CHAPTER 3
SUMMATION

3.1. Introduction

We shall consider sums of the type 3 %_, ax(n), where both the
terms and the number of terms depend on #. We ask for asymptotic
information about the value of the sum for large values of #. In
many applications, ax(#) is independent of #, and actually several
of our examples will be of this type, but the methods by which those
examples are tackled, are by no means restricted to this case.

It is of course difficult to say anything in general. The asymptotic
problem can be difficult, especially in cases where the aj are not all
of one sign, and where Y7 az(#) can be much smaller than X7 |ax(#)].
On the other hand, there is a class of routine problems arising in
many parts of analysis, and to which a large part of this chapter is
devoted: the cases where all ay(n) are of one sign and where more-
over the ay(n) ‘‘behave smoothly”’. We shall not attempt to define
what smoothness of behaviour is, but we merely give a number of
examples. These fall under four headings a, b, ¢, 4, according to the
location of the terms which give the main contribution to the sum.
The major contribution can come from:

a. a comparatively small number of terms at the end, or at the
beginning.

b. a single term at the end or at the beginning.

c. a comparatively small number of terms somewhere in the
middle.

There is also a case 4, where there is not such a small group of
terms whose sum dominates the sum of all others.

3.2. Case a
Our first example concerns the behaviour of the sum s, =
= Y_, k3. A first approximation to s, is the sum S = X¥° 273 of
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the infinite series, and the error term is — 37° ; 273. For this last
sum we easily obtain the estimate O(n—2), e.g. by

oo oo k o
(3.2.1) kB <Y [t83dt = i34 = {n2,

n+1 n+1 k—1 n
and therefore

(3.2.2) Sp =S + O(n?) (n — o).
Results of this type are quite satisfactory for many analytical
purposes; it should be noted, however, that from the point of view of

-numerical analysis nothing has been achieved by (3.2.2), unless we

know the value of S from other sources of information.The numerical
analyst would prefer to evaluate X" 273 for some suitably chosen
value of m, and to estimate 37, . ; £78.

Formula (3.2.2) can be improved by refinement of the argument
used in (3.2.1), i.e. comparison of the sum with the integral. We
shall return to this technique in secs. 3.5 and 3.6.

Our next example is Y7 2% log 4. In this sum there is a relatively
small number of terms at the end whose total contribution is large
compared to the sum of all others. If we omit the last [log #] terms
([log #] denotes the largest integer < log #), the sum of the remain-
ing terms is less than

n—[log n] .
M N\n U_.OW. n m N§+H|~ON n HOW. o N§+H§|~OW 2 MOW. n,
1

and this is much smaller than the #-th term.

We notice that log 2 shows but little variation when % runs
through the indices of the [log #] significant terms. We therefore
expand log £ in terms of powers of (# — %)/n, and in doing this we
can easily admit the range 3» < 2 < #. We shall be satisfied with

log & =log(n — k) =logn — hn=1 + O(h2n=2) (n — oo)
which holds uniformly in % (0 < % < }n). We now evaluate
>, 2% log k = O(2%n log n),

1<k<in

> 2% log n = 2ntilog n + O(2in log ),
In<k<n oo ]

328 1 = 127 3 270 4 O(289),
n<k<n h=1 oo

> 28 Ofh2n—2) = O(2rn—2). X, 2-hp2.
n<k<n h=1

=,
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The main error term is O(27#~2); the terms involving 2% are
much smaller than this one. Our result is

2-% 3 2klogk = 2logn — n 1 X h-27% + O(n~2),
1 1

and it is not difficult to extend our argument in order to obtain
an asymptotic series in terms of powers of »~1:

n
2-n % 2klogk — 2logn ~cim™t 4 com2 ... (n — o0),
k=1

with ¢; = — {71 352, W27k,

3.3. Caseb

We are often confronted with sums of positive terms, where each
term has at least the order of magnitude of the sum of all previous
terms. Our example is sy = Y, k!. Dividing by the last term,
we find that

s 11 1 1

S =14+—1 + o

n! n n(n — 1) nin— 1) (n — 2) n!

If we stop after the 5th term, say, we neglect » — 5 terms, each
one of which is at most (z — 5)!/n!, and so the error is O(»~4). But
the 5th term itself is O(»~4), and therefore

1 1

ms H |
=t t ey taempm—g T O e

If we so wish, we can expand these terms into powers of #~1:

Sn 1 1 2
L S T i -4

3_ H+§+§m+§w+0§ ) (n — o0).
Replacing the number 5 by an arbitrary integer, we easily find that
there is an asymptotic expansion

(3.3.1) sp/n! ~co+ canl 4+ con2 4 ... (n — o0).

This series is not convergent, that is to say, the series cp - c1% +
+ cox2 4 ... does not converge unless x = 0.
This can be shown as follows. The series co + ¢1% - cax2 ..
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arises as the formal sum of the power series for the functions
%2 %3 x4
R 2 ) 2 b4
1 —2" (1 —2x) (1 —2x) (1 — %) (1 —2%) (1 — 3%)

and each one of these has non-negative coefficients. So if & is any
positive integer, the coefficients of ¢g + c1x + cax2 4+ ... exceed
those of the series for x¥*1/(1 — x) (1 — 2x)--- (1 — kx). The latter
series diverges at x = k71, and therefore cg -+ c1% + cox® + ...
diverges at ¥ = kL. Since % is arbitrary, we infer that the radius of
convergence of ¢p 4 1% + cox2 + ... is zero.

vy

1,

There is usually no reason to try to obtain an explicit formula
for the coefficients of a divergent asymptotic series. For practical
purposes only a few terms of the asymptotic series will be needed,
and for nearly all theoretical purposes the mere existence of an
asymptotic series is already a satisfactory result. So it is only for
the sake of curiosity that we mention that cg+1 = Rldy (B=0,1,
2, ...), where the dy are the coefficients in

exp(e® — 1) = X dgxk.
0

We leave the proof to the reader [Hint: first prove, e.g. by induc-
tion, that

8| NG L et} o
T O TR iy ruvey o powy = W

0
then notice that the coefficient of 29+1 on the left equals §! times the

coefficient of ¥/ in (e¥ — 1)E/R!].

34. Gasec
A typical example is
n
Sp= 3 axn), ax(n) = 22kn!/ki(n — k)12
k=1
We have ag(n)/ar(n) = {2(n — E)/(k + 1)}2. Hence the maximal
term occurs at the first value of £ for which 2( — k) < (& + 1),
that is, at about £ = 2n/3.
We notice that in this case, contrary to our previous examples,
the sum is large compared to the value of the maximal term. For, if



£

38 ASYMPTOTIC METHODS IN ANALYSIS

we move & in either direction, starting from the maximal term, then
ar(n) decreases rather slowly (» is considered to be fixed). It can
be shown by various methods, e.g. by the Stirling formula for the
factorials, that the number of terms which exceed 4 max ag(n), is of
the order of #*. If, however, |k — 2#r/3| is much greater than #?,
then ay is very small compared to the maximum, and also the total
contribution of these terms is relatively small. Therefore we have
to focus our attention on regions of the type |2 — 2n/3| < Ant.

By application of the Stirling formula, ax(n) can be succesfully
approximated in this region, and then sums are obtained resembling
the one discussed in sec. 3.9. We leave it at these brief remarks.

3.5. Case d

As a first example we take gz = £*. The ideal technique for dealing
with a case as smooth as this one is given by the Euler-Maclaurin
sum formula. Nevertheless we shall start with a more elementary
method, which can be applied in less regular cases as well.

There are two steps. First approximate ax by a sequence %y, which
is such that 37_; #g is explicitly known; the approximation has to
be strong enough for 377, (ax—ux) to converge. The second step
deals with Y7_; (ax — ). The first approximation to this sum is,
as in sec. 3.2, the infinite sum S = 72, (4x — #z), and we have

(3.5.1) MawlMsl_‘m.TMAsaIEhv

k=1 k=n+1
In the last sum we try to approximate u;z — ax by a sequence v,
such that Y7, ; vg is explicitly known, and such that the error term
Soovq (wg — ag — vg) is known to be small. This procedure can be
continued.

The weak point in the procedure is that in general there is hardly
any information about the value of S. The situation is not as
serious as in (3.2.2), for in (3.5.1) the major contribution is not S,
but the sum Y7 #g, whose value is known. :

In our example ay = k* we can obtain a first approximation to
the sum s, by taking the integral /" #df = 2n’~. If we now try to
take uy such that 35%p= %2, we still fail. For

(3.5.2) B — (3R — 3(k — 1)%)
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is not yet the k-th term of a convergent series. On expanding
(1 — k-1)*2 into powers of &1 by the binomial series, we find that
the expression (3.5.2) is }£~* + O(k~?), and 3 &~* diverges. But
we can again approximate the partial sums of 3, 4~ by an integral,
viz. 2unt. If we now take new ug’s, viz. .

wp = Up — Up-1,  Ur = 35 + 383,
we easily obtain that
(3.5.3) up — ap = k=12[48 + Ok (B — o0),

whence 3, (4 — ag) converges.
k=1
In the second step we have to approximate wux — ax by a

sequence vg. We take vy = V-1 — Vi, where

Vi=Fk%24, Yvg="Va

n+1
as suggested by the integral

T (12/48)dt = m¥/24.

We so obtain
Up — A — Vg = OQ«I&»Y

and, by (3.5. :
(3.5.4) M. =2 3t + S+t + O(m~2)  (n—o00).

k=1
The term O(%~*2) can be replaced by an asymptotic series, for the
process can be carried on and we can get as many terms as we please.
To this end it is, of course, necessary to refine (3.5.3). This is
easily done, for (ux — az)k*® can be expanded into powers of £71,
and the expansion converges if £ > 1.

We next ask for the value of S. We obviously have

(355) S = M (B P3P — )) =
= lim AM k — Uy},
n—> o0 k=1
but it is possible to derive a simpler expression.
The method depends on analyticity properties, and therefore it
is not generally applicable.
We first generalize (3.5.4) by introducing a complex parameter z.

B
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Instead of (3.5.4) we obtain, by the same method,
n nl—z
(8.5.6) k2= - + $n—2 4 S(z) + O(n—=-1) (n — o0),
k=1
if Rez> —1, z5£1. Here S(2) is the sum of a convergent series,
analogous to (3.5.5). Furthermore, it is not hard to show that this
sum is an analytic function of z in the region Rez > — 1, 2 5 1.
If Rez > 1, it represents the Riemann zeta function?) () =
= > #~2, as can be seen from (3.5.6) by making # — co. Therefore
S(z) = £(z) in the whole region.
Especially, the value of (3.5.5) is

S(— 1) =i~ §) = — ()4
The latter equality follows from the functional equation {(1 — s) =
= 21-87-8](s) cos 4zs {(s).

3.6. The Euler-Maclaurin sum formula

Our considerations of sec. 3.5 were meant to demonstrate a
method, rather than giving the shortest way to deal with 3% A%,
It seems that the shortest and most efficient way of dealing with
such cases depends on the Euler-Maclaurin sum formula. It is
incorporated in many textbooks of advanced analysis 2), and there-
fore we omit its proof.

The basic formula is

£(0) + + g(l) T
Gy =g@ u + {g'(1) —g"'( mmmth e
Bom Bom
+ {g@m-1(1) — g@m-1(0)} IIQM: ITEERV lllxmﬁ%v dx.

Here m represents any integer > 1, and g is a function having 2m

1) See E. T. WHITTAKER and G. N. Watson, Modern Analysis, 4th ed.,
Cambridge 1946, ch. 13.

2) Ibid., § 7.21. Our notation for gm Bernoulli numbers and polynomials
is slightly different, however.
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continuous derivatives in the interval 0 < x < 1. The B’s are the
Bernoulli numbers, defined by

zf(er — 1) = Wowzmg\i (l2] < 2n),
0

whence
By=1,Bi=—13%,By=1%Bs=DBs By .= 0,
wpﬂlwluo;maﬂ%@m = — Bio = &
Biz = — o0&, Buy =} Big=—331, ...

Finally, the B,(f) denote the Bernoulli polynomials, defined by
ze%t|(e? — 1) = 3, By(f)z®/nl.
O .

If we write down (3.6.1) for the functions g(x) = f(x + 1),
gx)=fx+2), ..., gx)=Ff(x+n—1), respectively, and if we add
the results, many terms cancel out, and we get the Euler-Maclaurin
sum formula. We write it in the form

1) + ...+ f0) nw@v& +C o+ 3 +

+|-: )+ m O

"

(3.6.2) |

By
(2m)!

\@3&5& “, fem(x) mmsMMs m [#]) Iz,

1

The H,Euomcs f is assumed to have 2m continuous derivatives if
x> 1. The symbol [«] has the usual meaning of the largest integer
< %. Bam(x — [#]) is the value of the 2m-th Bernoulli polynomial
at x — [«]. The number C is independent of #:

C = (1) — Baf'(1)[2! — ... — Bamf®m1(1)/(2m)!.
It is known that 1)
Bom(x — [#]) = 2(2m) (20m)—2m(— $§+H~MW§§ cos(2knx)
if m =1, 2, 3, ..., whence it follows that

|\Bom(® — [#])| < |Bam| = 2(2m)! @aﬁmsaw_is.

+

1) See W. WomOmHZmWH. Fourier Series, Chelsea, New York, ch. 2, § 4.
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This gives a satisfactory estimate for the remainder term in (3.6.1).
If f(x) is such that f§° |f2™(x)|dx converges, we immediately
have an asymptotic formula:

(3.63) 1)+ ...+ fn) =/ fx)dm + S + b +

1

+wmupngﬁwluz§v>m\wv_ —+ OA.\Q_V\ESARV_&RV (n - o0),

where m is a fixed wowwmﬁw integer, and

oy Dol = )
S=C— % from () o — D g,

3.7. Example

Let z be a complex number, and f(x) = x~#log . Then (3.6.3)
can be applied if 2m > 1 — Re z. It results that

M kzlogk = \Rlu log x dx + C(2) + $n*log n 4+ R(n; z),

k=1
where C(z) depends on z only, and R(n; z) has an asymptotic ex-
pansion

B B
R(n;2) ~ -m|_w (w2 log m)’ »Iw (w2zlogm)”’ + ... (n—o0).

The accents denote differentiation with respect to », evaluated as
if » were a continuous variable.
" Asin sec. 3.5, C(z) can be determined by an analyticity argument;
we obtain C(z) = — (1 — 2)~2 — ’(z). The special case z = 0 gives
the Stirling formula for log #!, as ) '(0) = — 4 log 2z. It should
be remarked, however, that there are many other methods for
determining the value of C(0) (see sec. 3.10).

3.8. A remark

Roughly speaking, the Euler-Maclaurin method does not work if
the largest term, f(n), say, is not small compared to the sum f(1) +

1) See E. T. WrITTAKER and G. N. Warson, Modern Analysis, 4th ed.,
Cambridge 1946, § 13.21.

SUMMATION 43

+ ... -+ f(»). In that case one cannot expect the order of ft2m) (n)
to be lower than the one of f(#), and so the Euler-Maclaurin formula
does not give anything better than f(1) 4 ... + f(n) = O(f(n)).
One can illustrate this by the example ¥} &! of sec. 3.3.

3.9. Another example
The Euler-Maclaurin method can also be applied to sums
>*_, ax(n) where the terms depend both on % and . There is,
however, no point in passing from (3.6.2) to (3.6.3) in that case, for
then S will depend on #. An unspecified constant may often be
tolerated in an asymptotic formula, but having an unspecified
function' of # just means having no formula at all. There are some
cases, however, where
n
J 1™ (%) Bam(x — [#])/(2m)\dx
1
raises no difficulties, e.g. when /{ |f2m)(x)|dx is relatively small.
As an example we take
Sp = 3 eH0m,
k=-—n
where « is a positive constant. The Euler-Maclaurin formula gives,
it f(x) = e~eorm,

89.1) sn =/ f0)dx + 3f(m) -+ 4= m) + Balf () — ' (—m}2! +
+ ... + Ban{fm(n) — fom-b(— m)}/(2m)! + Rn,

where
mmix — )

9. Ry = I.‘ (@m)(x d
(3.9.2) . f Aw§v X,
whence

B
(Bl < o % om ()
We have

)i = fa)dn + on = (wnfelt + en,
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where the error term g, is O(e~??) with some positive constant b.
Such errors are called exponentially small.

The other terms of (3.9.1), apart from R, are all exponentially
small because of the fact that every derivative of f(x) is of the type
P(x)f(x), where P(x) is a polynomial. So everything depends on
how well R, can be estimated.

On substituting ¥ = y(n/2«)} we obtain

(3.9.3) S |fem(x)|dx = (2u/m)mt [ |(d]dy)2me—|dy,
and it follows that [Ry| < Cpnt—™, where C,, is positive and in-
dependent of #. Hence we have, for every m,

(3.9.4) Su = (anjo)t & O(mt—m) (1 — o).

In the case of s, we accidentally have direct information from
another source, viz. a theta function transformation formula, which
gives a very good-estimate. It is therefore interesting to compare
this one to the result of the Euler-Maclaurin method.

For convenience we discuss the infinite sum instead of the finite -

one. (The difference between the two is exponentially small).

~ Writing down the analogue of (3.9.1) for XV, ¢~#*/#, and making

N — oo, we obtain

(3.9.5) Su= 3 eWe/n—

k=—oco

= (nfa)t — [ 1o (3) Bam(x — [5)/(2m) d,

where again f(x) = e-#*/n,

We denote tHe integral by R*; it follows from (3.9.5) than R*
does not depend on m. What we shall call here the Euler-Maclaurin
method consists of estimating

(Bonl [ o
g,‘,_\ﬁ Yx)|dx

(3.9.6) |R*| <
Ty

and choosing m such that the right-hand-side is minimal.
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The theta transformation formula gives 1)

< o0
3, e Hn — (o)t 3 eHne,

=—o00 fe=—o00

and therefore
(3.9.7) —R*= meﬂiﬂvwmnawia -+ OAswmlﬁms\av (n — o0).

We shall now investigate whether (3.9.6) can give anything as
strong as this. It gives immediately that, for every m, we have
R* = O(n#-m). For m fixed, this is very much weaker than (3.9.7),
but by deriving uniform estimates and by taking m to be a suitable
function of #, we can obtain a better result. There is of course no
hope of proving (3.9.7), but it is interesting to see that the Euler-
Maclaurin method can still show that R* = O(ne~7"%/%), restricting
the losses to the factor #t.

If we adopt the definition

Hyly) = (— 1)ket*(@/dy)*e v’
for the Hermite polynomials, the integrand on the right-hand-side

of (3.9.3) equals e~4%"| Hon(y)|.
Using the integral representation

[~-]

2m
Hom(y) = Awﬁvlwmw% A@Mﬂv ,‘. e—10RHivY Jy —

o

= (2m)~% \8@.& emg—3v*Hvy+Hydy = (2m)F [(y — ) 2me4u® dy,

we infer that

[ @)ldx < (2afaym—42m)t [ [e oty + u2ymdudy.
Introducing polar coordinates in the u-y-plane we easily find
that the repeated integral equals 27m+lmm .

The factor |Baml|/(2m)! occurring in (3.9.6) is equal to
2(27)~2m(2m) (see sec. 3.6), and therefore it is less than C(27)—2m,

1) See E. T. WHITTAKER and G. N. Warson, Modern Analysis, 4th ed.,,
Cambridge 1946, § 21.51.

A simple direct proof is obtained by taking f(x) = exp(— fx%), a =0
(B = «/n) in Poisson’s formula (3.12.1).
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where C is an absolute constant. It now follows from (3.9.6) that
|R*| < C(2r)—2m(20/n)m—4(2m)~32m+1gm |,

Using Stirling’s formula for m! we infer that there is an absolute
constant C; such that for all m and #»

(3.9.8) [R*| < Cylam/m2ne)™(nm/20)t.

Itis now the right moment to fix the value of #. The minimum
of (at/n2ne)t is easily seen to be attained at ¢ = #2n/«, and the value
is e=m*n/2, However, m has to be an integer, and so we shall take
m = mo = [n?njo]. In order to analyse the difference it makes,
we put

v(p) = p log(ap/n®e)

whose minimum is — #%/«, attained at p = pg = n2/a. We have

y'(po) = 0, and hence \

p(mo/n). = pipo + O(n1)} = — %o 4 O(n~2).
If we now choose § = my, (3.9.8) becomes

R* = O(ne—"n/%) (n — oo).

3.10. The Stirling formula for the I'-function in the complex
plane )

In the following, the Euler-Maclaurin formula will play about the
same roOle as it did in (3.9.5). We shall have a sum containing a
parameter z. For a fixed value of z we shall increase the number of
terms indefinitely, and only afterwards we allow |z| to tend to
infinity (in (3.9.5) that parameter was #).

Let z be a real or complex number, not lying on the negative
part of the real axis, and not equal to zero. We shall apply the
Euler-Maclaurin formula to the sum

3
.wg@NMHomQ.TwI:,

k=1
where the logarithms are given their principal values (imaginary
parts of the logarithms absolutely less than z). With an arbitrary
integer m > 1 we obtain
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msﬁv”wyomm;iwyowﬁmu_.“ﬁl:+\Hom?+als&a+
m 1

+ X {(z + n — 1)1-2k — z1-2k} (2k)~1(2k — 1)"1Bg; +
o +\s? + x — 1)72m(2m)"1Boy(x — [x])dx.
i

With z fixed we easily get an asymptotic formula with an error
term o(1):
(8.10.1) Sue) =(¢ — %) logn — (z — %) logz + nlogn +
+ 2z —n— p(z) + o(1) (n — o0),
where

(3.102) ple) = 3 A-2(2R)1 (2 — 1)-1Bgy —

k=1 '

— Tz + 2)~2(2m)Bom(x — [])dx.
0

As p(z) does not depend on #, it is obvious from (3.10.1) that it
does not depend on m either. This fact can also be shown from
(3.10.2), integrating by parts.

Taking the difference S,(z) — Syu(1), we obtain, applying (3.10.1)
twice,

(3.10.3)  Sp{e)—Sa(l)=(z—1)logn—(z—%logz+2—1 4

+ p(1) — plz) +o(1)  (n —o0).
This difference is connected with Euler’s product formula for I'(z):
(3.10.4) I'(z)=limwzinljz(z+ 1) (z+2)---(z+n—1).

n~»oo

Taking logarithms, we find:
(3.10.5) log I'(z) = lim{(z — 1)log 7 + Sx(l) — Sa(2)}.

Now (3.10.3) produces a useful identity:
(3.10.6) log I'lz) = (z — L)log z — 2z + p(z) + 1 — p(1).

It should be noted that log I'(z) does not necessarily represent
the principal value of the logarithm. As a matter of fact the right-
hand-side depends continuously on z, and is real if 2 > 0 (log =z
s given its principal value). Therefore, (3.10.6) represents the
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analytic continuation of log I'(z) throughout the region |arg 7| <,
starting from real values on the positive real axis.

It is easy to derive an asymptotic formula from (3.10.6), when
2| = co. Let 8 be a positive constant (§ < =), and let Ry denote
the part of the complex plane which is defined by |arg 2| <z — d.
Let m be a given integer > 1. Then Ban(x — [#]) is bounded,
whence

Pl + #)-2m(2m)-1Bom(x — [x])dz| < C[1z + #l-2mdx =
0 0

= Clz|=2m+1 [ |y + (2lz|7h)[2"dy,
0

C not depending on z. Now |y - (2[2|71)| represents the distance
from the point — ¥ to a point of the unit circle, belonging to the
region Rj. It is easy to see geometrically that this distance is at least
ly + eim=9)|. Since fg°ly + #"-d|-2mdy converges, we infer that
the integral in (3.10.2) is O(jz|1~2m). As m is arbitrary, we obtain
an asymptotic series for p(z), and (3.10.6) gives

(3.10.7) log I'lz) — (z — Plogz + 2~ 1 — p(l) +
+ 3 21-26(2k) 12k — 1)~1Bg; (largz| <@ — 6, |z] > o0).
k=1

It remains to be shown that the constant 1 — p(l) equals
Hog(2n). We know already that 1 — p(1) is real, so it suffices to
show that el-e() = (2n). We quote a number of possible methods.
(i) In sec. 3.7 it was done with the aid of the Riemann {-function,
but this is certainly not the most elementary way. (if) We can use
the functional equation I'(z)I(— z) = — m(z sin 2)~1, and make z
tend to infinity along the imaginary axis. (i) We can use the
functional equation 1)

() (z + 3) = m21-20'(22),

making z - 4 oco. (iv) We can evaluate p(1) by evaluation of the
integral f¢° (1 4 x)2Ba(x — [#])dx. (v) We can use the beginning
of sec. 4.5, with z — -+ oo.

1) See E. T. WHITTAKER and G. N. WaTtson, Modern Analysis, 4th ed.,
Cambridge 1946, § 12.15.
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3.11. Alternating sums —

An alternating sum is a sum of the type 3; (— 1)%/(k), where the
() are positive. We usually expect such sums to be small, that is to
say, much smaller than the sum of the absolute values of the terms.

We can of course write

2m+1 m m
2 (— D¥/(R) = X f(2k) — X f(2k + 1),
k=0 k=0 k=0

and investigate both sums on the right. Usually these sums will be
about equal, whence it is desirable to study them quite closely in
order to have sufficient information about their difference.
In most cases, however, the easiest thing to do, is to take pairs
of terms together:
2m+1

X (— DH) = X (/) ~ f2k + 1),

E=0
and these terms f(2%2) — f(2k + 1) will usually be small.
As an example we take the infinite sum

oo

@ILY S =3 (= VM), fx) = @ + ),
and we ask for the asymptotic behaviour of S(#) as £ — co. The
function f(x) is decreasing, and tends to zero as x — co. Therefore
the series converges, and we have, by a well-known theorem on
alternating series, 0<< 5(f) < f(0). Thus a rough first result is that
S(g) = O(1).

We next write
S(2) Hamcgmg — f(2% + 1)}

We shall, of course, compare the difference f(2k + 1) — f(2k) with
f'(2%), and after that, we shall compare the sum — 3}° f'(2k) with
the integral — /7 f'(#)dx (the factor } arises because 2k only runs
through the even numbers). We can carry out these two operations

at the same time, comparing
2%+2

fR) —f(2k+ 1) with —3} [ f(x)dw.
2k

Using the Taylor series, we can express both in terms of f(2%),
f'(2k),... . If we stop the Taylor developments at the terms in-

e,
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volving f”, i.e. if we apply the formula
a+h
pla + k) — (@) = hy'(a) +/ (& + b — 29" (x)dx,
then we obtain
2% +1

f(2k + 1) — f(2k) = f'(2F) + % (2 + 1 — x)f" (x)dx,

2k +2 2k +2

3/ Fwdx =f@2R) + 1) 2k + 2 — 2" (x)dx.
2k 2k

On subtraction we find
2% +1 2k +2

1 ! — 1 — — 2k — 1) (x)dx,
f2k) — {2k + 1) + 3/ flyde =3/ (1— % DF" (x)ax

and so
U +2 2%+2

@112 Ifeh) — f2k + 1) + ] F W < 3 1 e

In our case we have f(x) — O when x — oo, and therefore
%

S v wdx =1 @)ds = — 10).
k=0 2k 0
It follows that
(3.11.3) 15— ) < 31"

We have f'(x) = (242 — #2)/(x2 + £2)*2. We transform the integral,
substituting x = yi:

T1 @)z = 2 |1 — 23/(1 + 92)*dy,
0 0

and the latter integral is easily seen to be convergent. Therefore,
(3.11.3) gives
(3.11.4) S@) = 31+ 03 (¢ — oo).

The process which led to (3.11.2), can of course be continued: in
the next step we use the Taylor expansions up to the terms involving
f""(x). And in order to eliminate the term involving f"'(2k), we sub-

tract a suitable multiple of /3*? f'(x)dx, in the same way as we
eliminated — f/(2%) by subtracting — /& *? f'(¥)dx. This time we
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use the formula
a+h

¢la + h) = p(a) + ho'(a) + thPe"(a) + J e+ b — %" ()i

and we obtain

2k +2 2k +2
@1L8) /2R — f(2k + 1) + 3/ 1z — 1/ 1)) <
2% +2
< C/ |f"(x)|dx.
2k

As [¢° " (x)dx = — f'(0) = O, we now obtain, in the same way as
above,
(8.11.6) S@) = 41 4 O3 (t = o0).

There is no term with #-2, and in the next Steps of the proceduce
it will turn out that the coefficients of £-3, 4, ... vanish also. In

order to show this, it is easier to put the series in the following form:

SO) = #1 + 1 3 (— D).

k=—o0

Applying (3.11.5) to 3=, we ozmwu, as ¢ — oo,
S) — ¥l= — 3% F(#)dx — 1 /7% ' (%)dx + O([= 1" (%)dx).
Since f(x) -0, f'(x) -0, ’(x) =0, ... as ¥ - - oo, we have

SFwdx = [f'(x)dx = [{"(x)dx = ... = 0.
Furthermore it is easily seen, by substitution of ¥ = ¢, that

S lfm@iar =0 (> oo

for every fixed m > 0. Now it is sufficient to have only a general
idea about the continuation of the process which led to Am 11.4) and
(8.11.6) in order to see that

(B.117)  S@) A HLF 062404340444 ...  (f->o0).

It may be remarked that the general formula of which Aw.:.mv.
(3.11.5) are special cases, is related in a trivial way to the Boole sum
formula 1), which we shall not discuss here.

1) See C. JorRDAN, Calculus of Finite Differences, 2nd ed., New York 1947,
§ 112,



52 ASYMPTOTIC METHODS IN ANALYSIS

A second remark is that (3.11.7) can also be derived by the
Fuler-Maclaurin sum formula, applied separately to 3 f(2%) and to
> {2k + 1). |

With (3.11.7) we have the same situation as in sec. 3.9. We ex-
pect S(f) — §t71 to be exponentially small, and by a careful in-
spection of the above argument, including estimates holding uni-
formly in # and #, we might be able to show this, although the
formulas become quite awkward. But even then we would have only
an upper estimate for S() — 11, and no asymptotic formula, like
the one we shall derive in sec. 3.12.

3.12. Application of the Poisson sum formula

wwrm formula reads

(3.12.1) Sk + @) = 55 %33\8 e"2mif(y)ay,

k=—o0 — o

where a is a real number, f(x) is Riemann integrable over any finite

interval, and
N

3» denotes lim 2
N—>oo y=—N
The following set of conditions is easily seen to be sufficient 1):

(i) XI5 _o f(k + %) converges uniformly for 0 < x < 1.

(ii) The function ¢(x) = X2 f(k + x), which has period 1, satis-
fies the Fourier conditions (that is, ¢(v) is the sum of its
Fourier series), at least at x = a.

For, condition (i) enables us to carry out the following operation
with the Fourier coefficients of ¢(x). If » is any integer, then the

»-th Fourier coefficient of ¢ equals

1 1 oo o 1
[ermivp(y)dy = [ X etk +ydy= T [=
0 0 k=—o0 k=—00 0
oo k+1 ) oo
=2 / e2mivf(y)dy = [ e 2 f(y)dy.

1) See for other sets of sufficient conditions: E. C. TrrcumarsH, Fourier
Integrals, 2nd ed., Oxford 1948, ch. 2.
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The last step is legitimate, as (i) implies that
k4t

[ e t™if(y)dy -0
k

‘when & — 4= oo, uniformly in 0 < ¢ < 1.

The following set of conditions can be shown to imply (i) and (ii):
(i) ¥, f(k 4+ a) converges,
(iv) f(») exists (— oo < % < 00),
(V) X% f(%k -+ %) converges uniformly in 0 < » < L.
For, (iii)+(v) imply (i) (apply the mean value theorem to finite
sums 3 f(k 4 %), with M and N either both positive and large or
both negative and large), and (v) shows that ¢(x) is differentiable
everywhere, whence it satisfies the Fourier conditions.

Another set of sufficient conditions is (iil)4(vi)-4-(vii), where
(vi) f(x) has bounded variation 1) over — co < % < 09,
(vii) limy_ o {f(x + %) + f(x — h)} = 2f(x), at least for all x of the

form a + #, where # is any integer. .
We remark that from (iii)+(vi) one can deduce (i) 2), as well as the
fact that ¢(x) has bounded variation over 0 < x < 1; (vi) 4 (vii)
can be used to show that
limy, o {$(a + &) + $la — A)} = 24(a).

This formula, in combination with the fact that ¢(x) has bounded
variation, leads again to (ii).

As it is not our present aim to develop Fourier theory here, we

leave it at these brief remarks.
We shall apply the Poisson formula to the sum

(3.122)  Si) =3 fB),  f#x) = emin(x? + ),

k=—oc0
which is related to (3.11.1) by the formula
(3.12.3) S@) = 31 + 1S1(h).

The number & occurring in (3.12.1) will be given the special value
0 here, and, in applying (3.12.1) to (3.12.2), ¢ is considered to be a
fixed positive number.

1) See for definition of bounded variation: E. C. TrrcamarsH, Theory OW
Functions, 2nd ed., Oxford 1939, § 11.4.
?2) Ibid., § 13.232. :
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The condition (vi) is not satisfied, but the set (iii)--(iv)+(v)
is. Condition (iii) was already checked in the beginning of sec. 3.11,
and (iv) is trivial. In order to show (v), we write

\ARV = ..Ns.m.i&@nw -+ valw — &ms.&&ARm + wwvlu\m.

We take two positive integers N, M, where { < N < M, and a
real number x in 0 < x < 1. Then we consider

M
Z /e +h) =
e k=N
= o7 3, (— D¥{ai((x + B2 + )7 e+ B + B2 + )7,

The numbers {(x + k)2 + 2}~ form a decreasing sequence of
(M — N 4+ 1) positive numbers, and the same thing holds for
(x + B) {(x + F)2 4 t3}~°>. (The function y(y2 + £2)~"2 decreases
from y = 2-% onward). We now use the following well-known
fact: If any sequence aw, ..., ay satisfies ay > anyi1 > ... >
> ayr > 0, then we have *

T 1Sy (= Deay| < an.
It follows that
_M,_Waxnz Flo+ k)| < (N24 )%+ NN2 4 £2)=* < 2N-1,

As this holds uniformly in x (0 < x < #), we infer that, for ¢ fixed,
P f'(* + &) converges cEH.oH.EH% in 0 < # < 1. The same thing
can be said about 3%, and so we have proved (v).

We can now apply (3.12.1) to (3.12.2); the result is that

(3.12.4) S1t) = By oo [T e 2m™IWTIY(y2 - §2)Hdy,
and so we have to study, for b = + #, 4 3», + 5=, ..., the
integral

.\. mw.nﬁﬁw\m I_l valw&%.

On substitution of y = #z we observe that this integral is a function
of b, to be denoted by ¢: ‘

(3.12.5) o(bl) = | evtis(z2 4 1)~Hz,

and by substitution of 2 = — w we infer that ¢ is an even function.
The integral is a Bessel function of zero order, of second kind and of
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imaginary argument, and in the standard notation 1)
@(b8) = 2Ko(b?).

We shall, however, not explicitly use the theory of Bessel functions

here.

Using Cauchy’s theorem, the integral (3.12.5) can be transformed.
Assuming b > 0, we deform the integration path (— oo, oo) into a
new one, consisting of the following parts: (i) The line (— oo, — R),
where R is a large positive number; (ii) The circular arc z= Ret?
(m > ¢ > %n); (i) The segment z =is (R = s > 1 + d), where §
is a small wOmnEo number; (iv) The circle z = ¢ + 8¢#? (dn<d< 27);
(v) The segment z=1s (1 + 6 < s < R); (vi) The arc z = Re#
(3 = & = 0); (vil) The interval (R, oo). Along (iii), the function
(1 4 22)~* has to be interpreted as i(s2 — 1)~%, where (s2—1)! is
the positive root, and along (v) it has to be interpreted as —4(s2-1)~*
Now making R — oo, 6 — 0 we infer that

o(bt) = muwomlea?w — 1)ds = mmnsm.omnsii + 2u)tdu.
(The latter integral is obtained from the former by the substitution
s=u-+1). Wehave,ift > 1,0 > =
Nomlgg?«m + 2u)Hdu < o\s ey~ idy = 1,
and so |o(bt)] < 2¢7% (b > =, t > 1). By (3.12.4) we now have
1S1(6) — 29(nt)| < [29(3n) + 2p(57) + .. .| < 267371 — £727),

and therefore
(3.12.6) Sit) = 2¢(at) + O(e=3™) (¢ — o).
It remains to find the asymptotic behaviour of ¢(n#). To this end

we write, putting » = 22,

@(mt) = 2e7t .\ mligo:m + 2u)~tdy = 27t [ wl;au@m + 2)dx,
in order to be able to apply the method of sec. 4.1. The result is

1) See G. N. WaTsoN, Hﬁmodw of Bessel Functions, 2nd ed., Cambridge
1952, § 6.16.
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(cf. the derivation of (4.1.10))
p(t) ~ 267200 3 dpl(n + L)m—nt—n (t — o0),
n=0
where the coefficients d,, are those of

(2 4+ #2)F = 2 Y duatn (122 < 2).
n=0

For every M the term O(e~37%) in (3.12.6) is O(e—"%—*-M), and
therefore S;(f) has, apart form the factor 2, the same asymptotic
power series expansion as g(nf). So our final result is, as d, =
= (— 1)72-3%(2n) |(n!)—2:

S —31=3S51() ~

oo

A e S (— 1)an—i2d-Sng-u{(2n) }2{n1}-3 (¢ — o).
n=>0

3.13. Summation by parts

We often meet the question of the asymptotic behaviour, as
#n —> o0, of a mﬁBJ@HES. + ... -+ axb(n), where the behaviour of
a1+ ... + a, is known and where the function b(x) behaves
smoothly. Then we can usually apply the formula for summation

by parts:

(3.13.1)  a1bs + ... + azby, = A1(b1 — bg) +.Bmﬁvw|@mv+
+ ...+ kslwﬁglu - mgv + \ms\@?

where Ax = a1 +as + ... + ag, and by is an abbreviation for
b(k). It has some formal advantages to write the formula in terms
oﬁ integrals. We assume, for simplicity, that b(x) has a continuous
derivative, and we put A(x) = Ji<m<zam (.. A(x) =0if x < 1,
Ax)=a1+4+ ... +ax if k<x<k+1 (k=1,2,...)). Then
(8.13.1) becomes

(3.13.2)  a1d(1)+. . . +andln)=A(n)b(n)—/ A(2)b'(x)dx.

As an example we consider the sum 37_, sin(kf)log k2, where ¢
is a real constant. We put sin k¢ = ay, log x = b(x). For every n we
have

n n
> sin bt = Im 3} ¢fkt — Tm {(efn+Dé — it)[(gf — 1)},

k=1 k=1
Therefore, there is a number C > 0, not depending on #, such that
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|37 sin k¢ < C. (If et — 1 = 0, our argument fails, but the result
still holds, for then sin k¢ = O for all k). Putting 4 (¥)=X1<x<zSsin &,
we have, by (3.13.2), .

3 sin(kt) log k = A(n) log n — [ A(x)x1dx.
k=1 1
Since |A(x)| < C for all x, we now easily derive that
> sin(kt) log & = O(log n) (¢ fixed, #n — o0).
k=1

We shall discuss a second example, taken from the theory of
primes. We take a, = log n if # is a prime number, and a, =0
otherwise. Then A4 (x) is the function usually denoted by #(x), and

we can write
x) = Xlog p.

p=<z
It is a fundamental and far from trivial result of the theory of
primes that, for each m (m = 1,2,3, ...), we have 1)
(3.13.3) #x) = x + O(x(log x)™™) (¥ — o).

Now many other sums involving primes, as Yp<z p71, Xp<az %
Sp<z 1, can be dealt with. We consider Yp<s 1, i.e. the number of
primes not exceeding x. This number is usually denoted by z(x).
We have, by (3.13.2), taking b(x) = (log #)71,

a(n) = ash(2) + ... + anb(n) =
= (log n)~1¥(n) — [ H(x)d(log x)~1.
2

(We have replaced the lower limit 1 by 2, since (log x)~* is singular
at x = 1; it makes no difference, as #(1) = 0). We compare this
with
n n
J (log x)~tdx = [x(log x)~1]§ — [ xd(log x)~1.
2 2
On subtraction we obtain, using (3.13.3), . ,

a(n) — \sﬁom %)~ Ydx = (log n)~10(n(log n)—™) +
2
+MO®%0® x)™m) (log x)~2x~1dx  (n — oo).

1) See A. E. IngrAM, The Distribution of Primes, Cambridge 1932, w 12
and p. 63.

~a,
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The integral on the right can be written as
JO()dx 4 f Of(log ntym—2dx = O(n(log n)—m—2) (n — o0),
2 nd

and therefore
n

ni(n) — / (log #)~2dx = O(n(log n)~™1) (n — c0).

The integral on the left can easily be expanded in the form of an
asymptotic series (cf. (1.5.5)), and we infer that
n(n) ~nlogin + nlog=2n -+ 2!nlog=3n +
+ 3lnlogtn+ ... (n — o0).
Meanwhile we notice that (3.13.3) is an example of the situation
described in secs. 3.9 and 3.11. Again there is an asymptotic ex-
pansion with zero coefficients:
eo9(e?) — 1 ~ 021+ 0272+ 02734 ... (x — o0),
but in this case the question as to whether the left hand side is ex-
ponentially small, js still unsolved.

3.14. ExercisEs. 1. Show (e.g. by the method of summation by parts) that

oMoHstémn = — }logt -+ 3y + O#) O<t<1),
n=
where y = — [§° ¢~%log # dx is Euler’s constant.

2. Show that
Wo log(l — be—7t) w c_1~1 + 6o + 61f + o2t + ... (2>0,¢—0).
n=
Here b is a constant, 0 <b < I, and

op = (— )% (Bpsa/(B + 1)) 8H@§T~ (k=-—1012 ...).
n=

3. Show that
3 log(l — e=n) ~ — n2/(6) — }log £ + ¥ log(2m) + &t +
=t 4+ 0-22 4+ 08 4 ... (t >0, ¢t—0).

(Hint: Apply the Euler-Maclaurin formula to Mw\ f(n), where
Hx) = log{(1 — e==t)/x8}).
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4. Let s, be defined by
_ 1 1 n 1
" logn  logn 4+ 1) log(n + 2)

Sn
Show that
sn = {log #)~1 4+ O(n—1log—2 n) (% — o).
5. Derive from (3.13.3) that
o0 [~
Tpe? ~ — Lil(log#)~nlfe¥(logy)rdy (¢ >0, £—>0),
n=0 [t}

if the summation variable p runs through all prime numbers (cf. sec. 1.8,
exerc. 4).



