
upwind w, value. We assume below that ny, is outward to Ej.

fw) = glwlg) + glg),  [w]= (g — (), Vo= 0B} NOEE,
wy=(wlg), W= (wlg) Ym=0E,no,

if -n, >0
w*:{ wlg, i u-m 20, Vv, = OE; N OE;.

wlgz if w-np <0. 7

Let r be an integer. The finite element subspace consists of discontinuous
piecewise polynomials:

'Dr(Sh) = {7} : ’U|E € PT(E) VE € gh}:

where P,.(E) is a discrete space containing the set of polynomials of total degree
less than or equal to r on E. We can construct a special interpolant in D,.(€p) that
satisfies the optimal approximation properties:

LEMMA 2.1. Let h be small enough. Let ¢ € H?(Ey), for s > 2 and let r > 2.
If, in addition D(u) € (WH®(E))4*?, there exists an interpolant of ¢, & € D, (Ep)
such that for each E in &, and each edge (or face) e € OF that is divided into
disjoint open sets v',...,v%, the following properties hold:

(2.5) / D@)V(Ep—c)-me=0, j=1,... 5,
ryJ'

where ng is the outward unit normal to OF and s, is a finite number. Furthermore,
¢ is optimally close to c:

n—1i

h .
sl i=0,12,

S

(2.6) IViE—ollo < K

where § =0 ifi = 0,1, 0 = 1 if i =2, p = min(r + 1,5) and K is independent of
h and r.

REMARK 2.2. The proof of this lemma is given in [T] and it is a generalization
to non conforming meshes of the approximation result proved in [W].

We also recall an inverse estimate for a polynomial x defined on E € &,. Let

hg be the diameter of E. There is a constant K independent of h and r such that,
for e € OF,

_1
(2.7) IVx - ngllo, < Krhg?||Vxllo,z-

A proof of this inverse estimate is recalled in [W].
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3. Scheme

We introduce the bilinear form byg : H*(Ep) x H*(€r) — R, s > 3/2, and the
linear form L : L2(Q) — R:

bns(u;w,v) = Z /D YWw - Vv — Z/uw A\

Ecéy Ecéy,
=% [ p@ve-ngel+ 3 [ (Dve-nifu
=N ’Yk BTN = AR
(3.1) + . «[v] + . .
’YZEF/ U - NpWx|V ’Ykezrom /Yk u - nywv

62 Hav) = [fer- X [ uwmaw

V€T  *

We can now give the weak formulation of the transport problem.
LEMMA 3.1. If ¢ is the solution of (2.1)-(2.4), then c satisfies
(3.3) (pct,v) + bys(u;c,v) = L(c;v), Yo € H*(E),s > 3/2.

PROOF. Let s > 3/2 and let v be a test function in H?(&p,). We multiply (2.1)
by v|g, and integrate by parts on one element E € &,

(qﬁct,fu)E—/E(uc—D(u)Vc)-Vv+/ (ue — D(u)Ve) -nEv=/Ef(c)v

OE
Summing over all £ and noting that both the concentration and its normal flux are
continuous, we obtain:

(¢et,v) Z/ uc — D(u)Ve) - Vo — Z [ﬂc{D(u)Vc-’nk}[v]

Ecé&np Y €T Ul Gut
+ Z/ u - ngcv] + Z / u - nEev + Z u)Vv - ny}c]
Yk €D Y€l out Tk Y€l 7’“
+ ) / uc — D(u)Ve) - ngo = (f(c),v).
Y& €L in

Using the boundary condition and noting that ¢, = ¢, we clearly have (3.3). |

The discontinuous Galerkin approximation Cpg in L2?(0,7T;D,(Er)) satisfies
the formulation:

(3.4) ((;56?;—1;G,'U) +bns(u;Cpa,v) = L(Cpg,v), t>0, YveD.(E),
(3.5) (Cp(0),v) = (co,v), Yv € Dp(Ep).

REMARK 3.2. It should be noted that the approximation of the concentration
satisfies on each element E the following mass balance

/¢80DG / {D(u)VCpg} - nE+/8Eu-nECPG:/Ef(CDG).

This property is an unique feature of the discontinuous Galerkin methods.
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4. Continuous in Time Error estimates

In this section, we derive a priori error estimates for the semidiscrete scheme.
These estimates are optimal in h and suboptimal in r for the energy norm, and
they are suboptimal for the L? norm.

THEOREM 4.1. Let ¢ be solution of (2.1)-(2.4). If c € L*(0,T;H?(Ep)), co €
H?(&) and ¢y € L?(0,T; H5=1(&L)), then there exists a constant K independent of
h and r such that

lle = Coallze(o,r;r2@)) + ID()/?V(c — Cpa)ll2(0,7;12(9))
hi=
< KTS_% (llell 20,7502 (£0)) + el 20,51 02)) + llcollms(en)) »

where r > 2 and p = min(r + 1, 5).
PROOF. Let ébe the interpolant of ¢ defined in Lemma 2.1. Denote x = Cpg—¢
and £ = ¢ — é. Throughout the paper, we will denote K a generic constant with

different values on different places, that is independent of h and r. The following
error equation is satisfied for all v in D,.(&).

(¢Xt7v)+bNS(u;X7U) = (¢£t,U)+bNS(U;§,U)+(f(CDG)—f(C),U).

Now, by choosing v = x, we obtain

||¢2X||o +bhns(usx,x) = (6&,x) +bnsus €, x) + (F(Cba) — £(¢), %)

DN | =
Q.|g.

We note that

bvs(u;x,x) = Z/D )VXVX— Y /ux Vx

Ecé&y Ecéy
2
+ E / u - Xax] + E / TR R
€D YK€l out ¥ *

Now using a technique found in [G], we integrate by parts the advection term, and
use the fact that u is divergent free.

Z/UXVXZQZ/UVX

Ecén Ecé&y

—Z/unEx

Ecé&y,

—Z/ u-nk[x2]+% Z / u-npx’.

YR €L ¥ Tk €O Y TR
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Now, we combine the upwind terms:

—Z/UX‘VX+Z/ w-nExx] + Z /%u-nkx2

Ecé&p kEF Tk Yk Elout
Z/ u- nk(x*[x]——[x - Z / won+ Y /u-nkx2
Vi 'y,cEBQ Yk ETout ¥ Tk
DI IETCANETNINIEED'S / vty Y [ wem
'Yker Tk ’Ykerln ’Yker‘out Tk
1 1
_ 2 2 2
= Z |u - ng|[x] +§ z lu - ng|x +§ z / |u - nglx”.
€D Tk Yk €Dy ¥ Tk Y€l out ¥ *
Therefore,
slotdi+ X [ p@vievis 3 [ el
Eeégy, €L 7Tk

(4.1) + Do luwemilx® = (86, X) + bus (€, x) + (f(Coa) — £(e), x)-

’yk con v Tk

The first term in the right-hand side of (4.1) is bounded by Cauchy-Schwarz’s
inequality and the approximation result (2.6)

A

1 1 1. 1 1
(06, x) < lo2&llollozxllo < —||<I5§X||g + 5||§t||(2)

h2p—2
< _||¢2X||0+K g lledli-,

A

The second term in the right-hand side of (4.1) can be rewriten as

byswiy) = 3 / Dw)VEVY— 3 / ug - Vx

Ee&y Ecéy

-y wVE-m 3]+ Y u)Vx - ni}[]

Y€l '7’“ Y €D 'Yk
(4.2) + 2/ u - R x] + Z / u - nRéX.
k€T Y € out Tk

We now proceed to bound each term in the right-hand side of (4.2). The first term
can be bounded using Cauchy-Schwarz’s inequality and approximation result (2.6)

> [ Dwvevx < 1D@)VelolD@)Exlo
Eeén
1 h2=2
< ng( ) VX"lO-'-‘Kv 25— 3||c||s'



NON CONFORMING METHODS FOR TRANSPORT WITH NONLINEAR REACTION 7

The second term can be bounded using Cauchy-Schwarz’s inequality and using the
fact that D(u) is symmetric positive definite.

Z /“£ Vx < K Z l€llo, 21V Xllo,

Ecé&y, Ecé&y

< K Y éllo,zll D) /*Vxllo,e
Ecé&y
w—2

1 h2#
< SID@Y2VXIR + K e el

r2s—3 ||
Using the property (2.5) of the interpolant, we can rewrite the third term as
Z u)VE-ni}x] Z u)VE-ng}H([x] — ak),
€D e €T

where ay, is a constant chosen as follows: we assume that v, = 0E; N OEZ where

E} and E} are elements of &; then we take a; = a; — ay where a; = I—b}'_\ S5 -
k k
Then, based on a technique found in [W], we have
1

(4.3) llx] = akllo,y < KR2((IVXllo,zr + [VXllo,z2)-
Therefore, combining (4.3) with the approximation result (2.6) yields

Z wWVE-m ] < D I{D@)VE - niHloqllX] — allo

YR €ET YR €T

hr1

1
< K= ID@)=Vixdlollells

n—2

1 h2#
< D)z VxS + K 5= el

r2s—3

The fourth term can be bounded by the inverse estimate (2.7), a trace theorem and
the approximation result (2.6)

> / {DW)Vx-ni}ff] < K I{D (w) 2 Vx - 7t Hlo e €] o,
€D ¥ Tk Y €D
_1 1 h#=3
< > rh72||D(u)? Vx|l g2 pre %||C||s

Y€l
1 1 h2p—2
< §|||D(U) 2Vl + KT,QS—_5||C||§-

Finally, we bound the last terms in the right-hand side of (4.2)

Y [ wmbd < X M nel Dol nel 3o,

YR €L ¥ Tk YR €D
1 1 h2p,—1
S g Z lllw - 7|2 X1 +KT23—,3||C||§-
e €T
Similarly

1 1 5 h2u—1 9
Y [ umex<g X el iR, + Ko el
Vi€l out ~ T* Yi Elout
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We now consider the third term in the right-hand side of (4.1). This term is
bounded by Cauchy-Schwarz’s inequality and by the Lipschitz property of f.

/Q (f(Cra) — FO)x <

< Klxlloe + K€l o
2

h
g P

2
253 lells-

We then rewrite (4.1) by combining all the bounds derived above, and we integrate
between 0 and ¢ the resulting equation.
[t el
Yk

164130 ~ 6 x180)+ 3 [ 1D v + /
F

1 [ e < xS [ ||c||2+K/ 6!l

Y EONR
h2u 2
- / leel 2.

Noting that [|¢'/2x||3(0) < Kh2*/r?5=3||co||?, using Gronwall’s lemma and taking
supremum over all ¢, we conclude that

||¢%X”L°°(0,T;L2(Q)) + ||D(’“)1/2

et
<K (lell 20,2385 (£0)) + llcolls + lleell 20,7151 (e4)))-

VX||L2(0,T;L2(Q))

The theorem is finally obtained by using triangle inequality and approximation
results. 0

5. Fully discrete analysis

In this section, we define and analyse a family of fully discrete formulations
of the continuous problem, that is parametrized by 6: the case § = 0 corre-
sponds to Crank-Nicolson discretization and the case 8 = 1, Backward-Euler in
time discretization. We first introduce some standard notation. Let At > 0 de-
note the time step and let " = nAt for n = 0,...,N. Let v™ = v(t") and let
v™? = 1(1+ 0)v™ + 1(1 — @)v™. The discrete approximations of the concentra-
tion satisfy:

1 n n,
(5.1)E(¢(cggl — CBg),v) + bys(u; C8v) = L(CRS;v), Vv e D (&),
(5.2) (C2q,v) = (co,v), Vv € Dp(&p).

We recall the following lemma that is a straigthforward application of Taylor ex-
pansion.

LEMMA 5.1.
1
(5.3) E(c”Jrl — ™) = ¢ (t™?) + Atppg,
where
K1||Ctt||Loc(tn tn+1;H1) if >0
5.4 NAAEH _
(5.4) lonollo < { eolglijonnary 820
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PrOOF. The proof is given in [U]. d
We now state the convergence results for the 8 formulations.

THEOREM 5.2. Assume that ¢ is the solution of (2.1)-(2.4), that c belongs
to L>(0,T; H*(E)), ¢ to L>®°(0,T; H*~Y(Ey)) and that ¢y € L0, T; H') for
6 € (0,1]. If = 0, assume that cyy € L°°(0,T; H'). Then, if § > 0, we have

lle = Coalli=z2()) + KA ID(w) 2V (e — Coa)™ [ p2(e0) "
hu—t '
< Km(”dhw(o,nm(&)) + [leellzo 0,301 ()
+ KAt(||ce|| o 0,7502(02)) + llcetll e 0,751 (2)))-
In the case where 8 = 0, we obtain
lle — Coallise(r2(a)) + K A2 D(u)?V (e — Cpa)™ li2(r2(en))
< Kﬁ—s;(”c”L""(O,T;HS(Sh)) + [leellzo 0,321 (£0)))
+ K AL||cgst|| oo (0,711 (02)) -
Here, = min(r + 1,5) and r > 2.
ProoOF. From (3.3) and (5.3), we can write that the solution to (2.1)-(2.4)
satisfies for each n and for all v € D,.(&p):
1

(5:5) z7 (@™ = c™),v) +bns(use™0) = ([f(Q]"",v) + At(dpn,o,v)-

As in the continuous case, let denote x" = C3g — &" and let {" = ¢™ — ¢", where &
is the interpolant of ¢ defined in Lemma 2.1. The following error equation is then
obtained from (5.1) and (5.5).

(56) ;G0 =x"),0) + bvs(w X", 0) = (F(CRE) = [f(O],0)
+ Ait(qs(fn—‘rl —&M),v) + bys(u; fn’a,v) + At(ppn,0,v).

Choose v = ™ and note that (H(x"** —x™),x"™?) > K(IIx"*[I7 — Ix"II5):

K n n n
A7 (IXHHIE = IIX1IE) + bavs (ws ™, x™) < (F(CBE) = [F @I, x™)

+i(¢(§"Jr1 — &), x™%) + bys(u; €0, x™%) + At($pp,0, x™7)

At
<Ty+--- 4Ty

We bound T by Cauchy-Schwarz inequality, the Lipschitz property of f and (2.6).

T = ((F(CB&) = F(e™®),x™) + (F(e™%) = [F (™", ™)
< K656 =< llollx™llo + 1£ () = (£ @™ llollx™ll
< K(X™N5 + KN€™05 + K (1 = 62) ™t — ¢"|[g
h2w
< K[x™lg + K (e I3 + ™ HIE) + K1 = 6)?At*  sup lef5.

r2s—3 tn <<+l
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T> can be bounded by Cauchy-Schwarz’s inequality, by a Taylor expansion, and by
the approximation result (2.6).

1
Tl < K lE™ =€ lollx™llo
2p—2

h
< K(IXIG+ IX"E) + =5 sup ledlli-q
r tn <g<gntl

A

We rewrite T3 as follows:

bNS(u;fnﬂ; n,0 Z/D vé—nﬁ VXnG Z /u§n9 vxna

Ecé&y Ecéy
_Z §n9 T } nG z Vxn9 g }[é—na]
Y €T v €T 7’“
(5.7 + Z/ w- €™ ™ + Z / w - ™0™
,€Er Y€l out * Tk

Following the techniques used in the proof of the continuous in time error estimate,
we can bound each term of the right-hand side of (5.7). The final bound is written
below.

p—2

1
Tl < SIDY )V

—5oms (e + [lem117)

1 1 1 1
+zZ|||u-nk|2[x"’9]||o,%+z PO TR EPE R

Y€l Y& €L out

We now easily bound T}.

ITa| < KAlpnollolix™llo < KUx™ 115 + 1X" 1) + K A pn,6l5-

Combining all the bounds above, multiplying by At and summing overn =0, ..., 7,
with 7 < N, yields:

n
XI5 = IX°IG + KAt Y ID(w)'*Vx™ s < KAt Y [Ix"ll3
n=0 n=0

op—2 N u—2

h h2w
+KAt3Z||pn9”0+KAt et | "||2+K P OSgETIICtlli_l
n=0 n=0 =

+ KAt*(1—6%)2 sup ||ce||3-
0<t<T
If At is sufficiently small, we obtain by Gronwall’s lemma:
7 N
IXPHHIE + K ALY D) Vx™ 5 < IX°15 + KAL) llonoll3
n=0 n=0
2p—2 2p—2

h 2 h 2 2 2\2 2
+E i llelie o mme e T K 5ims 0;?£T||Ct||s_1+KAt (1-6) OiltlgTHCtHo-

But,

" h#
IX°llo < ICpa(0) = collo + llco = EO)]| < K- =pllolls-
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Therefore, if § > 0, we can conclude:

N
X IIFee (2202y) + K AL D (u) 2V x™? |3
n=0
h2#—2 2 2
< K oms (el o 1o )) + el o mime-1e)

+ KA (el 7 0,7 02(0y) + lleeellToo 0,51 (0))-
In the case where § = 1, then the scheme is of second order in time:

N
I (2 + KA D [ID(w)'2Vx™?|3
n=0

2p—2
< Km(”d&w(oy;m(sﬂ) FlletlF oo (0,75 mre-180))) F KA ctitl| 7o 0,710 (02))-

The final estimates are then obtained by the triangle inequality and the approxi-
mation properties. O

6. Conclusion

In this work, we have introduced and analyzed schemes for solving the trans-
port problem, on nonconforming meshes. The analysis presented here holds for
an approximation of degree at least two. In the case of piecewise constants and
pure convection, the scheme reduces to the finite volume method and is known to
converge. Numerical experiments show the convergence of the scheme for linears
as wells. Optimal convergence rates for linears can be obtained if one adds penalty
terms to the bilinear form.
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