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Summary. We consider a finite-element-in-space, and quadrature-in-time-
discretization of a compressible linear quasistatic viscoelasticity problem.
The spatial discretization uses a discontinous Galerkin finite element method
based on polynomials of degree r—termed DG(r)—and the time discretiza-
tion uses a trapezoidal-rectangle rule approximation to the Volterra (history)
integral. Both semi- and fully-discrete a priori error estimates are derived
without recourse to Gronwall’s inequality, and therefore the error bounds do
not show exponential growth in time. Moreover, the convergence rates are
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globally continuous interpolant to the exact solution (e.g. when using the
standard Pk polynomial basis on simplicies, or tensor product polynomials,
Qk, on quadrilaterals). When this is not the case (e.g. using Pk on quadri-
laterals) the convergence rate is suboptimal in r but remains optimal in h.
We also consider a reduction of the problem to standard linear elasticity
where similarly optimal a priori error estimates are derived for the DG(r)
approximation.
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1 Introduction

The stress tensor σ = (σij )
n
ij=1 at time t ∈ J := [0, T ] at a point x = (xi)

n
i=1

in a compressible linear viscoelastic body, the interior of which occupies an
open bounded domain � ⊂ Rn (n = 2, 3), is given by the following linear
functional of the strain tensor ε = (εij )

n
ij=1:

σij (u(x, t); t)=Dijkl(x, 0)εkl(u(x, t))−
∫ t

0

∂Dijkl

∂s
(x, t − s)εkl(u(x, s)) ds,

(1)

see, for example, Ferry [2], Findley et al. [3], Golden and Graham [5] or
Lockett [8]. Here:u = (ui)

n
i=1 is the pointwise displacement; repeated indices

imply summation; and, the strain tensor components are given by,

εij (u) :=
(
∂ui

∂xj
+ ∂uj

∂xi

)
.(2)

Also, D = (Dijkl)
n
ijkl=1 is a fourth order tensor of stress relaxation functions

satisfying the following symmetries at t = 0 and t = ∞:

Dijkl = Djikl, Dijkl = Dijlk and Dijkl = Dklij .(3)

In fact the first two of these hold for all t � 0 but the third holds for all t only
for isotropic materials. See [8, Equations (1.10) and (2.62)]. It is natural to
assume that D is positive definite at t = 0 in the sense that,

γijγklDijkl(0) > 0,(4)

for all non-zero symmetric second order tensors γ . In this inequality we have
omitted the argument x, and will continue to do so below unless it is explicitly
required. We also assume that D(0) is piecewise constant in � and that the
finite element mesh (described below) respects the discontinuities by plac-
ing element edges along them. For regularity we assume, at least, that each
component of D lies in W 1

1 (J ;L∞(�)) although this will be strengthened
for the error estimates.

Let the body be acted on by a system of body forces f : � × J → Rn

and surface tractions g : �N × J → Rn, where �N ⊂ ∂�. Suppose also
that on the remainder of the boundary, �D := ∂� \ �N , the body is rigidly
fixed in space. We assume that �D is of strictly positive ((n−1)-dimensional
Lebesgue) measure.

Under the assumption of quasistatic conditions the inertia of the body is
neglected and Newton’s second law gives the boundary value problem: find
u : �× J → Rn such that,

−σij,j (u) = fi in �× J ,(5)

u = u� on �D × J ,(6)

σij (u)νj = gi on �N × J .(7)
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Here ν = (νj )
n
j=1 is the unit outward normal to ∂� and, throughout, repeated

indices imply summation and the comma-subscript denotes differentiation.
Define the product spaces H s(�) := Hs(�)n and for the case where

u� = 0 let

V := {
v ∈ H 1(�) : v|�D = 0

}
.(8)

Then, using (1) in (5) and eliminating the strain with (2), we arrive at an
example of the abstract Volterra equation of the second kind:

Au(t) = L(t)+
∫ t

0
B(t, s)u(s) ds,(9)

where we assume from Korn’s inequality (see for example Friedrichs [4]
or Horgan [6]) that A is a (self-adjoint) V -elliptic operator, with B(t, s)
similar (see [18]). If each Dijkl ∈ W 1

1 (J ;L∞(�)) as well as, for example,
f ∈ L∞(J ;V ′) and g ∈ L∞(J ; ∂V ′) (where ∂V is an appropriate space
of traces), then the existence and uniqueness of a solution u ∈ L∞(J ;V )
follows from the Riesz representation theorem and the theory of Volterra
equations (e.g. the Picard iteration, [7]).

This model has been used in various contexts by engineers to model the
response of mechanically loaded structures which contain polymeric (i.e. vis-
coelastic) damping components. The tensor D is then usually taken to be
piecewise constant in �. The practical engineering argument for neglecting
the inertia term is based on the observation that if the external loads f and g

are significant (and not oscillating near a natural frequency) then the internal
dynamics of the material can be neglected.

It is our aim in this article to study a discontinuous-in-space Galerkin
finite element approximation of this problem. In this we are building on
earlier work by Shaw, Warby, Whiteman, Dawson and Wheeler [16] who
discretized using “continuous Galerkin” in space and quadrature in time.
This scheme was revisited in [15] in order to remove the large “Gronwall
constant” in the error bounds.

The work in this paper is distinct in that it uses discontinuous piecewise
polynomials of degree r in space (DG(r)). The time discretization is carried
out by employing an explicit quadrature approximation to the history inte-
gral in (1). By “explicit” we mean that the operator ∫tq0 · ds is replaced by a
quadrature rule of the form%qp=0 ·'qp, where the weights are chosen so that
'qq = 0. Therefore the discrete scheme does not involve the current solution
in the history term. Apart from being computationally simpler to implement
(a straightforward modification of linear elasticity software) this also makes
the error analysis easier (compare the results in [15]) and, in principle, allows
for the inclusion of a reduced time constitutive nonlinearity in the history in-
tegral (see e.g. [14]) without creating any undue computational difficulties
(i.e. a nonlinear system).
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Rivière et al. in [12,10,11] have used DG(r) for spatial discretization for
single phase flow problems in heterogeneous porous media. They introduced
and analyzed the method, referred to as the Non-symmetric Interior Penalty
Galerkin (NIPG) method, in the case of elliptic and parabolic problems.
The NIPG methods are derived from the Interior Penalty method introduced
by Wheeler in the seventies, [19], and the Discontinuous Galerkin methods
introduced by Baumann, Oden and Babuska [9]. In the present work, we
extend the NIPG methods to elasticity and viscoelasticity.

In this paper we show optimal bounds for the fully discrete scheme if
we discretize using simplex elements and, moreover, as h → 0 we can by-
pass the Gronwall inequality to obtain error constants uniformly bounded
in time. It is not clear whether similarly sharp constants can be achieved
for other types of element, but Gronwall’s lemma can be invoked in these
cases to demonstrate convergence. In any case, the error bounds are only
optimal in the polynomial degree r for simplicies—see Remark 3.3. In our
estimates below we consider linear elasticity discretized using general finite
elements (Theorem 3.5) but restrict our attention to simplicial finite elements
for viscoelasticity (Theorems 4.5, 5.5).

More recently Shaw and Whiteman in [17] have used a space-time finite
element approximation with trial functions that are continuous piecewise
linear in space and discontinuous piecewise constant or linear in time. The
ultimate aim is to provide a posteriori error estimates and an adaptive solver.
However, in all that follows the space mesh is time independent; we plan to
consider adaptivity for the DG scheme at a later time.

The plan of the paper is as follows. In the next section we describe the weak
formulation of the problem and then follow it in Section 3 with an analysis of a
discrete formulation of the standard linear elasticity problem. Note that, as the
elasticity problem does not contain time, this is an analysis in space only. This
is a special case of the viscoelasticity problem described above. In Section 4
we formulate a semidiscrete approximation to the viscoelasticity problem and
this leads on to an a priori error bound for the semidiscrete solution. This is
followed by Section 5 where we describe the fully discrete scheme and derive
an a priori error bound for the fully discrete solution. Numerical results are
currently under development and these will be described elsewhere.

Finally in this section note that we can also write (1) as,

σ (u(t); t) = σ el(u(t))− σ vs(u; t, t),(10)

where the elastic and viscous stresses are defined as:

σ elij (u(t)) := Dijkl(0)εkl(u(t)),(11)

σvsij (u; τ, t) :=
∫ τ

0

∂Dijkl

∂s
(t − s)εkl(u(s)) ds.(12)
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We also make use of the well known inequality,

ab � εa2

2
+ b2

2ε
∀a, b ∈ R and ∀ε > 0.(13)

2 Weak formulation and the DG(r) finite element space

The first step is to establish notation for the spatial discretization. Let Eh ={
E1, E2, . . . , ENh

}
be a nondegenerate quasiuniform subdivision of�, where

Ej is a triangle or a quadrilateral if n = 2, or a tetrahedron if n = 3. The
nondegeneracy requirement is that there exists ρ > 0 such that if hj =
diam(Ej ), then Ej contains a ball of radius ρhj in its interior. Let h =
max

{
hj : 1 � j � Nh

}
, the quasiuniformity requirement is that there exists

τ > 0 such that h/hj � τ for all j ∈ {1, . . . , Nh}. We denote the edges
(faces for n = 3) of Eh by

{
e1, e2, . . . , ePh, ePh+1, . . . , eMh

}
where ea ⊂ �

for 1 � a � Ph, and ea ⊂ ∂� for Ph + 1 � a � Mh. With each edge (or
face) ea , we associate a unit normal vector νa . For a > Ph, νa is taken to be
the unit outward vector normal to ∂�.

For real s � 0 define,

Hs(Eh) := {v ∈ L2(�) : v|Ej ∈ Hs+ε(Ej ) ∀Ej ∈ Eh and some ε > 0},
Hs(Eh) := {v := (vi)

n
i=1 ∈ L2(�) : vi ∈ Hs(Eh), i = 1, . . . , n}.

Note the use of ε in the first definition. This is to guarantee that certain
traces exist on the element edges ea . The notation is designed to avoid
clumsy expressions below and so, to keep things simple, when s = 0 we
set H0(Eh) := H 0(�) ≡ L2(�).

We now define the average and the jump for w ∈ Hs(Eh) when s � 1
2 .

For each of the interior edges {ea}Pha=1 suppose the neighbouring elements of
ea are E1

a and E2
a so that ea = ∂E1

a ∩ ∂E2
a , and for a boundary edge suppose

that Ea is the neighbouring element. We define the averaging operator {·} by,

{w} :=



1
2 (w|E1

a
)|ea + 1

2 (w|E2
a
)|ea if ea ⊂ �,

(w|Ea )|ea if ea ⊂ ∂�.

and the jump operator [·] by,

[w] :=


(w|E1

a
)|ea − (w|E2

a
)|ea if ea ⊂ �,

(w|Ea )|ea if ea ⊂ ∂�.
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The distinction between [·] and −[·] can be made because each edge ea has
a unit normal νa associated with it. The “direction” in which the jump takes
place is unimportant.

The usual Sobolev norm of Hm on E ⊂ Rn is denoted by ‖ · ‖m,E . We
define the following broken norms for m a positive integer:

|||w|||m :=

 Nh∑
j=1

‖w‖2
m,Ej




1
2

∀w ∈ Hm(Eh),

|||w|||m :=
(

n∑
i=1

|||wi |||2m
) 1

2

∀w ∈ Hm(Eh).

Let r be a positive integer. The finite element subspace is taken to be,

Dr (Eh) = {v : v|Ej ∈ (Pr (Ej ))n ∀j = 1, . . . , Nh},
where Pr (Ej ) denotes the set of polynomials of (total) degree less than or
equal to r on Ej .

Following Rivière et al. in [12] we assume the followinghp approximation
properties proved by Babuška and Suri in [1]. For every Ej ∈ Eh and φ ∈
Hs(Ej ) there exists a constant C, depending on s, τ , ρ but independent of
φ, r , h, and a sequence {zhr }r�1 with each zhr ∈ Pr (Ej ) such that, for any
0 � q � s,

‖φ − zhr ‖q,Ej � C
h
µ−q
j

rs−q
‖φ‖s,Ej , s � 0,(14)

‖φ − zhr ‖0,γi � C
h
µ− 1

2
j

rs−
1
2

‖φ‖s,Ej , s >
1

2
,(15)

‖φ − zhr ‖1,γi � C
h
µ− 3

2
j

rs−
3
2

‖φ‖s,Ej , s >
3

2
,(16)

where µ = min{r + 1, s} and γi ⊂ ∂Ej . Clearly these can be extended
to vector-valued functions also and, by summing (14), we obtain a global
estimate: let φ ∈ Hs(�) (s � 0), then there exists zhr ∈ Dr (Eh) such that,

|||φ − zhr |||q � C
hµ−q

rs−q
|||φ|||s, for 0 � q � s,(17)

with µ as above and C independent of φ, r , h and Eh. We also assume that
for every edge (face in 3D) the following inverse estimate holds:

‖D 1
2 (0)ε(v)‖0,ea � C0h

− 1
2 r‖D 1

2 (0)ε(v)‖0,E ∀v ∈ Dr (Eh),(18)
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where ea is an edge/face of the element E and C0 is a positive constant
independent of h and r and the normed quantity. Note that we are using our
assumption that D is piecewise constant here. Inequalities of this type are
given, for example, by Schwab in [13, Theorem 4.76] and by Oden et al. in
[9, Eq. (17)].

In general no element u of any Hs (s � 0) can satisfy the equations (5)—
(7) in the strong sense and so we now work toward a weak formulation that is
suited to a DG(r) spatial discretization. In setting up this weak formulation we
realize that we need to enhance the continuity of the discrete discontinuous
solution across element edges (or faces) in order to be able to obtain error
estimates. This is achieved by imposing a penalty term on each edge. This
term is (see Wheeler, [19]),

J
δ,β

0 (v,w) =
Ph∑
a=1

δar
2

|ea|β
∫
ea

[v] · [w] d<

+
∑
ea∈�D

δar
2

|ea|β
∫
ea

v · w d< ∀w, v ∈ H
1
2 (Eh)(19)

where δ is a discrete positive function that takes the constant value δa on the
edge or face ea , |ea| denotes the measure of ea and β � (n − 1)−1 is a real
number. Motivated by the splitting (10) and the definitions (11) and (12), we

now define the bilinear forms A,B : H
3
2 (Eh)× H

3
2 (Eh) → R:

A(w, v) := A(w, v)+ J δ,β0 (w, v),(20)

B(t; w, v) := B1(t; w, v)+ B2(t; w, v) or B1(t; w, v).(21)

(Note that we have a choice for the second.) Here (for each given t ∈ J ) the

bilinear forms A,B1,B2 : H
3
2 (Eh)× H

3
2 (Eh) → R are defined by:

A(w, v) :=
∑
E∈Eh

∫
E

Dijkl(0)εkl(w)εij (v) dE

−
Ph∑
a=1

∫
ea

{
Dijkl(0)εkl(w)ν

a
j

}
[vi] d<

+
Ph∑
a=1

∫
ea

{
Dijkl(0)εkl(v)ν

a
j

}
[wi] d<

−
∑
ea∈�D

∫
ea

Dijkl(0)εkl(w)ν
a
j vi d<
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+
∑
ea∈�D

∫
ea

Dijkl(0)εkl(v)ν
a
j wi d<,(22)

B1(t; w, v) :=
∑
E∈Eh

∫
E

σ vsij (t, t; w)εij (v) dE −
Ph∑
a=1

∫
ea

{σvsij (t, t; w)νaj }[vi] d<

−
∑
ea∈�D

∫
ea

σ vsij (t, t; w)νaj vi d<,(23)

B2(t; w, v) :=
Ph∑
a=1

∫
ea

{σvsij (t, t; v)νaj }[wi] d<

+
∑
ea∈�D

∫
ea

σ vsij (t, t; v)νaj wi d<,(24)

where νa is the unit normal vector associated to the edge ea . The form B1+B2

will be used in the error analysis and so, in effect, we have two choices for
the bilinear form B that can be used in computational implementations. We
also define the following seminorm and norm,

|v|A := (A(v, v))
1
2 , |||v|||H := (A(v, v))

1
2 ∀v ∈ H

3
2 (Eh).(25)

Using (10), we can now give a weak formulation of the problem in the case
u� = 0.

Lemma 2.1 (weak formulation) In (6) take u� = 0. A weak solution u :
J → H

3
2 +ε(�) (for some ε > 0) to the problem (5)–(7) with (1) and (2)

also satisfies,

A(u(t), v) = L(t; v)+ B(t; u, v), ∀v ∈ H
3
2 (Eh),(26)

Here L(t; v) is (a.e. in J ) a linear form which for sufficiently regular f and
g is defined by,

L(t; v) :=
∫
�

f · v d�+
∮
�N

g · v d�.

In the case of linear elasticity, we clearly have B = 0.

Proof. We take the L2(E) scalar product of (5) with an arbitrary v|E ∈
H

3
2 (E), for some E ∈ Eh, and formally integrate by parts. This gives (drop-

ping the time dependence for clarity),∫
E

f · v dE = −
∫
E

σij,j vi dE =
∫
E

σij vi,j dE −
∮
∂E

σijn
E
j vi d�.
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Using the symmetry of σ (u) (and exploiting the summation convention) we
get σij (u)vi,j ≡ σij (u)εij (v), and so summing over all E ∈ Eh gives,∫

�

f · v d� =
∑
E∈Eh

∫
E

σij (u)εij (v) dE −
∑
E∈Eh

∮
∂E

σij (u)n
E
j vi dE.

Splitting up the ∂E integrals then gives,

∑
E∈Eh


∫

E

σij (u)εij (v) dE −
∮

∂E∩�
σij (u)n

E
j vi dE −

∮
∂E∩�D

σij (u)n
E
j vi dE




=
∫
�

f · v d�+
∮
�N

g · v d�,

Now recombining the ∂E ∩� boundary integral summations and using the
fact that u ∈ H

3
2 +ε(E), we have,

∑
E∈Eh

∫
E

σij (u)εij (v) dE−
Ph∑
a=1

∫
ea

{σij (u)νaj }[vi] d<−
∑
ea∈�D

∫
ea

σij (u)ν
a
j vi d<

=
∫
�

f · v d�+
∮
�N

g · v d�,

Using (10), we obtain,

∑
E∈Eh

∫
E

σ elij (u)εij (v) dE−
Ph∑
a=1

∫
ea

{σ elij (u)νaj }[vi] d<−
∑
ea∈�D

∫
ea

σ elij (u)ν
a
j vi d<

=
∑
E∈Eh

∫
E

σ vsij (u)εij (v) dE −
Ph∑
a=1

∫
ea

{σvsij (u)νaj }[vi] d<

−
∑
ea∈�D

∫
ea

σ vsij (u)ν
a
j vi d<+

∫
�

f · v d�+
∮
�N

g · v d�.

We now add zero-valued terms to the left of this to get,

A(u, v) = B1(t; u, v)+
∫
�

f · v d�+
∮
�N

g · v d�

and, since u is continuous, we can add zero-valued penalty terms,

A(u, v)+ J δ,β0 (u, v) = B1(t; u, v)+
∫
�

f · v d�+
∮
�N

g · v d�,
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Since in this case B2(t; u, v) is zero, we could add it to the above equation.
Thus for either of our two definitions of B we have,

A(u(t), v) = B(t; u, v)+
∫
�

f (t) · v d�+
∮
�N

g(t) · v d�,

as required by the lemma. ��
Remark 2.2 We can deal with the case u� �= 0 by adding

∑
ea∈�D

∫
ea

σij (v)ν
a
j (u�)i +

∑
ea∈�D

δar
2

|ea|β
∫
ea

v · u� d<

to L(t; v). The Dirichlet condition will then be imposed weakly along �D.
The analysis derived in the rest of the paper remains the same (provided u�
can be imposed using the trial functions—otherwise we need interpolation
error estimates).

Note that one advantage of this DG(r) scheme is that equilibrium is sat-
isfied in a weak sense for each element E ∈ Eh.
Lemma 2.3 Equilibrium is satisfied weakly on each element in that,∫

E

fi(t) dE −
∮
∂E

{σij (u; t)nEj } d� = 0 for i = 1, . . . , n

on each E ∈ Eh, and where nE is the unit outward normal to ∂E.

Proof. In Lemma 2.1 choose vi = 1 on E with the other components zero
and v = 0 on � \E. Now collect the remaining boundary integrals together
in a manner consistent with how they were originally split up. ��

This property is carried through in an approximate sense to the discrete
scheme (see below in Lemma 3.2).

In the next section we reduce the viscoelasticity problem to the standard
linear elasticity problem by removing all time dependencies—thereby setting
B(t; ·, ·) := 0. We give the discrete DG(r) scheme for the linear elasticity
problem and prove an a priori error estimate.

3 A priori error bound for linear elasticity

In this section we simplify the viscoelasticity problem somewhat by taking
f , g and D to be time independent. The problem then becomes the standard
linear elasticity problem (which is not time dependent). We prove an a priori
error bound for the resulting DG(r) discretization.
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In place of Lemma 2.1 we then have: find u ∈ H
3
2 +ε(�), for some ε > 0,

such that,

A(u, v) = L(v) ∀v ∈ H
3
2 (Eh).(27)

The DG(r) approximation to this problem is: find UDG
el ∈ Dr (Eh) such that,

A(UDG
el , v) = L(v) ∀v ∈ Dr (Eh).(28)

Since Dr (Eh) ⊂ H
3
2 (Eh) the Galerkin orthogonality property is immediate:

A(u − UDG
el , v) = 0 ∀v ∈ Dr (Eh).(29)

In this section we again assume that u� = 0.

Lemma 3.1 The solution UDG
el of (28) exists and is unique.

Proof. Since (28) is a finite dimensional problem we need only prove unique-
ness. In (28) set f = g = 0 and take v = UDG

el . This implies that for each
E ∈ Eh,

εij (U
DG
el ) = 0 ∀i, j, and J

δ,β

0 (UDG
el ,U

DG
el ) = 0.

The first of these means that the displacement UDG
el is a rigid body motion:

UDG
el = a × x + b, for some constant vectors a and b. The interior penalty

term forces the continuity of UDG
el , and, with our assumption that |�D| > 0,

the boundary penalty ensures that UDG
el = 0. ��

For the discrete scheme equilibrium is approximately satisfied in a weak
sense for each element E ∈ Eh.
Lemma 3.2 Equilibrium is approximately satisfied weakly on each element
in that, ∫

E

fidE +
∮
∂E

{σij (UDG
el )n

E
j }d�

=
∑
ea∈∂E

δar
2

|ea|
∫
ea

[(UDG
el )i]d< ∀i = 1, . . . , n,∀E ∈ Eh

Proof. The proof is analogous to that of Lemma 2.3 but now the penalty
terms survive. ��

Note that the error in equilibrium is computable in terms of the discrete
solution and the penalty.

The a priori error estimate for the scheme will follow from the next
lemma. We give the lemma separately because it will also be important later
in the error analysis of the viscoelasticity problem. The lemma itself refers
to whether or not we can construct a continuous interpolant, the background
to this is explained in the following remark.
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Remark 3.3 As discussed by Rivière et al. in [12], DG implementations are
free to use only elementwise polynomials from Pr rather than Qr . If this is
the case then by discretizing using simplicial elements (triangles/tetrahedra)
we can build a continuous interpolant to u in the finite element space Dr (Eh).
However, if the elements are not simplices (quadrilaterals/bricks/prisms)
then, in general, a continuous interpolant cannot be found. This impacts only
on the r-convergence rate: the h-convergence rate is optimal in either case.

Lemma 3.4 For � ⊂ Rn, assume that for each edge ea we have |ea| �
Ceh

n−1 for a constant Ce > 0. Then, under the assumptions of Lemma 2.1,
assuming that there is a continuous interpolant ũ ∈ C(�) ∩ Dr (Eh) of u,
and if u ∈ Hm(Eh)∩H

3
2 +ε(�) for some ε > 0, and β � (n−1)−1 we have:

|A(u − ũ, v)| � C
hµ−1

rm−1
|||u|||m|||v|||H ∀v ∈ Dr (Eh),

whereµ = min{r+1,m}, r � 1 andm � 2. On the other hand, if ũ �∈ C(�)

then with β = (n− 1)−1:

|A(u − ũ, v)| � C
hµ−1

rm−3/2
|||u|||m|||v|||H ∀v ∈ Dr (Eh).

In the first estimate the constant C > 0 depends upon Ce, the penalties {δa},
the constants in (14) and (16), and the tensor D. In the second estimate the
constant depends also on (15) and (18).

Proof. As usual C will be a generic constant that is independent of h and
r . Let ũ ∈ Dr (Eh) be an interpolant of u having optimal hp-approximation
errors. Dropping the time dependence (so as to model linear elasticity) we
set Dijkl := Dijkl(0), for notational convenience, and then we have for any
v ∈ Dr (Eh) that,

A(u − ũ, v)(30)

=
∑
E∈Eh

∫
E

Dijklεkl(u − ũ)εij (v)dE(31)

−
Ph∑
a=1

∫
ea

{
Dijklεkl(u − ũ)νaj

}
[vi] d<

+
Ph∑
a=1

∫
ea

{
Dijklεkl(v)ν

a
j

}
[ui − ũi] d<(32)
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−
∑
ea∈�D

∫
ea

Dijklεkl(u − ũ)νaj vi d<

+
∑
ea∈�D

∫
ea

Dijklεkl(v)ν
a
j (ui − ũi) d<(33)

+
Ph∑
a=1

δar
2

|ea|β
∫
ea

[u − ũ] · [v] d<

+
∑
ea∈�D

δar
2

|ea|β
∫
ea

(u − ũ) · v d<.(34)

The term in (31) can be bounded by using Cauchy-Schwarz inequality, (13)
and the global approximation result in (17).∣∣∣∣∣∣
∑
E∈Eh

∫
E

Dijklεkl(u − ũ)εij (v) dE

∣∣∣∣∣∣
�
∑
E∈Eh

(∫
E

Dijklεkl(u − ũ)εij (u − ũ) dE

) 1
2
(∫

E

Dijklεkl(v)εij (v) dE

) 1
2

� C
hµ−1

rm−1
|||u|||m|v|A.

To bound the first term in (32) we apply the Cauchy-Schwarz inequality and
“multiply by one” to get,∣∣∣∣

∫
ea

{
Dijklεkl(u − ũ)νaj

}
[vi] d<

∣∣∣∣
�
( |ea|β
δar2

) 1
2

‖{Dijklεkl(u − ũ)νaj }‖0,ea

(
δar

2

|ea|β
) 1

2

‖[vi]‖0,ea .

Summing over all internal edges then gives,∣∣∣∣∣
Ph∑
a=1

∫
ea

{
Dijklεkl(u − ũ)νaj

}
[vi] d<

∣∣∣∣∣
�
(
Ph∑
a=1

(|ea|β
δar2

)
‖{Dijklεkl(u − ũ)νaj }‖2

0,ea

) 1
2
(
Ph∑
a=1

(
δar

2

|ea|β
)

‖[vi]‖2
0,ea

) 1
2

.

Using the triangle inequality on the averaging operator, {·}, the approximation
result in (16) and noting that 1 � 1/r−

1
2 we get,(

Ph∑
a=1

|ea|β
δar2

‖{Dijklεkl(u − ũ)νaj }‖2
0,ea

) 1
2

� Ci
hµ−3/2+β(n−1)/2

rm−1
|||u|||m.
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Thus,∣∣∣∣∣
Ph∑
a=1

∫
ea

{Dijklεkl(u − ũ)νaj }[vi] d<
∣∣∣∣∣ � C

hµ−3/2+β(n−1)/2

rm−1
|||u|||m J δ,β0 (v, v)

1
2 ,

and the first term in (33) is bounded in the same way. In the case of triangles
or tetrahedra we can choose ũ ∈ C(�) ∩ Dr (Eh) and this gives,

[u − ũ] = 0

on every edge in the mesh. Hence the second terms in (32) and (33), along
with both terms in (34) are zero (recall that it has been assumed that ũ|�D =
u� = 0).

Since |||v|||2H = |v|2A + J δ,β0 (v, v) this proves the first estimate.
Now, in the general case where ũ �∈ C(�) we bound the second term

in (32) by considering the contribution from each interior edge. We assume
that ea = ∂E1

a ∩ ∂E2
a , where E1

a and E2
a are elements of Eh and denote

E12
a = E1

a ∪E2
a . Then by the Cauchy-Schwarz and triangle inequalities, (15)

and (18) we have,∣∣∣∣
∫
ea

{Dijklεkl(v)νaj }[ui − ũi] d<
∣∣∣∣

� ‖{Dijklεkl(v)νaj }‖0,ea‖[ui − ũi]‖0,ea ,

�
(
C0rh

− 1
2 ‖D 1

2 ε(v)‖0,E12
a

)(
C(D)

hµ− 1
2

rm− 1
2

‖u‖m,E12
a

)
,

and so summing over all the edges yields:∣∣∣∣∣
Ph∑
a=1

∫
ea

{Dijklεkl(v)νaj }[ui − ũi] d<
∣∣∣∣∣ � C

hµ−1

rm−3/2
|||u|||m|v|A.(35)

The terms in (33) are handled in exactly the same way as those in (32).
The penalty terms in (34) are bounded using (15) as follows,∣∣∣∣∣∣

Ph∑
a=1

δar
2

|ea|β
∫
ea

[u − ũ] · [v] d<+
∑
ea∈�D

δar
2

|ea|β
∫
ea

(u − ũ) · v d<

∣∣∣∣∣∣
� C

hµ−1/2−β(n−1)/2

rm−3/2
|||u|||m J δ,β0 (v, v)

1
2 .

Thus, in the general case, by combining the bounds together, we get the
second estimate for β = (n− 1)−1. ��

We now give the a priori error estimate.
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Theorem 3.5 Under the assumptions of Lemmas 2.1 and 3.4, assuming that
there is a continuous interpolant ũ ∈ C(�)∩ Dr (Eh) of u, if u ∈ Hm(Eh)∩
H

3
2 +ε(�) for some ε > 0, and β � (n− 1)−1 we have:

|||UDG
el − u|||H � C

hµ−1

rm−1
|||u|||m,

where µ = min{r + 1,m}, r � 1 and m � 2. This means that for a smooth
solution the error has an exponential rate of convergence O((h

r
)r).

In the more general case where ũ �∈ C(�) (a continuous interpolant
cannot be built), and for β = (n− 1)−1, then:

|||UDG
el − u|||H � C

hµ−1

rm− 3
2

|||u|||m,

and convergence is optimal with respect to h but suboptimal with respect to
r . In the first estimate the constant C > 0 depends upon Ce, the penalties
{δa}, the constants in (14), (16) and (17), and the tensor D. In the second
estimate the constant depends also on (15) and (18).

Proof. Let ũ ∈ Dr (Eh) be an interpolant of u having optimal hp-approxi-
mation errors and set χ = UDG

el − ũ. Then from (29) and Lemma 3.4,

|||χ |||2H = A(χ ,χ) = A(χ ,χ)+ A(u − UDG
el ,χ) = A(u − ũ,χ)

� ε|||χ |||2H + C̃(h, r)

ε
|||u|||2m ∀ε > 0,

and where C̃(h, r) is given in Lemma 3.4. Choosing ε small enough, we
obtain

|||χ |||2H � C̃(h, r)

ε
|||u|||2m.

The proof then follows from using the triangle inequality,

|||u − UDG
el |||H � |||u − ũ|||H + |||ũ − UDG

el |||H

and the global approximation result (17). ��

Thus, in the case where a continuous interpolant cannot be built (i.e. if
we use Pk for quadrilaterals), the error estimate is suboptimal with respect to
the degree of polynomial, but optimal with respect to the mesh size.

We now move on to a semidiscrete version of the viscoelasticity problem.
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4 A priori error bound for semidiscrete viscoelasticity

In this section we form a semidiscrete approximation to the quasistatic linear
viscoelasticity problem as described earlier in Lemma 2.1.

From now on we will often represent the tensor D by a matrix D with
corresponding vector representations, σ and ε, of the tensors σ and ε. This
is for the purpose of keeping the notation “clean” since we will then be able
to write, for example, ε · Dε in place of Dijklεklεij .

The following result is elementary, but convenient.

Lemma 4.1 For all vectors x and y,∣∣∣∣x · ∂
nD(t)

∂tn
y

∣∣∣∣ � φ(n)(t)‖D 1
2 (0)x‖E‖D 1

2 (0)y‖E,

where ‖ · ‖E denotes the Euclidean norm and,

φ(n)(t) :=
∥∥∥∥D− 1

2 (0)
∂nD(t)

∂tn
D− 1

2 (0)

∥∥∥∥
L∞(�;E)

.

Below we shall often write φ := φ(1) for clarity.

In this section we apply the DG(r) method in space to the weak form
of the viscoelasticity problem (26). For each t , this results in the variational
problem: find UDG

vs ∈ Dr (Eh) such that,

A(UDG
vs (t), v) = L(t; v)+ B(t; UDG

vs , v), ∀v ∈ Dr (Eh).(36)

We note that because of (21) we obtain two DG formulations.
For each t ∈ [0, T ] let ũ ∈ Dr (Eh) be an interpolant of u having optimal

hp-approximation errors, and set,

η := u − ũ ∈ H
3
2 (Eh) and χ := ũ − UDG

vs ∈ Dr (Eh).
Now, subtracting (36) from (26) we obtain the orthogonality property,

A(u(t)− UDG
vs (t), v) = B(t; u − UDG

vs , v) ∀v ∈ Dr (Eh),(37)

and, by choosing v = χ(t), we obtain the following error equation,

A(χ(t),χ(t)) = −A(η(t),χ(t))+ B(t; η,χ(t))+ B(t; χ ,χ(t)).(38)

The first term on the right-hand side of (38) can be bounded using Lemma 3.4
and so our first goal is to bound the other two terms. We accomplish this in
the following two lemmas. The first, Lemma 4.2, shows that the middle term
also contains approximation errors while the second, Lemma 4.3, forms the
basis of a sharp Gronwall-type inequality. These preliminary estimates will
then yield the error estimate which we give below in Theorem 4.5.
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Lemma 4.2 Assume that ũ(t) ∈ C(�) ∩ Dr (Eh) for each t , and that for
each edge |ea| � Ceh

n−1. Then, if β � (n−1)−1, there is a C > 0 such that,

|B(t; η,χ(t))| � C
hµ−1

rm−1

∫ t

0
φ(t − s)|||u(s)|||m ds |||χ(t)|||H ,

where φ is the function in Lemma 4.1 andµ = min{r+1,m}. The constantC
depends only uponCe, D(0)

1
2 and the constants in the interpolation estimates

(17), (16). The estimate holds for either of the choices B = B1 or B = B2

in (21).

Proof. For the case B = B1 in (21) we work from (23) and use (12). First,∣∣∣∣∣∣
∫ t

0

∑
E∈Eh

∫
E

∂Dijkl(t − s)
∂s

εkl(η(s))εij (χ(t)) dE ds

∣∣∣∣∣∣
�
∫ t

0

∑
E∈Eh

∫
E

φ(t − s)‖D 1
2 (0)ε(η(s))‖E‖D 1

2 (0)ε(χ(t))‖E dE ds,

�
∫ t

0
φ(t − s)


∑
E∈Eh

∫
E

ε(η(s)) · D(0)ε(η(s)) dE




1
2

×

∑
E∈Eh

∫
E

ε(χ(t)) · D(0)ε(χ(t)) dE




1
2

ds

� C(D(0)
1
2 )

∫ t

0
φ(t − s)|||η(s)|||1 ds |χ(t)|A,

� C
hµ−1

rm−1

∫ t

0
φ(t − s)|||u(s)|||m ds |χ(t)|A,

where µ = min{r + 1,m} and we used the interpolation error estimate (17)
and Lemma 4.1. Secondly, for the interior edge terms we suppose that the
edge ea is shared by the elements E1 and E2 and let ηi denote the restriction
of η|Ei to ea , for i = 1, 2. Then, using the triangle inequality on the averaging
operator {·}, we have,∣∣∣∣

∫ t

0

∫
ea

{
∂Dijkl(t − s)

∂s
εkl(η(s))ν

a
j

}
[χi(t)] d< ds

∣∣∣∣
� C(D(0)

1
2 )

∫ t

0

∫
ea

φ(t − s)
(
‖D 1

2 (0)ε(η1(s))‖E

+‖D 1
2 (0)ε(η2(s))‖E

)
‖[χ(t)]‖E d< ds,
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� C

∫ t

0
φ(t − s)

(
‖D 1

2 (0)ε(η1(s))‖0,ea

+‖D 1
2 (0)ε(η2(s))‖0,ea

)
‖[χ(t)]‖0,ea ds.

Summing over all edges we then “multiply by one” in the above to obtain,

∣∣∣∣∣
Ph∑
a=1

∫ t

0

∫
ea

{
∂Dijkl(t − s)

∂s
εkl(η(s))ν

a
j

}
[χi(t)] d< ds

∣∣∣∣∣
� C

∑
i=1,2

∫ t

0
φ(t − s)

Ph∑
a=1

( |ea|β
δar2

) 1
2

‖D 1
2 (0)ε(ηi (s))‖0,ea

(
δar

2

|ea|β
) 1

2

×‖[χ(t)]‖0,ea ds,

� C
hµ− 3

2 + β
2 (n−1)

rm− 1
2

∫ t

0
φ(t − s)|||u(s)|||m ds J δ,β0 (χ(t),χ(t))

1
2 ,

where we used (16) and (19). Observe now that the remaining term in B1

can be estimated in exactly the same way as the term above and that, since
ũ ∈ C(�), both terms in B2 are zero. Therefore, noting that r

1
2 � 1, and

combining the above with our first estimate then completes the proof. ��

Lemma 4.3 Assume that |ea| � Ceh
n−1 and β � (n − 1)−1. Then, there is

a C > 0 such that,

|B(t; χ ,χ(t))| �
(

1 + Ch
β
2 (n−1)− 1

2

) ∫ t

0
φ(t − s)|||χ(s)|||H ds |||χ(t)|||H

where φ is the function in Lemma 4.1 and µ = min{r + 1,m}. The constant
C depends only upon Ce, D(0)

1
2 and the constants in the estimates (17), (16)

and (18). The estimate holds for either of the choices B = B1 or B = B2 in
(21).

Proof. We first consider the case B = B1 in (21) and so need to estimate the
terms in (23). For the first term we have,∣∣∣∣∣∣

∫ t

0

∑
E∈Eh

∫
E

∂Dijkl(t − s)
∂s

εkl(χ(s))εij (χ(t)) dE ds

∣∣∣∣∣∣
�
∫ t

0
φ(t − s)

∑
E∈Eh

∫
E

‖D 1
2 (0)ε(χ(s))‖E‖D 1

2 (0)ε(χ(t))‖E dE ds

�
∫ t

0
φ(t − s)|χ(s)|A ds |χ(t)|A.
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For the interior edge summation term in (23) we suppose that the edge ea is
shared by the elements E1 and E2 and let χ i denote the restriction of χ |Ei to
ea , for i = 1, 2. We then have to begin with that,∣∣∣∣

∫ t

0

∫
ea

{
∂Dijkl(t − s)

∂s
εkl(χ(s))ν

a
j

}
[χi(t)] d< ds

∣∣∣∣
� C(D(0)

1
2 )

∫ t

0
φ(t − s)

∫
ea

(‖D 1
2 (0)ε(χ1(s))‖E

+‖D 1
2 (0)ε(χ2(s))‖E

)‖[χ(t)]‖E d< ds,

where we used the triangle inequality on the averaging operator. Summing
over all interior edges, “multiplying by one”, and then using the inverse
estimate (18), we then obtain,∣∣∣∣∣

Ph∑
a=1

∫ t

0

∫
ea

{
∂Dijkl(t − s)

∂s
εkl(χ(s))ν

a
j

}
[χi(t)] d< ds

∣∣∣∣∣
� C(D(0)

1
2 )

Ph∑
a=1
i=1,2

∫ t

0
φ(t − s)

∫
ea

( |ea|β
δar2

) 1
2

‖D 1
2 (0)ε(χ i (s))‖E

×
(
δar

2

|ea|β
) 1

2

‖[χ(t)]‖E d< ds,

� C0Ch
β
2 (n−1)− 1

2

∫ t

0
φ(t − s)|χ(s)|A ds

(
Ph∑
a=1

δar
2

|ea|β
∫
ea

|[χ(t)]|2 d<
) 1

2

.

The remaining “ea ∈ �D” term can be estimated in a similar way to obtain,∣∣∣∣∣∣
∑
ea∈�D

∫ t

0

∫
ea

∂Dijkl(t − s)
∂s

εkl(χ(s))ν
a
j χi(t) d< ds

∣∣∣∣∣∣
� C0C(D(0)

1
2 )h

β
2 (n−1)− 1

2

∫ t

0
φ(t − s)|χ(s)|A ds

×

∑
ea∈�D

δar
2

|ea|β
∫
ea

|χ(t)|2 d<



1
2

.

This completes the proof for the case B = B1.
For B = B2 we need to also estimate the terms in (24). This is straight-

forward because precisely the same arguments as used for the “edge terms”
above also apply, but with the time variables s and t interchanged. That is:

|B2(t; χ ,χ(t))| � Ch
β
2 (n−1)− 1

2

∫ t

0
φ(t − s)J δ,β0 (χ(s),χ(s))

1
2 ds |χ(t)|A.
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Thus, for B = Bi , i = 1 or 2, we obtain,

|B(t; χ ,χ(t))| �
(

1 + Chβ2 (n−1)− 1
2

) ∫ t

0
φ(t − s)|||u(s)|||H ds |||χ(t)|||H .

This completes the proof. ��
We will consider the class of compressible linear viscoelastic solids for

which the following assumption is physically realistic.

Assumption 4.4 (fading memory) The function φ in Lemma 4.1 can, in J ,
be written as φ(t) = −ϕ′(t) where, for some ϕ0 ∈ (0, 1], the generic stress
relaxation function ϕ : [0,∞) → (ϕ0, 1] belongs toL∞(R+)∩W 1

1 (R+) and
satisfies ϕ(0) = 1, ϕ′(t) � 0 and ϕ′′(t) � 0.

This assumption is realistic and, in particular, allows for a much sharper
analysis for the time dependence than does the usual Gronwall lemma. We
refer to [18] for further details, and simply note here that a prototype for ϕ
is,

ϕ(t) = ϕ0 +
N∑
i=1

ϕie
−αi t ,(39)

with ϕ0 > 0, ϕi, αi � 0 and the normalization ϕ(0) = 1.
With this assumption we have

‖φ‖L1(0,t) = 1 − ϕ(t) � 1 − ϕ0 for every t ∈ J .
In the following theorem we extend the a priori error estimates of The-

orem 3.5 to the semidiscrete problem (36). The assumption made above on
the behaviour of φ allows us to use a similar technique to those in [15,18]
whereby we bypass the usual Gronwall inequality and obtain error estimates
with sharper constants. (Of course the error estimate developed below can
be proven under much more general assumptions by using the Gronwall
lemma—see e.g. [16]. The constant will then be exponentially large in T .)

Theorem 4.5 Under the assumptions of Lemmas 2.1, 3.4, 4.2 and 4.3, if
u ∈ Lp(J ;Hm(Eh) ∩ H

3
2 +ε(�)), β > (n − 1)−1 and if, for each t , there

exists a continuous interpolant ũ ∈ C(�) ∩ Dr (Eh) of u, then there is a
constant C > 0 independent of h, r and T such that:

‖u − UDG
vs ‖Lp(J ;H) � C

hµ−1

rm−1

(
2 + ϕ2

0

ϕ2
0

)
|||u|||Lp(J ;Hm(Eh)),

for all h small enough so that Ch
β
2 (n−1)− 1

2 � ϕ0 where C is that time indepen-
dent constant in Lemma 4.3. Also:µ = min(r+1,m), r � 1 andm � 2 and
C is a mild time independent constant that depends upon the interpolation
estimates (16) and (17). Note also that this result is optimal in both h and r .
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Proof. Using (38) and putting together Lemmas 3.4, 4.2 and 4.3 we obtain,

|||χ(t)|||2H � C
hµ−1

rm−1

(
|||u(t)|||m +

∫ t

0
φ(t − s)|||u(s)|||m ds

)
|||χ(t)|||H

+
(

1+Ch
β
2 (n−1)− 1

2

) ∫ t

0
φ(t − s)|||χ(s)|||H ds |||χ(t)|||H .

From this it follows that

|||χ(t)|||H � F(h, r, φ, u; t)+
(

1 + Ch
β
2 (n−1)− 1

2

) ∫ t

0
φ(t − s)|||χ(s)|||H ds,

where F is abbreviation for the term containing the approximation errors.
This now implies (using Hölder’s inequality for convolutions wherein
‖f ∗ g‖Lp(0,T ) � ‖f ‖L1(0,T )‖g‖Lp(0,T ) – see [18]),

|||χ |||Lp(J ;H) � ‖F‖Lp(J ) +
(

1 + Ch
β
2 (n−1)− 1

2

)
‖φ‖L1(J )|||χ |||Lp(J ;H).

Since ‖φ‖L1(0,t) � 1 − ϕ0 we can rearrange this to get,(
1 −

(
1 + Ch

β
2 (n−1)− 1

2

)
(1 − ϕ0)

)
|||χ(t)|||Lp(J ;H) � ‖F‖Lp(J ),

and then our “smallness assumption” on h means that this can be written as,

(1 − (1 + ϕ0))(1 − ϕ0)) |||χ(t)|||Lp(J ;H) � ‖F‖Lp(J ).
�⇒ |||χ(t)|||Lp(J ;H) � 1

ϕ2
0

‖F‖Lp(J ).

Now, we have that,

‖F‖Lp(J ) � C
hµ−1

rm−1
(1 + ‖φ‖L1(J ))|||u|||Lp(J ;Hm(Eh)),

and the triangle inequality gives,

|||u − UDG
vs |||Lp(J ;H) � |||η|||Lp(J ;H) + |||χ |||Lp(J ;H)

� C
hµ−1

rm−1

(
1 +

(
1 + ‖φ‖L1(0,t)

ϕ2
0

))
|||u|||Lp(J ;Hm(Eh)).

This completes the proof. ��
In closing we remark that viscoelastic “fluids” (in the sense of Golden

and Graham, [5]) do not satisfy the assumption on φ given above in Assump-
tion 4.4. However, the results in [18] suggest that the theorem will still hold
in such cases except that C = O(T ).

In the next section we form a fully discrete approximation to the vis-
coelasticity problem by discretizing in time also.
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5 A priori error estimate for fully discrete viscoelasticity

A natural way of constructing a fully discrete approximation of the weak
problem (26) is to define the constant time step, k := T/N , for some positive
integer N , set tq := qk, and then replace the time integral in (12) with
a numerical quadrature rule. This is the approach we take in this section
where we produce a numerical scheme and then quote an optimal a priori
error estimate for simplicial finite element meshes (which allow us to build
a continuous Dr (Eh) interpolant, ũ(t) to u(t)).

The quadrature scheme is defined as follows: for a generic integrand, g,
we approximate as follows:

∫ tq

0
g(s) ds ≈ k

q−1∑
p=0

'qpg(tp), for q = 0, 1, . . . , N,

where, here and below, empty sums are set to zero. The {'qp} are (posi-
tive) weights, determined as follows. Over (tq−1, tq) we integrate using the
backward (i.e. left-end-point integrand evaluation) rectangle rule and then
over (0, tq−1), when q > 1, we use the standard trapezoidal rule. Hence, the
sequences of weights, for each tq , are given by:

q = 0 : {'qp}q−1
p=0 = ∅,

q = 1 : {'qp}q−1
p=0 = {1},

q = 2 : {'qp}q−1
p=0 = { 1

2 ,
3
2 },

q = 3 : {'qp}q−1
p=0 = { 1

2 , 1,
3
2 },

q > 3 : {'qp}q−1
p=0 = { 1

2 , 1, . . . , 1,
3
2 }.

Note that the right-hand value of the integrand, g(tq), is not required in the
approximation.

Replacing the time integral in (12) by this quadrature rule leads to a time
discretized viscous stress:

ςvsij (w; tq, tm) := k

q−1∑
p=0

'qp
∂Dijkl(tm − s)

∂s

∣∣∣∣
s=tp

εkl(w(tp)),

for 0 � m � q.

(Note the clash of notation where k is being used as a time step and a dummy
tensor subscript, no confusion should arise here.) We then define discrete
versions of B1 and B2, in (23) and (24), as,
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B
q

1(w, v) :=
∑
E∈Eh

∫
E

ςvsij (tq, tq; w)εij (v) dE

−
Ph∑
a=1

∫
ea

{ςvsij (tq, tq; w)νaj }[vi] d<

−
∑
ea∈�D

∫
ea

ςvsij (tq, tq; w)νaj vi d<,(40)

B
q

2(w, v) :=
Ph∑
a=1

∫
ea

{ςvsij (tq, tq; v)νaj }[wi] d<

+
∑
ea∈�D

∫
ea

ςvsij (tq, tq; v)νaj wi d<.(41)

The analogue of (21) is then,

Bq(w, v) := B
q

1(w, v)+ B
q

2(w, v) or B
q

1(w, v).(42)

We now define our fully discrete approximation to (26) as the problem:
find a piecewise linear (with respect to the {tq}) time-continuous function
UDG : J → Dr (Eh) such that, for each q = 0, 1, . . . , N in turn, UDG

q :=
UDG(tq) satisfies,

A(UDG
q , v) = L(tq; v)+ Bq(UDG, v) ∀v ∈ Dr (Eh).(43)

Here, of course, UDG(t) is the approximation to u(t) and UDG is uniquely
defined by linear interpolation within the time intervals. Note that existence
and uniqueness of a solution at each discrete time is ensured by Lemma 3.1
after noting that our quadrature rule simply produces a linear elasticity prob-
lem at each time level. Also, Lemma 3.2 continues to hold for the discrete
stress tensor ς .

Remark 5.1 Although we are allowing high-order approximation in space
we are only considering a fixed order time approximation. The reason for
using the second-order trapezoid/rectangle rule for the time discretization is
to produce a fully discrete scheme that does not involve the solution at the
current time level on the right. That is, in (43), UDG

q appears only on the left. In
this case the viscoelasticity algorithm can be generated by simply modifying
the load vector in already existing elliptic solver software. Of course, higher
order quadrature rules could be used but this would necessitate the current
solution making a contribution to the history integral. These terms would
then have to brought over to the left and would result in a modified stiffness
matrix. One would also need (e.g. for Simpson’s rule) a means of generating
“starting values”.
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Before getting to the a priori error estimate we need some preliminary
results based on the following error splitting. For each t , let ũ ∈ C(�) ∩
Dr (Eh) be an interpolant of u having optimal hp-approximation errors, and
set,

η := u − ũ ∈ H
3
2 (Eh) and ζ := ũ − UDG ∈ Dr (Eh).

Now, subtract (43) from (26) to get,

A(u(tq)− UDG
q , v) = B(tq; u, v)− Bq(UDG, v),

= Bq(ζ , v)+ B(tq; η, v)

+ (B(tq; ũ, v)− Bq(ũ, v)) ∀v ∈ Dr (Eh).(44)

Note that by choosing the error splitting in this way we need only estimate
the quadrature error relative to the interpolant, ũ, rather than u. This enables
us to use (18) in the following estimate for the quadrature error.

Lemma 5.2 (quadrature error) Assume that β > (n− 1)−1, and that, for
someCe > 0, each edge satisfies |ea| � Ceh

n−1. Then, forq = 0, 1, 2, . . . , N
and either choice in (42) we have,

∣∣B(tq; ũ, v)− Bq(ũ, v)∣∣ � CTϒ(T )k2|||u|||W 2∞(J ;H1(�))|||v|||H ∀v ∈ Dr (Eh).

Here, in the notation of Lemma 4.1,

ϒ(T ) := max{‖φ(i)‖W 1∞(J ) : i = 1, 2},

and C is a positive constant depending on Ce, D(0)
1
2 and the constants in

(17) and (18).

Proof. For a generic integrand, g, standard estimates give,

∣∣∣∣∣∣
∫ tq

0
g(ξ) dξ − k

q−1∑
p=0

'qpg(tp)

∣∣∣∣∣∣ � CT k2‖g′‖W 1∞(0,tq ),

where C is a time independent constant. Therefore, working from the defini-
tion (21), and using (23) and (24), we now have to estimate each integrand
in turn.
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For the first integrand in (23) we use Lemma 4.1 to get,∥∥∥∥ ∂∂s
∑
E∈Eh

∫
E

ε(v) · D′(tq − s)ε(ũ(s)) dE
∥∥∥∥
W 1∞(0,tq )

=
∥∥∥∥∑
E∈Eh

∫
E

ε(v)·D′(tq−s)ε(ũs(s))−ε(v)·D′′(tq−s)ε(ũ(s)) dE
∥∥∥∥
W 1∞(0,tq )

,

�
∥∥∥∥ ∑
E∈Eh

∫
E

φ(1)(tq − s)‖D 1
2 (0)ε(v)‖E‖D 1

2 (0)ε(ũs(s))‖E

+φ(2)(tq − s)‖D 1
2 (0)ε(v)‖E‖D 1

2 (0)ε(ũ(s))‖E dE

∥∥∥∥
W 1∞(0,tq )

,

�
∥∥∥∥φ(1)(tq − s)|v|A|ũ(s)|A + φ(2)(tq − s)|v|A|ũs(s)|A

∥∥∥∥
W 1∞(0,tq )

,

� ϒ(T )

∥∥∥|ũ(s)|A + |ũs(s)|A
∥∥∥
W 1∞(0,tq )

|v|A,

� 2ϒ(T )
∥∥∥|ũ(s)|A∥∥∥

W 2∞(J )
|v|A.

For the second integrand in (23) we use the triangle inequality on the aver-
aging operator, {·}, along with Lemma 4.1 and the inverse estimate (18) to
get,∥∥∥∥ ∂∂s

Ph∑
a=1

∫
ea

{
∂Dijkl(tq − s)

∂s
εkl(ũ(s))ν

a
j

}
[vi] d<

∥∥∥∥
W 1∞(0,tq )

=
∥∥∥∥
Ph∑
a=1

∫
ea

{
D′′
ijkl(tq − s)εkl(ũ(s))νaj

}
[vi]

− {D′
ijkl(tq − s)εkl(ũs(s))νaj

}
[vi] d<

∥∥∥∥
W 1∞(0,tq )

,

�
∥∥∥∥
Ph∑
a=1

∫
ea

φ(2)(tq − s)‖D 1
2 (0)ε(ũ(s))‖E‖D 1

2 (0)‖E‖[v]‖E

+ φ(1)(tq − s)‖D 1
2 (0)ε(ũs(s))‖E‖D 1

2 (0)‖E‖[v]‖E d<

∥∥∥∥
W 1∞(0,tq )

,

� ‖D 1
2 (0)‖L∞(�;E)

∥∥∥∥φ(2)(tq − s)
(
Ph∑
a=1

|ea|β
δar2

‖D 1
2 (0)ε(ũ(s))‖2

0,ea

) 1
2

+ φ(1)(tq − s)
(
Ph∑
a=1

|ea|β
δar2

‖D 1
2 (0)ε(ũs(s))‖2

0,ea

) 1
2 ∥∥∥∥

W 1∞(0,tq )
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×
(
Ph∑
a=1

δar
2

|ea|β ‖[v]‖2
0,ea

) 1
2

,

� CeCC0h
β
2 (n−1)− 1

2 ‖D 1
2 (0)‖L∞(�;E)

×
∥∥∥φ(2)(tq − s)|ũ(s)|A + φ(1)(tq − s)|ũs(s)|A

∥∥∥
W 1∞(0,tq )

J
δ,β

0 (v, v)
1
2 ,

� C‖D 1
2 (0)‖L∞(�;E)ϒ(T )h

β
2 (n−1)− 1

2

∥∥∥|ũ|A
∥∥∥
W 2∞(J )

J
δ,β

0 (v, v)
1
2 .

Precisely the same arguments can be applied to the third integrand in (23)
and we note that both integrands in (24) are zero. Hence the lemma is proven
when ũ appears on the right rather than u. To address this we use (17) with
µ = q = s = 1 and get,

|ũ|A = |(ũ − u)+ u|A � C(D(0)
1
2 )(|||(ũ − u)|||1 + |||u|||1) � C|||u|||1.

Noting that this argument also works for ũt and ũt t then completes the proof.
��

Choosing v = ζ q in (44), and using Lemma 5.2 now yields,

|||ζ q |||2H � CTϒ(T )k2|||u|||W 2∞(J ;H1(�))|||ζ q |||H + |A(η(tq), ζ q)|
+|B(tq; η, ζ q)| + |Bq(ζ , ζ q)|.(45)

The second and third terms on the right-hand side of (45) can be bounded
using Lemmas 3.4 and 4.2 – with χ replaced by ζ q . Our goal is to bound the
last term. This term generates a Volterra inequality, and, in order to bypass
the Gronwall lemma, we need the following result for the quadrature rule.

Lemma 5.3 Let {θp}q−1
p=0 be a sequence of non-negative real numbers and set

θ̂q := max{θp : 0 � p � q}. Then, for φ of the form given in Assumption 4.4,

0 � k

q−1∑
p=0

'qpφ(tq − tp)θp � (1 − ϕ0k)θ̂q−1,

for q = 0, 1, 2, . . . , N , with empty sums set to zero and where ϕ0k :=
ϕ0 + kϕ′(k).

Proof. The left hand inequality is obvious from the definitions so we need
only prove the upper bound. We consider the summation as made up of a
“trapezoidal rule” component and a “rectangle rule” component and take
each in turn.
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For the trapezoidal summation we use Assumption 4.4 to obtain firstly,

q−1∑
p=1

k

2

(
φ(tq − tp)+ φ(tq − tp−1)

)
� k

q−1∑
p=1

max{−ϕ′(tq−tp),− ϕ′(tq−tp−1)}

= −
q−1∑
p=1

kϕ′(tq − tp)

� −
q−1∑
p=1

∫ tp+1

tp

ϕ′(tq − s) ds,

= 1 − ϕ(tq−1).

For the rectangle summation we have kφ(tq − tq−1) = −kϕ′(k) and hence,

k

q−1∑
p=0

'qpφ(tq − tp)θp � θ̂q−1
(
1 − (ϕ0 + kϕ′(k))

)
,

where we noted that ϕ(tq−1) � ϕ0. ��
As the last step in our preparation we need an analogue of Lemma 4.3.

Lemma 5.4 Let Lemma 4.3 hold. Then,

|Bq(ζ , ζ q)| �
(

1 + Ch
β
2 (n−1)− 1

2

)
k

q−1∑
p=0

'qpφ(tq − tp)|||ζp|||H |||ζ q |||H ,

under the same conditions and assumptions.

We can now give an a priori error estimate that is optimal in both h
and r .

Theorem 5.5 Under the assumptions of Lemmas 2.1, 4.3, 3.4, 5.2 and As-
sumption 4.4, along with the requirement that D ∈ W 3

∞(J ; L∞(�)) then, if

u ∈ W 2
∞(J ;H1(�)) ∩ L∞(J ;Hm(Eh) ∩ H

3
2 +ε(�)), β > (n − 1)−1, and

for each edge |ea| � Ceh
n−1, and if, for each t , there exists a continuous

interpolant ũ ∈ C(�)∩ Dr (Eh) of u, there is a constant C > 0 independent
of h, r , and T such that for h bounded above:

|||u − UDG|||<∞({tq }Nq=0;H) � C

(
Tϒ(T )k2

ϕ2
0k

|||u|||W 2∞(J ;H1(�))

+h
µ−1

rm−1

(
2 + ϕ2

0k

ϕ2
0k

)
|||u|||L∞(J ;Hm(Eh))

)
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for all h small enough so that Ch
β
2 (n−1)− 1

2 � ϕ0k where C is that time inde-
pendent constant in Lemma 4.3, ϕ0k is defined by Lemma 5.3 and ϒ(T ) is
defined by Lemma 5.2. Also: µ = min{r + 1,m}, r � 1 and m � 2 and C
is a mild time independent constant that depends upon Ce, D(0)

1
2 and the

interpolation constants in (16), (17) and (18).

Proof. From (45) and Lemmas 3.4, 4.2 and 5.4 we get,

|||ζ q |||H �
(
CTϒ(T )k2|||u|||W 2∞(J ;H1(�)) + C

hµ−1

rm−1
|||u|||L∞(J :Hm(Eh))

)

+Ch
µ−1

rm−1

∫ tq

0
φ(tq − s)|||u(s)|||m ds

+
(

1 + Ch
β
2 (n−1)− 1

2

)
k

q−1∑
p=0

'qpφ(tq − tp)|||ζp|||H .

Using Lemma 5.3 and our bound on h we obtain from this,

max
0�p�q

|||ζp|||H � C
(
Tϒ(T )k2|||u|||W 2∞(J ;H1(�))

+h
µ−1

rm−1

(
1 + ‖φ‖L1(J )

) |||u|||L∞(J ;Hm(Eh))
)

+(1 + ϕ0k)(1 − ϕ0k) max
0�p�q

|||ζp|||H ,

from which it follows that,

max
0�p�q

|||ζp|||H

�C
(
Tϒ(T )k2|||u|||W 2∞(J ;H1(�))

ϕ2
0k

+ hµ−1

rm−1

(
2 − ϕ0

ϕ2
0k

)
|||u|||L∞(J ;Hm(Eh))

)
.

Using the triangle inequality, (17) now gives,

max
0�p�q

|||u(tp)− UDG(tp)|||H � |||η|||L∞(J ;H) + max
0�p�q

|||ζp|||H ,

� C

(
Tϒ(T )k2|||u|||W 2∞(J ;H1(�))

ϕ2
0k

+h
µ−1

rm−1

(
1 + 2 − ϕ0

ϕ2
0k

)
|||u|||L∞(J ;Hm(Eh))

)
,

� C

(
Tϒ(T )k2|||u|||W 2∞(J ;H1(�))

ϕ2
0k

+h
µ−1

rm−1

(
2 + ϕ2

0k

ϕ2
0k

)
|||u|||L∞(J ;Hm(Eh))

)
.

Since q was arbitrary, this completes the proof. ��
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Remark 5.6 The constant C in Theorem 5.5 is time independent, as is the
coefficient in the spatial discretization error term. Moreover, if D behaves,
in time, as the Prony series, (39), (which is a reasonable assumption for
compressible linear viscoelastic solids—see [18]) then,

ϒ(T ) := max{‖φ(i)‖W 1∞(J ) : i = 1, 2} = max

{
N∑
i=1

αiϕi,

N∑
i=1

α2
i ϕi

}

and is bounded independent of T . Therefore, the a priori error estimate
allows for long-time integration with essentially no accumulation of space
discretization error and, at worst, only a linear growth in time discretization
error.

6 Conclusions

In this paper we have presented a priori error estimates for DG(r) finite ele-
ment approximations of: linear elasticity; time-continuous (i.e. semidiscrete)
quasistatic linear viscoelasticity; and, a fully discrete scheme for quasistatic
linear viscoelasticity. The estimates are optimal in terms of h-convergence
but only optimal in the polynomial degree, r , when the finite element space
contains a continuous interpolant to the solution of the continuous problem.
Software is currently under development and numerical results will be re-
ported elsewhere at a later date.
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9. Oden, J. T., Babuška, I., Baumann, C. E.: A discontinuous hp finite element method

for diffusion problems. J. Comput. Phys., 146, 491–519 (1998)
10. Rivière, B., Wheeler, M. F.: A discontinuous Galerkin method applied to nonlinear

parabolic equations. Technical Report 99–26, TICAM, University of Texas at Austin,
1999. (see www.ticam.utexas.edu/reports/1999).



B. Rivière et al.

11. Rivière, B., Wheeler, M. F., Banas, K.: Discontinuous Galerkin method applied to a
single phase flow in porous media. Part II. Computational Geosciences (to appear),
2000

12. Rivière, B., Wheeler, M. F., Girault,V.: Improved energy estimates for interior penalty,
constrained and discontinuous Galerkin methods for elliptic problems. Part I. Com-
putational Geosciences, 3, 337–360 (1999)

13. Schwab, Ch.:p- andhp-finite element methods. Numerical mathematics and scientific
computation. Oxford University Press, 1998.

14. Shaw, S., Warby, M. K., Whiteman, J. R.: Numerical techniques for problems of
quasistatic and dynamic viscoelasticity. In J. R. Whiteman, editor, The Mathematics
of Finite Elements and Applications. mafelap 1993, pages 45–68. Wiley, Chichester,
1994.

15. Shaw, S., Warby, M. K., Whiteman, J. R.: Error estimates with sharp constants for
a fading memory Volterra problem in linear solid viscoelasticity. SIAM J. Numer.
Anal., 34, 1237–1254 (1997)

16. Shaw, S., Warby, M. K., Whiteman, J. R., Dawson, C., Wheeler, M. F.: Numerical tech-
niques for the treatment of quasistatic viscoelastic stress problems in linear isotropic
solids. Comput. Methods Appl. Mech. Engrg., 118, 211–237 (1994)

17. Shaw, S., Whiteman, J. R.: Numerical solution of linear quasistatic hereditary vis-
coelasticity problems. SIAM J. Numer. Anal, 38(1), 80–97 (2000)

18. Shaw, S., Whiteman, J. R.: Optimal long-time Lp(0, T ) data stability and semidis-
crete error estimates for the Volterra formulation of the linear quasistatic viscoelas-
ticity problem. Numer. Math., 88, 743–770 (2001). (BICOM Tech. Rep. 98/7 see:
www.brunel.ac.uk/∼icsrbicm).

19. Wheeler, M. F.: An elliptic collocation-finite element method with interior penalties.
SIAM J. Numer. Anal., 15, 152–161 (1978)


