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1.1. What is asymptotics?

This question is about as difficult to answer as the question
“What is mathematics?”’ Nevertheless, we shall have to find some
explanation for the word asymptotics.

It often happens that we want to evaluate a certain number,
defined in a certain way, and that the evaluation involves a very
large number of operations so that the direct method is almost
prohibitive. In such cases we should be very happy to have an
entirely different method for finding information about the number,
giving at.least some useful approximation to it. And usually this
new method gives (as remarked by Laplace) the better results in
proportion to its being more necessary: its accuracy improves when
the number of operations involved in the definition increases. A
situation like this is considered to belong to asymptotics.

This statement is very vague indeed. However, if we try to be
more precise, a definition of the word asymptotics either excludes
everything we are used to call asymptotics, or it includes almost the
whole of mathematical analysis. It is hard to phrase the definition in
such a way that Stirling’s formula (1.1.1) belongs to asymptotics,
and that a formula like /5° (1 + #2)~1dx = %= does not. The obvious
reason why the latter formula is not called an asymptotic formula is :
that it belongs to a part of analysis that already has got a name:
the integral calculus. The safest and not the vaguest definition is
the following one: Asymptotics is that part of analysis which
considers problems of the type dealt with in this book.

A typical asymptotic result, and one of the oldest, is Stirling’s
formula just mentioned:

(1.1.1) lim n!/(e~nmV 2mm) = 1.
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2 ASYMPTOTIC METHODS IN ANALYSIS

For each #, the number %! can be evaluated without any theoretical
difficulty, and the larger # is, the larger the number of necessary
operations becomes. But Stirling’s formula gives a decent approxi-
mation e~#puny/ Nyv and the larger # is, the smaller its relative
error becomes.

Several proofs of (1.1.1) and of its generalizations will be given
in this book (see secs. 3.7, 3.10, 4.5, 6.9).

We quote another famous asymptotic formula, much deeper than
the previous one and beyond the scope of this book. If x is a positive
number, we denote by z(x) the number of primes not exceeding .
Then the so-called Prime Number Theorem states that D)

. %
1.1.2 lim = 1.
(1.1.2) lim () \ e
The above formulas are limit formulas, and therefore they have,
as they stand, litile value for numerical purposes. For no single
special value of % can we draw any conclusion from (1.1.1) about =,
It is a statement about infinitely many values of #, which, re-
markably enough, does not state anything about any special value
of n. :
For the purpose of closer investigation of this feature, we ab-
breviate (1.1.1) to
(1.1.3) limf(n) =1, or fn) -1 (- oco).
n—>co
This formula expresses the mere existence of a function N () with
the property that:

(1.1.4)  foreach & > 0: #n > N(g) implies |f(n) — 1| < &.

When proving f(zn) — 1, one usually produces, hidden or not,
information of the form (1.1.4) with explicit construction of a
suitable function N(g). It is clear that the knowledge of N(g)
actually means numerical information about /. However, when using
the notation f(n) — 1, this information is suppressed. So if we
write (1.1.3), the knowledge of a function N (¢) with the property
(1.1.4) is replaced by the knowledge of the existence of such a
function.

1) See A. E. INncrAM, The Distribution of Primes, Cambridge 1932.
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To a certain extent it is one of the reasons of the success of
analysis that a notation has been found which suppresses that much
information and- still remains useful. Even with quite simple
theorems, for instance lim anby, = lim a,-lim by, it is easy to see

at the existence of the functions N(g) is easier to handle than the
ctions N(e) themselves. A

ker form of suppression of information is given by the
mann-Landau O-notation 1). It does not suppress a function,
mly a number. That is to say, it replaces the knowledge of a
mber with certain wwowmaﬁmm by the knowledge that such a
umber exists. The O-notation suppresses much less information
than the limit notation, and yet it is easy enough to handle.

Assume that we have the following explicit information about the

sequence {f(n)}:
2.1) [f(n) — 1] < 3n-1

_ Then we clearly have a suitable function N (¢) satisfying (1.1.4),
iz, N(e) = 3¢~1. Therefore, ,

fn) -1
en happens that (1.2.2) is useless, and that (1.2.1) is satis-
for some purpose on hand. And it often happens that (1.2.1)

emain as useful if the number 3 would be replaced by 108
other constant. In such cases, we could do with

n=123,...).

| There exists a number 4 (independent of n) such that
fm) — 1| < An-1 (n=1,23,...).

mHoE connections are given by
(1.2.1) > (1.2.3) = (1.2.2).

.2.3) is the statement expressed by the symbolism
1) f) —1=0(1) (=123,...)

here are some minor differences between the various definitions

} See E. LANDAU, Vorlesungen iiber Zahlentheorie, Leipzig 1927, vol. 2,
~— 5.
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of the O-symbol that occur in the literature, but these differences
are unimportant. Usually the O-symbol is meant to represent the
words “something that is in absolute value less than a constant
number times”. Instead, we shall use it in the sense of “‘something
that is, in absolute value, at most a constant multiple of the
absolute value of”’. So if S is any set, and if # and ¢ are real or
complex functions defined on S, then the formula

(1.2.5) fis) = Olp(s))  (s€5)
means that there is a positive number 4, not depending on s, such
that .
(1.2.6) IF(s)] < Alg(s)| forallseS.
If, in particular, @(s) # 0 for all s € S, then (1.2.5) simply means
that f(s)/g(s) is bounded throughout S.
We quote some obvious examples:
%2 = O(x)
sin x = O(1)
sin ¥ = O(x)

(Il <2),
(— o0 < x < 00),
(— o0 < x < 00).

Quite often we are interested in results of the type (1.2.6) only
‘on part of the set S, especially on those parts of S where the inform-
ation is non-trivial. For example, with the formula sin x = O(x)
(— oo < x < oo) the only interest lies in small values of |x|. But
those uninteresting values of the variable sometimes give some
extra difficulties, although these are not essential in any respect.
An example is:

e® — 1 = O(x) (—1<x<1)

We are obviously interested in small values of x here, but it is
the fault of the large values of x that ¢ —1= O(#) (—oo< x< 00)
fails to be true. So a restriction to a finite interval is indicated, and
it is of little concern what interval is taken.

On the other hand, there are cases where one has some trouble to
find a suitable interval. Now in order to eliminate these non-
essential minor inconveniences one uses a modified O-notation,
which again suppresses some information. We shall explain it for
the case where the interest lies in large positive values of % (x — ©0),
but by obvious modifications we get similar notations for cases like
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m& —> — 00, || > 00, x—=>C, % 4 ¢ (i.e., % tends to ¢ from the left).

The formula

(1.2.7) f(@) = O(e(¥))
means that there exists a real number & such that
f(x) = Ol(x))
In other words, (1.2.7) means that there exist numbers « and 4
ich that

2.8) If(#)| < Alp(x)| whenever a < ¥ < 00

(% — o0)

(2 <x < o0).

Examples:
22 = 0(@x) (x—>0);
T == o) (» —00);
(log %)~ = O(1) (x — o0);

In many cases a formula of the type (1.2.7) can be replaced
immediately by an O-formula of the type (1.2.5). For if (1.27) is
given, and if f and ¢ are continuous in the interval 0 < ¥ < 09,
and if moreover g(x) # O throughout this interval, then we have
() = Ofp(x) 0z < o). This follows from the fact that fle
is continuous, and therefore bounded, over 0 < x < 4.

% = O(x2) (x - o0);
(log )8 = O(xt) (x —~ o0} ;
(sin #-1)~1 = O(x) (x —>oo).

. The reader should notice that so far we did not define what
O(p(s)) means; we only defined the meaning of some complete
formulas. Tt is obvious that the isolated expression O(p(x)) cannot
e defined, at least not in such a way that (1.2.5) remains equivalent
to (1.2.6). For, f(s) = O(p(s)) obviously implies 2f(s) = Olg(s)). If
O(p(s)) in itself were to denote anything, we would infer f(s) =
= O(p(s)) = 2f(s), whence f(s) = 2f(s)-
The trouble is, of course, due to abusing the equality sign =. A
similar situation arises if someone, because his typewriter lacks the
sign <, starts to write = L for the words “is less than”, and so
writes 3 = L(5). On being asked: “What does L(5) stand for?”,
be has to reply ‘“‘Something that is less than 5. Consequently, he
rapidly gets the habit of reading L as “‘something that is less than”,
thus coming close to the actual words we used when introducing
(1.2.5). After that, he writes L(3) = L(5) (something that is less
than 3 is something that is less than 5), but certainly not L(5)=L(3).
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He will not see any harm in 4 = 2 + L(3), L(3) + L(2) = L(8).
The O-symbol is used in exactly the same manner as this person’s
L-symbol. We give a few examples:
O@) + O@?) = O(x)  (x—~>0).
This means: for any pair of functions f, g, such that
) = OW) (& ~0), gl®) =0 (x~0)

" we have
f(%) + glx) = Ox)  (x —0).
Analogously, ,
O) + 08 =0 (v ),
O = O(1)  (— o0 < x < 09),
20 — g0(zh (x — oo).

We also write things like
e* =14+ x + Ox?) (x = 0),

which means that thereis a ?bomon fsuchthate? =1+ % + fx),
and f(x) = O(x?) (¥ —0). And we write things like
x~10(1) = O(1) 4 O(x7?) (0 <% < oo).

This means that for any function f(x) with f(x) = O(1) (0 < % < o0)
we can split x-1f(x) into two parts g(») and (%), such that g(x)=0(1),
h(x) = O(x2) (0 < < oo). The proof is easy: take g(x) = O if
0<x< 1, glr) =x"1f(x) if x> 1, hix) = x1f(x) f 0 <2< 1,
Mzx) =0if x > 1.

The common interpretation of all these formulas can. be ex-.

pressed as follows. Any expression involving the O-symbol is to be
considered as a class of functions. If the range 0 <x < oo is
considered, then O(1)+O(x?) denotes the class of all functions of
the form f(x) + g(x), with f(x) = O(1) (0 <% < o0), glx) = O(x~%)
(0 < % < 00). And x710(1) = O(1) + O(»—2) means that the class
%~10(1) is contained in the class O(1) + O(x~2). Sometimes the
left-hand-side of a relation is not a class, but a single function, as
in (1.2.7). Then the relation means that the function on the left is a
member of the class on the right.

It is obvious that the sign = is really the wrong sign for such

relations, beemage it suggests symmetry, and there is no such
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ymmetry. For example, O(x) = O(x%) (v — oo) is correct, but
42) = O(x) (x — oo) is false. Once this warning has been given,
ere is, however, not much harm in using the sign =, and we shall
aintain it, for no other reason than that it is customary.

Let ¢ and v be functions such that ¢(x) = O(yp(x)) (* — o0) is
e and p(x) = O(p(¥)) (x —>oo) is false. If a third function f

tisfies
2.9) f#) = Olp(x)) (¥ > o0),
en obviously it also satisfies

(1.2.10) « f(x) = O(p(x)) (x — o0).

If (1.2.9) is true, it is called a refinement of (1.2.10). Formula
(1.2.9) is called best possible if it cannot be refined, that is, if there
are positive constants & and A such that ale(x)| < | 2l < Alp(x)]
from a certain value of ¥ onwards.

For example,

2% 4 % sin x = O(x) (x = o0)

is best possible, since the left-hand side lies between x and 3x. Also
log(e?v cos 2 4- ¢7) = O(x) (¥ = o0)

is best possible. If x > 0, the logarithm is at most log(e?® + e%),

and this is less than log(e2® + ¢27) = log 2 + 2#. On the other hand
we have 2% c0s 2 > 0, whence the logarithm is certainly not less

than log e® = x. :
If m is a positive integer, then the estimate
(1.2.11) g% = O(xm) (x — o0)

holds (xme~% has its maximum at x = m, as far as positive values
of % are concerned). But for no value of m (1.2.11) is best possible,
since ¢~% = O(x—™-1) (x> oo) is always a refinement.

We shall now discuss the matter of uniformity. We start with an
example. Let S be a set of values of x, let & be a positive number,
and let f(x) and g(x) be arbitrary functions. Then we have

(1.212) (fx) + gl@)* = O((f)") + O((gx))®)  (xeS)
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For, we have

I(f + g)*l < (Ifl + 1gh* < {2 max (Ifl, lg}* <
< 2% max(|f|¥, |gl¥) < 2%(IA|F - lgI¥).

Formula (1.2.12) means that 4 and B can be found such that
[(f(x) + gx))¥ < Alf(x)|F + Blg(x)|¥  (xe5),

and it should be noted that A and B depend on £, or rather, that we
have not shown the existence of suitable 4 and B not depending
on A.

On the other hand, in

(1.2.13) Aﬁ%ﬂ% =0 Aww'v

the constant involved in the O-symbol can be chosen independently
of k (0< k< o0). For, we have x2 + k2 = (x — k)2 4 2kx = 2kx,
whence !

{1 <x < o0)

(wiw) =@

w24k T (@2n)F

We have 2-% < 1 for all £ > 0. It follows that there is a number 4,
not depending on % (viz. 4 = 1), such that

)=
3 Mlu.«ﬂ (1 <x<oo,k>0).

This fact is expressed by saying that (1.2.13) holds uniformly with
respect to k.

We can also look upon (1.2.13) from a different point of view.
The function k%(x2 - k2)—F is a function of the two variables x and
E, and therefore it can be considered as a function of a variable
point in the x-k-plane. Now the uniformity of (1.2.13) expresses
the same thing as

w a .
Aaml_uwmv = O(x~%) CA&AOO.OAN@AOOV.

The set S referred to in (1.2.6) specializes to the subset of the
x-k-plane described by 1 < x << 00,0 < k < o0,

INTRODUCTION 9

~areful uniform estimates are often required in situations of the
ollowing type. We want to have an O-formula for a function f. We
ave some expression for f(x), which we split into two parts; the
ay in which the splitting is made, depends on some parameter Z.
Estimating both parts uniformly in x and ¢ we get, for example,

fx) = O(x%) + Oh-2) (x> 1,¢> 1),

We now want to choose ¢ such that the right-hand-side is as small as
ossible. As the formula holds uniformly, we may take ¢ equal to
ome function of x. So the question is to minimize x% 4 x%~2, if x
s given. The minimum is attained at ¢ = (2%, and then both
erms have the same order, viz. 5. So f(x) = O(z"%) (x > 1).

In order to obtain this result it is not necessary to determine
the exact minimum. We can argue as follows. Let Z be such that
%2 and x%-2 have the same order, fp = %%, say. This gives the
optimal result, for by taking a larger value of £ we increase the first
term, and a smaller value of ¢ increases the second term. In both
cases the final result is worse (or at least not better) than the result

with 7.

In O-formulas involving conditions like x — oo, -there are two
constants involved (4 and a in (1.2.8)). We shall speak of uni-
formity with respect to a parameter % only if both 4 and a can be
chosen independent of k.

ExaMmpLE: For each individual 2 > 0 we have

R(1 4 k)1 = 0@ (x> o0),
but this does not hold uniformly. If it did, there would be positive
numbers A and &, both independent of %, such that
E2(1 + kx?)~t < Ax1 (®>a k>0).
If we put & = %2, we get A(l + x%) > x° whenever x > 4, which is

impossible.
On the other hand, one of the two constants 4 and a can be

chosen independent of k. We can takea==% 4 =1, as
B2(1 + kx?®)l < bx? <71 (x > &, k> 0).
We can also take a = 1, A = k, since
B2(1 4+ Rx?) 1 < ka2 < Ryl (x> 1,k >0).
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1.3. The o-symbol
The expression

(1.3.1) ) =olp(®) (x> o0)

means that f(x)/p(x) tends to O when % — co. This is a stronger
assertion than the corresponding O-formula: (1.3.1) implies (1.2.7),
as convergence implies boundedness from a certain point onwards.

Furthermore we adopt the same conventions we introduced for

the O-m%.Egr = is to be read as “is”, and “0” is to be read as
something that tends to zero, multiplied by”. Some examples are
cosx = 1 4 o(x) (x —=0),
0@ = 1 + o(x) (x —0),
nl = eV 2mn(l + o(1))  (n - oo),
nl = g-ntoiyny/ 20y (n -~ ©0),
o(f(x) g(x)) = o(f(x)) O(g(x)) (x —0),
o(f(x) g(x)) = #(x) o(g(x)) (x —0).

In mmﬁ.ﬂ@ﬂoaom, o’sare less important than O’s, because they hide
so much information. If something tends to zero, we usually wish to
know how rapid the convergence is. )

1.4. Asymptotic equivalence

We say that \8 and g(x) are asymptotically equivalent as

% — oo, if the quotient f(x)/g(x) tends to unity. Our notation is
f#) ~glx) (x> o0).

. .H.,rw notation will also be used for all other ways of passing to a

limit (e.g., * > — 00, ¥ -0, x | O, lz| — 0).

Properly speaking, the symbol ~ is superfluous, as flx) ~ g(x)
can be conveniently written as f®) = glx) (1 + o(1)
f(%) = e*Wg(z).

Examples:

¥+ 1~z {xr - o0),

sinh x ~ Lez (x = o0),
nl ~ e mmmV 2an  (n —>o00) (cf.(1.1.1)),
7(x) ~ x/(log %) (x >o00) (cf.(1.1.2)).

When asking for the “asymptotic behaviour” of a given function
f(*) 2s  — oo, say, one means to ask for asymptotic information of

), or as
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kind. But usually it means asking for a simple function g(x)
h is asymptotically equivalent to f(x). Here ‘“‘simple” means
t its explicit evaluation does nof become extremely hard if # is
ry large. From a certain point of view #! is much simpler than
n?(27m)t, but from the asymptotic point of view the latter ex-
ession is the simpler.

The words ‘“‘asymptotic formula for f(x)” are, accordingly,
ally taken in the same restricted sense, viz. of an equivalence
rmula f(x) ~ g(x).

. Asymptotic series

We often have the situation that for a function f(x), as ¥ — oo,
1y, we have an infinite sequence of O-formulas, each (» < 1)-th
rmula being an improvement on the #-th. Frequently the sequence
of formulas is of the following type. There is a sequence of functions

90, 91, P2, - - -, satisfying
5.1)  @1() = ofpo(x)) (x—o0), @a(x) = o(p1(¥)) (¥—>o0),...,

nd there is a sequence of constants cq, ¢1, ¢, .. ., such that there is
e following sequence of O-formulas for f:

f(x)=0(go(x)) (x—c0)
Fx) =copo(x) +O(p1(%)) (x—>00)
152 1 (%) =copo(%) +c191(x) + Olpz(x)) (x->c0)

f(®)=copo(®) +c191(%) +. . . +Cp-1@n-1(x) +O(pa(¥)) (x—>o00)
Obviously, the second formula improves the mwmﬁ one, as

copo(x) + O(pa(x)) = (co + o(1))go(#) = Olpo(x)) (%~ o).

- Accordingly, the third formula improves the second one, and so on.
The following notation is used in order to represent the whole set
(1.5.2) by a single formula:

(1.5.3) f(x) =~ copo(r) + crp1(x) + capa(x) + ... (¥ — o0).

The right-hand-side is called an asymptotic series for f(x), or an
asymptotic expansion for f(x). The notion is due to Poincaré.
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It is easy to see that the ¢’s are uniquely determined when the
¢’s are given, assuming that such an asymptotic expansion exists.
For, assume that (1.5.3) holds, that

f(%) ~ dopo() + daga(x) + dage() + ... (¥ —> o)

is also true, and that % is the smallest number for which ¢z # dg.
Then we have, by subtraction

0 = (cx — dr)pu(®) + Olpr+1(%)).

Dividing by cx — dr we find that gi(*) = Olpr+1(%)), which
contradicts the fact that gg+1(x) = o(px(x)).

It can happen that, in (1.5.2), the coefficients co, c1, ¢g, . .. are all
equal to zero. Then it is conventional to write

18) = O-go#) + 0-g1(x) + O-ga(s) + -

It means that f(x) = O(pn(*)) (x — oco) for all # (but not necessarily
uniformly with respect #o n). For example, since ¢~ = O(x—m)
(% — oo) for all #, we write

(154) e*~0.140-x14+0x2+.

(x — 00).

The series occurring in (1.5.3) need not be convergent. At first
sight it seems strange that such a sequence, producing sharper and
sharper approximations, does not automatically converge. The
answer is that convergence means something for some fixed xo,
whereas the O-formulas (1.5.2) are not concerned with ¥ = xg, but
with x — co. Convergence of the series, for all x > 0, say, means
that for every individual x there is a statement about the case
#n—oo. On the other hand, the statement that the series is the
asymptotic expansion of f(x) means that for every individual #
there is a statement about the case x — oco.

Moreover, if the sequence converges, its sum need not be equal to
f(x): formula (1.5.4) provides a counterexample. It is even possible
to construct functions #(x), po(x), 1(%), - . ., such that the series of
(1.5.3) converges for all x, vﬁ such that the sum of the series does
not have the series itself as its own asymptotic series.

A quite simple example of a divergent asymptotic series is the
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following one. We consider the function f, defined by

(1.5.5) 1) = % ot

Amwmﬁ from an additional constant this is the so called exponential
integral Ei #). Integrating by parts we obtain

(1.5.6) f(x) = _Hg % Rty )

where we use the notation [p()2 = @(6) — ¢(a). The first term

in (1.5.6) is x~1e% — ¢, but the second one is of smaller order.
- Splitting the Eﬁwwamw into two parts, we obtain

s

.\ i2etdt < \ etdt < €%,
1

\ Nlm%& < .\ x)~2etdt < dw2e®.

i

Since the — ¢, ¢ and 4x~2¢7 are all O(x~2%?), we obtain

{(#%) = tem + Ox~2e%)

We can improve the approximation by repeating the procedure.

Integrating the integral in (1.5.6) by parts, we get

- [Te [ e
S g [

- and generally (n=1,2, 3,

x

;gnhA SRR .+...+ R

1

- The last 5&@%& is O(x—71¢%) if x — oo and if # is fixed. This can
again be verified by meHEm the integration interval into two
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parts, viz. (1, 3%) and (%, x). So for each #, we have

x %2 %3 %"

and it follows that ,
. 1 1 2! 3! . .

The series on the right converges for no single value of x.

ass of asymptotic series con-

imple, though rather trivial, cl .
ot the ; series. Suppose f(2) is the sum .

sists of the class of convergent power
of a convergent power series, say
(1.5.7) f(z) = ao + @1z + a2 + ... .

when |z| < p, p being any positive number less than the radius o

convergence. Then we have
C.m.mv fz) ~ a0 + @12 4+ a2 4+ ...

The proof is easy. The series converges at z =9, when

terms anp™ are bounded, lagp™| < A, say, for all §.H
Now for each individual # we have, when |z| = 3P,
S at < lrApi(l R ),

k=n+1
and therefore

fz) = a0 + @1z + - .- + apz® + O(zn+1)

(2| = 0).
ce the

(Il < 3p)-

This implies (1.5.8). . o .
It obviously does not matter whether in this discussion z Té-
?mmmimm complex variable, or a real variable, or a real positive

variable.

ptotic series

1.6. Elementary operations on asymt .
ur discussion to

For the sake of simplicity we shall restrict o
asymptotic series of the form
(1.6.1) ag +~ a1x + asx® + ... ( —0),
although similar things can be done for several other types.

The series (1.6.1) is a power series (in terms of powers of x), and as
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Jong as there is no discussion about its representing anything, we
‘call it a formal power series. :

If for these formal powet series addition and multiplication are
defined in the obvious way, then the set of all formal power series
becomes a commutative ring, with 1 4 0-x + 0-x2 4 ... as its
unit element (to be denoted by I). If the series ag + a1¥ + ... and
bo + b1 x+ ... arerespresented by 4 and B, respectively, we define
surn and product by

A + B = (a0 + bo) + (a1 + b1)x + (a2 + b2)x2 + ...,
AB = agbo + (aob1 + aibo)x + (aob2 + a1b1 + &mwcvam + ...

If ag # 0, then there is a uniquely determined series C such that
AC = I. Its coefficients cq, 1, 3, ... can be evaluated recursively
from the equations

agto = 1, agcr + asco == 0, aocs + a161 + @200 =0, ... .

Furthermore we can define the formal power series that arises
from substituting the series B into the series 4, provided that
bo = 0. This new series will be denoted by A4(B) 1). It is defined as
follows: Let czn be the coefficient of x* in the series aol + a1B -+
4 apB2 4+ ... + a,B"®. Then it is easily seen that cxzz = g, k41 =
= Cp,p+2 = ... . Writing cgx = cx, we infer that

aol + aiB 4 ... + apB® =

=co+ 1% + ...+ Cax® + Cpy1, ¥+ Cpig,a¥™T2 A4 L.
We now define

A(B) =co + c1% + ... + Cp&™ + Cppax®tL - Cpppx®tE 4 oL

So A(B) arises from replacing % in the A-series by B, and com-
bining coefficients afterwards.

A further operation on formal power series is differentiation. The
derivative of 4 = ag + a1x 4 ... is defined by

A" = a1 + 2asx 4 3agx? + ...
‘that is, by formal term-by-term differentiation.
1) Note the difference between the notations 4(B) and 4B. A formula

(B) = C refers to a formal identity A{B(x)} = C(»), whereas 4B = D
imply means that D(x) is the formal product A4 (#)B(%).
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It is well known that if 4 and B are power series with a positive
radius of convergence, these formal operations directly correspond
to the same operations on the sums A (x) and B(x) of those series.
For example, if A(B) = C, then the series C has a positive radius of
convergence, and inside the circle of that radius we have
A{B(x)} = C(%).

When speaking about asymptotic series instead of power series,
we have a similar situation, apart from the fact that some extra
care is necessary in the case of differentiation. Assume that A(x)
and B(x) are functions defined in a neighbourhood of x = 0, having
asymptotic expansions

Alx) ~ 4 (x - 0), B(x) ~B (x—>0).
Note that A(x) stands for the function, and that 4 stands for the
formal series ap + a1% + . ... It was already remarked in sec. 1.5
that the coefficients of the series 4 are uniquely determined by the
function A (x), provided that A4(x) has an asymptotic series.

Now it is not difficult to show that

(1.6.2) Ax)+ B(x) ~4 + B (x —0),
(1.6.3) A(x)B(x) ~ AB {x —0),
and if ag # 0,

(1.6.4) AR}t~ 471 (x>0

(A1 stands for the solution of 4A-1. 4 = I). Furthermore, if 5y = 0,
the composite function 4(B(x)) is defined for all sufficiently small
values of %, and
(1.6.5) A{B(x)} ~ A(B) (x = 0).
Formula (1.6.2) is trivial. We shall prove (1.6.3). Writing AB=C,
we have, for each #»,
A(x) = a0+ ... + apx® + O(x7+Y)
B(x) = bo + ... + bpx® + O(xn+1)

(x > 0),

(x > 0),

and so

Ax)B(x) = (a0 + ... + bax®) (bo + ... + bux®) + O(x7*1) (x—0).

Now
A§+.... 4+ anx®) (bo 4 ... + bux®) — (co + ... + cux®)
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m a linear combination of x%+1, xn+2, || | %22 and so it is O(xntl)
f x — 0. It follows that

A®)B(x) = co.+ ... + cpx® -+ O(xn+1)

‘and this proves (1.6.3).

Similar proofs can be given for (1.6.4) and (1.6.5). Actually,
(1.6.4) can be considered as a special case of (1 .6.5), as A-1 = P(Q),
with P = ag~1(1 + % + %2 4 .. -)s Q@ = ap™Y(ap — A4).

(x -0,

Suppose that f(x) satisfies
flx) ~ a0 + a1x 4 asn® + ... (x =0,
and that /§ f(£)dt exists for all sufficiently small values of #. Then
 term-by-term integration is legitimate:

‘ (1.6.6) Q\\S& ~ apx + fa1x? + Lagx® 4~ ... (x —0).

~ This is easily proved. If # is given, then there are constants A and a,
such that

/) — a0 —art — ... — ap_ytn1] < Alt» (It < a),
so if [%| < a, we have
.\,\S& — aox — faix® — ... — Pas&s < ,mlT«_ ntl
% w4+ 1 ’

0
and (1.6.6) follows,

When we consider differentiation, the situation appears to be
different. If 4(x) has the asymptotic development A(x) ~ A (x—0),
then A’(x) does not necessarily exist. If it exists, it does not
necessarily have an asymptotic expansion.

For example, we have

e Y% sin(el%) ~ 04 0% + 022 + ...

but the derivative
x~2e~1/% sin(el/%) — x-2 cos(el/7)

(x>0,% >0,

has no such asymptotic expansion.
~ Term-by-term differentiation of an asymptotic power series is
legitimate, however, if it can be shown that the derivative of the
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function also has an asymptotic expansion (in the form of a formal
power series). Assuming that

\Aavkao+apa+amxn+ A&Ivor
F(x) ~ bo + bix + bax?® + ... (x —0),

we shall prove that by = (B+ l)ag+t1 (£ =0,1,2, .. .). Considering,
for some n > 1,

gn(®) = f(®) — (box + $b1x% 4 ... + 971 bp1x®), .

we have gy/(*) = O(x?) (¥ —>0). From the mean value theorem of
the differential calculus it follows that gu(x) — ga(0) = O(x7*3).
Since # is arbitrary, we infer that

j®) ~ HO) + box + 1b1x® + 3bea® + ... (& —O).

The formula bz = (¢ + 1)ag+1 now follows from the fact that the
coefficients in an asymptotic series are uniquely determined.

1.7. Asymptoti¢s and Numerical Analysis

The object of asymptotics is to derive O-formulas and o-formulas
for functions in cases where it is difficult to apply the definition of
the function for very large (or for very small) values of the variable.
It even occurs that the definition of a function is so difficult, even
for “normal” values of the variable, that it is easier to find asympt-
otic information than any other type of information.

As was already stressed in sec.l.l, neither O-formulas nor o-
formulas have, as they stand, any direct value for numerical
purposes. However, in almost all cases where such formulas have
been derived, it is possible to retrace the proof, replacing all O-
formulas by definite estimates involving explicit numerical con-
stants.

That is, at every stage of the procedure we indicate definite
numbers or functions with certain properties, where the asymptotic
formulas only stated the existence of such numbers or functions.

In most cases, the final estimates obtained in this way are rather
weak, with constants a thousand times, say, greater than they
could be. The reason is, of course, that such estimates are obtained
by means of a oobmmmﬁgm number of steps, and in each step a
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or 2 or so is easily lost. Quite often it is possible to reduce such
ors by a more careful examination.

But even if the asymptotic result is presented in its best possible
olicit form, it need not be satisfactory from the numerical point
view. The following dialogue between Miss N.A., a Numerical
alyst, and Dr A.A., an Asymptotic Analyst, is typical in several
spects.

A.:1 want to evaluate my function f(x) for large values of x,
with a relative error of at most 19%,.
f7) =21+ 0@F3) (¥ —>o0).
I am sorry, but I don’t understand.
fx) — x4 < 8x~2 (x > 109).
But my value of x is only 100.
Why did not you say so? My evaluations give
[f(%) — 1| < 57000x—2 (x = 100).
This is no news to me. I know already that 0 < f(100) < 1.
I can gain a little on some of my estimates. Now I find that
[f(x) — x4} < 20x—2 (x > 100).
I asked for 1%, not for 209,.
It is almost the best thing I possibly can get. Why don't you
take larger values of x?
111, 1 think it’s better to ask my electronic computing
. machine.
chine: f(100) = 0-01137 42259 34008 67153.
LA.: Haven’t I told you so? My estimate of 209, was not very far
from the 149, of the real error.
A ML

ome days later, Miss N.A. wants to know the value of f(1000).
now asks her machine first, and notices that it will require a
onth, working at top speed. Therefore, she returns to her Asympt-
¢ Colleague, and gets a fully satisfactory reply.

"Exercises. 1. Show that

&

S (1 + #2)tdt = ex — Jelog x + O(1) x> 1.
1

nt: First show that e-1(1 + 2t =1—41 4+ 0@ (= 1)).
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2. Show that
(# 4+ 1 + O(x1))% = ex® 4 O(x=-1) (x > o0).
3. Prove that, foreach #n (. =1,2,3, ...),
3
[ (log y)rdy = O(x(log x)7) (¥ —0).

[1}
4, Show that

[--]
£ e-at(log )-1dx ~ B Gallog f=n-L (> 0,2 > 0),
2 0

with the coefficients ¢n, = — f§° e~¥(log y)7dy.
(Hint: Use /& e~v(log y)ndy = O(/§ (log y)*dy), and apply the result of
the previous exercise to this integral).
5. Prove that
(ve2iz~mn = O?&wi«v
holds uniformly with respect to # (= 1,23, ...).
(Hint: Determine the maximum of (we2t@—n))ng~z-2* for x > O, if u is fixed).

x> 0)

6. Prove the following uniform estimate:
u
S | [ettn-vtds] = O (log(l + ux)) + O(w) (v= 1,4 > 0, — oo <v < ).
igsnzz 0
The summation runs over all integers # with 1 < # < #; # need not be

an integer.
(Hint: |f§ ¢ttdt| < min (u, 2 [p|~1) if p is real, and » > 0).

CHAPTER 2

IMPLICIT FUNCTIONS

.1. Introduction
Let x be given as a function of ¢ by some equation

f(x,t) =0,

where, if the equation has more than one root, it is somehow
indicated, for each value of {, which one of the roots has to be
chosen. Let this root be denoted by x=¢(#). The problem is to
determine the asymptotic behaviour of ¢(f) as £ — co.
. We shall only discuss a few examples, since little can be said in
general. In general, the question is rather vague, for what we really
want is the asymptotic behaviour of ¢(f) expressed in terms of
elementary functions, or at least in terms of explicit functions. In
this respect it is, of course, essential what functions are considered as
elementary. If no one had ever introduced logarithms, the question
about the asymptotic behaviour of the positive solution of the
equation e* —¢=0 (as¢—>oo) would have been a hopeless
problem. But as soon as one considers logarithms as useful functions,
the problem vanishes entirely.
In many cases occurring in practice, it is possible to express the
_asymptotic behaviour of an implicit function in terms of element-
ary functions. For the sake of curiosity we mention one case where
it is quite unlikely that such an elementary expression exists,
although it may be difficult to show the contrary. If x is given by

“ z(log x)t — 28 =0, x > 1,

hen we can easily verify that x = ¢, where g(¢) is the solution
f pe? = 4. When ¢ — oo we have for ¢ an asymptotic expansion
(see sec. 2.4), which involves errors of the type (log £)~F, for & arbi-
trary but fixed. This means that we have an asymptotic formula for

v
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log », but not for x itself. That is, we do not posses an elementary
function »() such that x/y(f) tends to 1 as £ — co. This would
require a formula for ¢(f) with an error term of o(f~1), and it is
unlikely that such a formula could ever be found.

In most cases where asymptotic formulas can be obtained, it
turns out to be quite easy. Usuvally it depends on expansions in
terms of some small parameter, ordinarily in connection with the
Lagrange inversion formula. That formula belongs to complex
function theory, but the same results can often be obtained by real
function methods. Quite often iteration methods can be applied,
but sometimes they fail in a peculiar way (see sec. 2.7).

2.2. The Lagrange inversion formula 1)

Let the function f(z) be analytic in some neighbourhood of the
point z = O of the complex plane. Assuming that f(0) =% O, we con-
sider the equation 8

(2.2.1) w = z/f(2), :

where z is the unknown. Then there exist positive numbers 2 and b,
such that for |w| < a the equation has just one solution in the
domain |z] < b, and this solution is an analytic function of w:

(2.2.2) =Yoot (v <a),
k=1 -

where the coefficients ¢z are given by

(223 x n%?@i q@i

A generalization gives the value of g(z), where g is any function
of 2z, analytic in a neighbourhood of z = 0:

(2.24 ge) = 8(0) + 3 duwh,

di = (k1)1d/dz)*Hg'(2) ((2)¥}e=0 -

Formula (2.2.2), usually quoted as the Lagrange inversion form-
ula, is a special case of a more general theorem on implicit func-

2=0

1) See E. T. WHITTAKER and G. N. Warson, Modern Analysis, 4th ed.,
Cambridge 1946, § 7.32. )
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ions 1): If f(2, w) is an analytic function of both z and w, in some
egion |z| < a1, |w| < by, if F(0, 0) = O and if 9f/dz does not vanish
at the point z = w = 0, thén there are positive numbers 2 and b,
such that, for each w in the domain |w| < a, the equation f(z, w) = 0
as just one solution z in the domain |z| < b, and this solution can
be represented as a power series 2 = Y37 cxwk.

We shall not reproduce proofs of these theorems here, although in
sec. 2.4 (see (2.4.6)) a special case of a slightly more general problem
will be treated in detail.

2.3. Applications

Some asymptotic problems on implicit functions admit a direct
application of the Lagrange formula. For example, ‘consider the
- positive solution of the equation

(2.3.1) xe® = 71,

- when ¢ — co. As £-1 tends to zero, we apply the Lagrange formula
(2.2.2) to the equation ze? = w, so that f(2) = e72 It results that
there are constants 2 > 0 and & > 0, such that for |w| < a there is
only one solution z satisfying |2 < b, viz.

z =3, (— )b 1pk-1pk/k!
k=1

(actually, the series converges if [w] < e71). So it is clear that if
¢ > a1, there is one and only one solution in the circle |¥| < b.
But as xe® increases from O to oo if x increases from O to oo, the
equation (2.3.1) has a positive solution, and this one cannot exceed
b if ¢ is sufficiently large. So if ¢ is large enough, the positive
solution we are looking for, is given by

(2.3.2) x =3 (— 1)E-1pk-1-k[f],

k=1

and this power series also serves as asymptotic development (see
sec. 1.5).

Our second example considers the positive solution of

(2.3.3) xt =2

1) See L. BieserBAcH, Funktionentheorie, vol. 1, 3e Aufl., Leipzig-Berlin
1930, Kap. VII § 8.
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when ¢ — co. The function #¢ is increasing if ¥ > 0, and ¢~% is de-
creasing. We notice that % is small in the interval 0 < x < 1 unless
% is very close to 1, so that it is clear from the graphs of x¢ and ¢—=
that there is just one positive root, close to 1, and tending to 1 as
t — oo,

We now put x = 1 + z, +1 = w, and try to get an equation of
the form (2.2.1). From %t = ¢~% we obtain the equation

2/f(z) = w, where f(z) = —a(1 + 2)/(log(1 + ).

The function f(z) is analytic at z = 0: fe)=—14cz+.... It
follows that

Xx=1—1— 24 ..

solves the equation (2.3.3), if ¢ is large enough. As in the previous
example, the fact that there is just one positive solution, tending to
unity if /- oo, guarantees that the positive solution is represented
by the power series, if # is sufficiently large.

Our third example is stated in a somewhat different form. Con-
sider the equation

(2.3.4) Cos ¥ = % sin %,

We observe from the graphs of the functions x and cotg #, that
there is just one root in every interval sz < x < (n+ V)=
m=0,4+1,+L2 .. .). Denoting this root by x», we ask for the
behaviour of %, as # — co. As cotg(x, — mn) = %, — co, we have
X%n — an — 0. Putting x = zn + 2, {n)—1 = w, we find cosz =
= (w1 + 2) sin 2z, and so

w = z[f(z), f(2) = z(cos z — z sin z)/sin z,

where f(z) is analytic at z = 0, and #(0) = 1. Therefore z is a power
series in terms of powers of w, and we infer that 2 — w + caw? -
-+ cgwd 4+ .. .. Consequently we have, if # is large enough,

Xn = 7n + (wn)~1 + comn)—2 + ....

As a consequence of the fact that f(z) is an even function of z
we notice that ¢cg = ¢4 = ¢g = ... = 0.

B
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2.4. A more difficult case
We take the equation

(2.4.1) xe® = ¢

“which has, when ¢ > 0, just one solution ¥ > 0, as the function xe®
increases from-O to co when x increases from 0 to co. This solution
being simply denoted by x, we ask for the behaviour of % as ¢ - co.
It is now more difficult than in the previous examples to trans-
- form the equation into the Lagrange type. We shall proceed by an
iterative method. We write (2.4.1) in the form

(2.4.2)

Once we have some approximation to ¥, we can substitute it on
the right-hand-side of (2.4.2), and we obtain a new approximation,
better than the former. Note that an error 4 in the value of % gives
an error of about A/x in the value of log x.

We must have something to start with. As ¢ tends to infinity, we
may assume ¢ > ¢, and then we have ¥ > 1. For, 0 < x < 1 would
imply log ¢ — log x > log ¢ > log ¢ =1, whereas the left-hand-side
of (2.4.2) would be < 1.

From x > 1 it follows, by (2.4.2), that x = log ¢ — log x < log #.
So we start with

x =logt — log x.

I <% <logt.

It follows that log x = O(log log £), and so, by (2.4.2),

x = log ¢ + O(log log ?).

The formula refers to # — co, and the same thing holds for all other

O-formulas in this section. . :
Taking logarithms, we infer that
log x = log log ¢ + log{l + O(log log #/log £)} =
= log log ¢ 4 O(log log #/log ?).
Inserting this into (2.4.2), we get a second approximation
(2.4.3) % = log ¢ — log log ¢ 4+ O (log log #/log #).

Again taking logarithms here, and inserting the result into (2.4.2),
we get the third approximation
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= log ¢ — log{log ¢ — log log ¢ + O(log log #/log H} =

log log ¢ A log _om“vM A loglog¢
= log ¢ — log log ¢ 3 _—
g 808+ logt T logt +0 (log #)2 v

We shall carry out two further steps. Abbreviating

logt= Ly, loglog ¢ = Lo,

we obtain
logx = Ly + wom.ﬁ — Lol Y Lol 2 4 302173 Oﬁ.ﬁmﬁwlwvf
and so, the term O(LsL;-3) absorbing all terms Lo?L;~¢ with qg >3,
%=1L1— Ly — {— LoLy™ + LoL1~2 + }Ls2L1-3 + O(LoL1-3)} +
+ 3H{— Lol + LoL1 %2 — }(LaL171)8 =
=Ly — Ly 4 LoLy' + {}L52 — Lo}L;~2 +
+ {— 3L23 — 3L52 + O(L)}L;~3.
The next step can be verified to give
(2.4.4) x =Ly — Lo+ Lyl{1 -+ MWN\ww — Hmwﬁwl\m —+
+{— 3L23 — L2 4 Lo}L,-3 +
+ {$L2? — FLs3 + 3Ls? + O(Lo)}L14.

From these formulas we get the impression that there is an asymp-
totic series

Aw.h.mv ¥~ Ly — Ly 4 LoPo(Ls)L1t +

+ LgPi1(L9)L172 + LgPg(L9)L1-3 4 ...,

where Pg(Ls) is a polynomial of degree k (k = 0, 1,2, .. .). This can
be proved to be the case, by a careful investigation of the process
which led to (2.4.4) and to further approximations of that type. We
shall not do this here, as we can show, by a different method, a
much stronger assertion: if # is sufficiently large, x can be repre-
sented as the sum of a convergent series of this type.

We shall need Rouché’s theorem 1), which reads as follows. Let
the bounded domain D have as its boundary a closed Jordan curve
C. Let the functions f(z) and g(z) be analytic both in D and on C,
and assume that |£(z)| < |g(2)| on C (so automatically g(z) # O on C).

1) See E. C. TiTCHMARSH, Theory of m.,zuoﬂoum. 2nd ed., Oxford 1939
§3.42.

>
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Then f(z) 4 g(2) has in D the same number of zeros as g(z), all zeros
ounted according to their multiplicity. A proof can be given as
follows. It has to be shown that the argument of f 4 g increases by
the same multiple of 27 as the argument of g if z runs through C.
This follows from the fact that the real part of (f + g)/g is positive
on C (since |f| < |g|), whence the argument of (f + g)/g cannot
increase by any of the values 4 2z, 4+ 4z, ....

Our method for dealing with (2.4.2) is modelled after the usual
proof of the Lagrange theorem. For abbreviation, we put

x =logi— loglogt + v,
(log)t =0, (loglogt)flogt =~

and we obtain from (2.4.2) that
- (2.4.6) e?—1—gv+7=0.

For the time being, we ignore the relation that exists between o
. and 7, and we shall consider them as small independent complex
parameters. We shall show that there exist positive numbers 4 and
b, such that, if |o| < a, |7| < a, the equation (2.4.6) has just one
- solution in the domain |»| < b, and that this solution is an analytic
function of both ¢ and = in the region |¢| < a, |7| < a.

Let & be the lower bound of [e=# — 1] on the circle |z] = z. Then
_ 6 is positive, and ¢~¢ — 1 has just one root inside that circle, viz.
= 0. Now choose the positive number @ equal to 6/2(% -+ 1). Then
we have

loz — 71| <46 (lo] <a, 7] <a, 2| =a).

A consequence is that |e=2 — 1| > |0z — 7] on the circle |z| = 7. So
y Rouché’s theorem, the equation % — 1 — 6z 4 = = 0 has just
ne root inside the circle. Denoting this root by v, we have, in virtue
of the Cauchy theorem,

1 —e2— ¢
2.4.7 = %
) v 20 J e*—1 —oz4 7

where the integration path is the circle |z] = z, taken in the po-
itive direction.
For every z on the integration path |oz| + |7] is less than §|e—#—1],

-z2dz,
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so that we have the following development

(2.4.8) (€~ 1—0z 4 -1
m 4 k)

=3 X Awlmlnuvlwl:\lwmao.wﬂﬁﬂlcs'h s
E=0m=0 mlk!
converging absolutely and uniformly when 2l ==, o] <aq,
[7] < a. So in (2.4.7) we can integrate termwise, and » appears as
the sum of an absolutely convergent double power series (powers of
¢ and 7). We notice that all terms not containing = vanish. For, in
(2.4.8) the terms with s — 0 give rise to integrals

(2r)~1 [ — (e +0) (672 — 1)~k—1zk., dz,

which vanish by virtue of the regularity of the integrand at z — (,
O;.H result is that, if |o| < ¢, [7] < a, (2.4.6) has just one solution
v satisfying [v] < &, and this solution can be written as

(2.4.9) V=173 Y Cimokrm
k=0

m=0

where the Ckm are constants,

We now return to the special values of ¢ and 7, Viz. 6 = (log #)-1,
7 = log log #/log ¢. For ¢ sufficiently large, we have lo] <a, |7 < a.
Moreover, the solution of (2.4.6) which we actually want to have, is
small: (2.4.3) shows that ¢ — O(log log #/log £). It follows that it
coincides with the solution (2.4.9) if ¢ is large. The final result is
that if ¢ is large enough,

(2.4.10) % =1log ¢ — log log ¢ -

+3 X ¢xm(log log HmHtl(log t)~k~m-1
k=0 m=0

and the series is absolutely convergent for all large values of z.
Needless to say, this series can be rearranged into the form (2.4.5).

2.5. Iteration methods

mE.wrmH aspects of asymptotic iteration. The subject does not
entirely fall under the heading “implicit functions”, and therefore
our reflections will be somewhat more general,
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Let f(£) be a functjon whose asymptotic behaviour is required
as ¢ — oco. Usually it is quite important to have a reasonable con
jecture about this behaviour before we start proving anything. And
usually, the better the approximation we guess, the easier it is to
prove that it is an approximation indeed.

Let go(?), 1(t), ... be a sequence of functions and assume that,
for each separate %, the asymptotic behaviour of 9x() is known,
Assume that we have reasons to believe that the behaviour of @o(?)
is, in some sense, an approximation to the one of f(). Moreover
assume that there is a procedure that transforms g into @1, @1 into
@2, etc., and that there are reasons to believe that this procedure
turns any good approximation into a better approximation. What
we hope foris this: it might happen that, for some k, g1 is so close
to /, that we may be able to prove this fact, in some specified sense.
It may even happen that we are able to use the procedure itself
for proving things. N amely, if we are able to show that (i) if @, is an
approximation in some #-th sense, then automatically Pp+1 IS an
approximation in some (# + 1)-th sense, and if moreover (i) for
some % it can be proved that @ is an approximation in the A-th
sense. The process which led to (2.4.4) provides a simple example.
In section 2.4 we were so fortunate to have useful information right
from the start: 0 < x < log £, so that there was no need for guess-
work. But quite often there is no such easy first step. For example,
if we would again consider (2.4.1), but now with complex values
of ¢, the first step would already be more difficult. In order to be
specific, we assume that Im ¢ — 1, and that we want to have a so-
lution x with Re x — oo, Im % —» 0. Now x = O(log #) would be a
conjecture, and so would be its consequences (2.4.3) and (2.4.4). But
at the moment we have reached x — log ¢ — log log ¢ + o(1), we
can put ¥ — log ¢ + log log ¢ = v, and the discussion of (2.4.6) can
be applied. Only then we get to definite results.

This example of iterating conjectures so as to reach a stage,
sooner or later, where things can be proved, is too simple to be very
fortunate. For, it is not very difficult to prove x — O(log #) right at
the start, using the Rouché theorem. On the other hand, it is easy
to imagine slightly more complicated examples, where the applica-
tion of the Rouché theorem would be very troublesome indeed.

The method of iteration of conjectures also occurs in numerical
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analysis. There the object to be approximated is not an asymptotic
behaviour, but just a number. We shall consider things of that type
in sec. 2.6, and compare them to asymptotic problems in sec. 2.7.

2.6. Roots of equations

We want to approximate a special root £ of some equation
f(x) = 0. To this end Newton’s method usually gives very good
results. It consists of taking a rough first approximation x¢ and
constructing the sequence %1, %3, ¥3, ... by the formula 1)

(2.6.1) %n+1 = %n — f(n)/f (%n).

Its meaning is, that %441 is the root of the linear function whose
graph is the tangent at P, of the graph of f(x), where P, denotes
the point with coordinates (x5, f(%x)).

Usually the situation is as follows: There is an interval ], con-
taining & as an inner point, having the property that if xo belongs
to J, then %1, %9, ... all belong to J and the sequence converges to &.

A sufficient condition for the existence of [ is, for instance, that
f(x) has a continuous second derivative throughout some neigh-
bourhood of & and that f'(£) s~ 0. In that case the process converges
very rapidly, for then (2.6.1) guarantees that x,1 — & is at most of
the order of the square of x, — &.

Quite often very little is known about the function f(x), that is,
for every special x the value of f(x) can be found, but in larger P
intervals there is not much information about lower and upper
bounds of f(x), f'(x), etc. Usually such information can be obtained
in very small intervals. In order to find a root of the equation
f(x) = O, we then simply choose some number %9, more or less at
random, and we construct x1, %2, ... by Newton’s iteration process.
If this sequence shows the tendency to converge, nothing as yet has
been proved, as convergence cannot be deduced from a finite
number of observations. But it may happen that sooner or later we
arrive at a small interval J, where so much information can be ob-
tained about f(x), that it can be proved that the further x4’s remain
in J and converge to a point of J, that this limit is'a root of f(x) = O,

1) See C. JorpaAN, Calculus of Finite Differences, 2nd ed., New York 1947,
§ 150.
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and that there are no other roots inside J. What we then have
achieved is not the exact value of a root, but a small interval in
which there is one; moreover we have a procedure to find smaller
and smaller intervals to which it belongs. Therefore it is a perfectly
happy situation from the point of view of the numerical analyst.
There are also less favourable possibilities, several of which we
mention here:

(i) The sequence %o, ¥1, ... diverges to infinity.

(ii) It converges to a root, but not to the one we want to approxi-
mate.

(iii) It keeps oscillating.

(iv) It converges to the root we have in mind, but we are unable to
prove it. :

2.7. Asymptotic iteration

Now returning to asymptotic problems about implicit functions,
we notice that the Newton method works quite well in small-
parameter cases like those of sec. 2.3 or the one of (2.4.6). Needless
_ to say, the root is no longer a number, but a function of ¢, and we
are looking for asymptotic information about this function.
There are two different questions. The first one is whether the
Newton method gives a sequence of good approximations.

A far more difficult question is whether we can prove that these
~ approximations are approximations indeed. We shall not discuss
this second question, in fact we only discuss examples that have
been extensively studied before, so that the asymptotic behaviour
is precisely known.

First take the equation (2.3.1), viz. xe? = ¢~1, We consider gp = O
as the first rough approximation to the root. Applying the Newton
formula (2.6.1), with f(x) = xe® — ¢~1, we obtain

Pnt+l = @S&m -+ wlwwlﬁ.v AQS + CIH.
and so, putting 1 =g,

P11 =&,

pr=c—e(ec— l)es(l + &)t =¢— 2+ 3634 0@ (e —0).
Hence g differs from the true root x (see (2.3.2)) by an amount
O(e4). It is not-difficult to show, in virtue of (2.3.2), that gy differs
om % only by O(2%).
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We next discuss the equation (2.4.1), and we shall apply Newton’s
method at a stage where we have not yet reached the small-para-
meter case. Then we shall notice phenomena that did not arise in
sec. 2.6.

Observing that the positive root of xe# = ¢ is small compared to ¢,
we might think @g = 0 to be a reasonable starting point. We have

Pu+1 = (pa? -+ te~%n) (pg + 1)1,

whence
¢1=1,
g2=1¢t— 14 O@F1) (¢ = o0),
pzs=1¢— 2+ O@FY (t = o0),

3

and so on. It is clear that this leads us nowhere. None of the Qr's
have any asymptotic resemblance to the true root x, which is
log ¢ — log log ¢ + of1).

The same thing happens if we start with o = log ¢, which is
already a quite reasonable approximation, as % = log ¢ 4 o(log ?)
(¢ = o0) (see (2.4.3)). Then we again obtain on =logt — n + o(1).
It is not difficult to show that we always have g, = @o — # o(1),
as soon as we start with a function go which is such that poePoft
tends to infinity when £ -> oco.

Next assume that we try go = log ¢ — log log ¢ + ag for some
constant qp (admittedly, this example is not very natural, as no
one would try this before trying gp = log ¢ — log log #). Then we
easily calculate that

@n=logt —loglogt + ay + O((log#)-1), where an41 — ay, +e 1,

It can be shown (see Ch. 8) that a, tends to zero quite rapidly.
However, not a single g of this sequence gives an approximation
essentially better than log ¢ — log log ¢ + o).

In some sense log ¢ — log log £ is the limit of this sequence gy,
@1, P2, ... . If we now start the Newton method anew, with go* =
=log ¢—loglog ¢, we suddenly get much better approximations.
Actually it means that we consider the small-parameter case (2.4.6),
starting with zero as a first approximation to v.

We leave it at these casual remarks ; our main aim was to stress
the fact that in many asymptotic problems it is of vital importance
to start with a good conjecture or a good first approximation.

IMPLICIT FUNCTIONS 33
2.8. ExERrcisEs. 1. Show that the equation sin ¥ = (log #)-1 has just one
root x, in the interval 27n < x, < 2mn +idm(n=1,2 3, ...), and that
%n = 2nn + (log 2mm)-1 4 O((log 2rn)~3) (n — oo).
2. Let f(t) be positive, and assume that
D =) + 1+ O(1) (0<t< o).

Show that
1(5) = tlog ¢ + O(r-2)

(¢ — o).

3. Show that the positive solution of ¢z -+ log # = ¢ equals, for large
values of #:

x =logt 4+

log log ¢ P A log log ¢ 1

loglog:
¢ tlogt '’ v ’

tlogt’ £

where P(4, u, o) is a multiple power series in the variables 4, g, o, convergent
for all small values of |1}, lul, lo].

“g, -




