Inverse Problems for end damped strings

Steven Cox and Mark Embree

†Department of Computational and Applied Mathematics, Rice University, P.O. Box 1892, Houston, TX 77251, USA.

1. Introduction

The displacement u of a string of unit length and density ρ^2, free at the left end, and in the presence of viscous damping at the right end, satisfies

$$\rho^2(x)u_{tt}(x,t) - u_{xx}(x,t) = 0, \quad 0 < x < 1, \quad 0 < t,$$

$$u_x(0,t) = u_x(1,t) + u_t(1,t) = 0, \quad 0 < t,$$

upon being set in motion by the initial disturbance

$$u(x,0) = u_0(x), \quad u_t(x,0) = v_0(x),$$

assumed an element of the energy space $X = H^1(0,1) \times L^2(0,1)$ with inner product

$$\langle [u,v], [w,z] \rangle = \int_0^1 u'w' + uw + vz \ dx.$$

We assume throughout that ρ is measurable and that

$$0 < \alpha \leq \rho(x) \leq \beta < \infty \quad \text{a.e. in} \quad (0,1).$$

Let us observe, however, that the quantity

$$f(t) = u(1,t) + \int_0^1 \rho^2 u_t \ dx$$

remains constant along the trajectories. This is due to the lack of coercivity of the energy E in the space X. Given any initial data $[u_0, u_1]$ we may decompose it as $[u_0, u_1] = [\tilde{u}_0, u_1] + [f(0), 0]$ where $\tilde{u}_0 = u_0 - f(0)$. Then the solution $[u, u_t]$ of (1.1) can be written

$$[u, u_t] = [\tilde{u}, u_t] + [f(0), 0]$$

where $[\tilde{u}, u_t]$ is the solution of (1.1) with initial data $[\tilde{u}_0, u_1]$ for which the corresponding quantity f vanishes, i.e., $f(t) = 0$ for all $t \geq 0$.

With this decomposition in mind, the large time behavior of all solutions in X is completely determined by the corresponding behavior of solutions that take their initial data from

$$V = \{ [u,v] \in X : u(1) + \int_0^1 \rho^2 v \ dx = 0 \}.$$
Note that V is invariant under the flow given by (1.1) and is a closed subspace of X in which the norm induced by the energy,

$$
\| [u, v] \|_V^2 \equiv \int_0^1 |u'|^2 + \rho^2 |v|^2 \, dx
$$
is equivalent to the one induced by X.

As in our study of the internally damped string, [2], we strive to identify $\omega(\rho)$ with the spectral abscissa of the matrix differential operator obtained on expressing (1.1) as the first order system $U_t = AU$. Here $U = [u, u_t]$, and $A : D(A) \to V$, is given by

$$
A = \begin{pmatrix} 0 & I \\ \frac{1}{\rho^2} \frac{d^2}{dx^2} & 0 \end{pmatrix}, \quad D(A) = \{ [u, v] \in (H^2(0, 1) \times H^1(0, 1)) \cap V : u'(0) = u'(1) + v(1) = 0 \}.
$$

We shall see, assuming no more than (1.2), that A possesses a compact dissipative inverse on V. As a result $\sigma(A)$, the spectrum of A, is composed of at most a countable number of eigenvalues, each an element of the left half plane.

If $U = [y, z] \in D(A)$ is an eigenvector of A with eigenvalue λ then $z = \lambda y$ and $y'' = \lambda \rho^2 z$, or

$$
y'' = \lambda^2 \rho^2 y, \quad y'(0) = y'(1) + \lambda y(1) = 0.
$$

When ρ is constant it follows that $y(x) = \cosh(\lambda \rho x)$ where λ is determined by the right end condition, i.e., by $\lambda \rho \sinh(\lambda \rho) + \lambda \cosh(\lambda \rho) = 0$, or

$$
\lambda \rho \tanh(\lambda \rho) = -\lambda.
$$

That $\lambda = 0$ is not permitted follows from the fact that the associated eigenvector $U = [1, 0] \not\in V$. Hence, the eigenvalues are

$$
\lambda_n = -\frac{1}{\rho} \tanh^{-1} \frac{1}{\rho} = -\frac{1}{2\rho} \log \left| \frac{\rho + 1}{\rho - 1} \right| + i \frac{\pi}{\rho} \begin{cases}
\frac{n}{\rho} & \text{if } \rho > 1 \\
\frac{n + 1}{2} & \text{if } \rho < 1
\end{cases} \quad n \in \mathbb{Z},
$$

while the corresponding eigenvectors are

$$
U_n(x) = \cosh(\lambda_n \rho x)[1, \lambda_n].
$$

ex 2. The Existence of Eigenvalues

The eigenvalues of A are the poles of the resolvent $\lambda \mapsto (A - \lambda)^{-1}$. To solve $(A - \lambda)[v_1, v_2] = [f_1, f_2]$ in V is to set $v_2 = \lambda v_1 + f_1$ and solve

$$
v_1'' - \lambda^2 \rho^2 v_1 = \rho^2 (\lambda f_1 + f_2)
$$

$$
v'_1(0) = 0, \quad v'_1(1) + \lambda v_1(1) + f_1(1) = 0,
$$

(2.1)_{\text{nhibp}}
subject to

\[v_1(1) = -\lambda \int_0^1 \rho^2 v_1 \, dx - \int_0^1 \rho^2 f_1 \, dx. \tag{2.2}_{v\text{con}} \]

We note that \(\frac{1}{2} f_1(1)(1-x^2) \) satisfies the boundary conditions in (2.1) and so write \(v_1(x) = \frac{1}{2} f_1(1)(1-x^2) + w(x) \) where \(w \) must now solve

\[
\begin{align*}
 w'' - \lambda^2 \rho^2 w &= \rho^2 (\lambda f_1 + f_2 + \frac{1}{2} \lambda^2 f_1(1)(1-x^2)) + f_1(1), \\
 w'(0) &= w'(1) + \lambda w(1) = 0.
\end{align*} \tag{2.3}_{\text{red}}
\]

We first show that this problem has a one parameter family of solutions when \(\lambda = 0 \) and that (2.2) selects a particular one. When \(\lambda = 0 \) we find

\[
\begin{align*}
 w'' &= \rho^2 f_2 + f_1(1), \\
 w'(0) &= w'(1) = 0. \tag{2.4}_{\text{baby}}
\end{align*}
\]

The solvability condition, \(\int_0^1 \rho^2 f_2 \, dx + f_1(1) = 0 \), that stems from the Fredholm Alternative exactly coincides with one of the requirements for \([f_1, f_2] \in V \). As a result,

\[
w(x) = a + \int_0^x (x-s) (\rho^2(s) f_2(s) + f_1(1)) \, ds, \quad a \in \mathbb{R}. \]

We choose \(a \) to satisfy (2.2), i.e., \(w(1) = -\int_0^1 \rho^2 f_1 \, dx \), and so arrive at

\[
v_1(x) = \int_0^x (x-s) \rho^2 f_2 \, ds - \int_0^1 (1-s) \rho^2 f_2 \, ds - \int_0^1 \rho^2 f_1 \, ds.
\]

Noting that \(v_2 = f_1 \) when \(\lambda = 0 \), we summarize the above in

\[
A^{-1}[f_1, f_2] = \left[\int_0^x (x-s) \rho^2 f_2 \, ds - \int_0^1 (1-s) \rho^2 f_2 \, ds - \int_0^1 \rho^2 f_1 \, ds, f_1 \right].
\]

From the boundedness of \(\rho \) and the compactness of the imbedding of \(H^1(0,1) \) in to \(L^2(0,1) \) follows the compactness of \(A^{-1} \) on \(V \). As a result, the spectrum of \(A \) is composed of at most a countable number of eigenvalues, \(\{\lambda_k\}_k \).

We now return to (2.3), assume \(\lambda \neq 0 \), and characterize the \(\lambda_k \) as the zeros of a shooting function. In particular, we introduce \(\phi(x, \lambda) \) and \(\psi(x, \lambda) \), solutions of the respective initial and terminal value problems,

\[
\begin{align*}
 \phi'' - \lambda^2 \rho^2 \phi &= 0, \quad &\phi(0, \lambda) = 1, \quad \phi'(0, \lambda) = 0, \tag{2.5}_{\text{init}} \\
 \psi'' - \lambda^2 \rho^2 \psi &= 0, \quad &\psi(1, \lambda) = 1/\lambda, \quad \psi'(1, \lambda) = -1. \tag{2.6}_{\text{term}}
\end{align*}
\]

We note that \(\phi \) likewise satisfies the integral equation

\[
\phi(x, \lambda) = 1 + \lambda^2 \int_0^x (x-s) \rho^2(s) \phi(s, \lambda) \, ds, \tag{2.7}_{\text{pint}}
\]
and denote the corresponding shooting function by

\[Q(\lambda) \equiv \phi'(1, \lambda)/\lambda + \phi(1, \lambda). \] (2.8)shoot

Clearly \(\sigma(A) \) coincides with the set of zeros of \(Q \). In the introduction we found that if \(\rho \equiv 1 \) then \(Q \) never vanishes and \(\sigma(A) = \emptyset \). We now show that to be the only pathological case.

Theorem 2.1. If \(\rho \) satisfies (1.2) and \(\rho \) is not identically one then \(\sigma(A) \neq \emptyset \).

Proof: Dym and McKean [3, §6.3(6)] demonstrate that \(Q \) is of exponential type

\[\int_0^1 \rho \, dx = \limsup_{R \to \infty} R^{-1} \max_{\theta \in [0,2\pi]} \log |Q(Re^{i\theta})|. \]

It then follows from Hadamard’s Factorization Theorem that

\[Q(\lambda) = e^{a\lambda} \prod_n (1 - \lambda/\lambda_n)e^{\lambda/\lambda_n}, \] (2.9)hada

where \(\{\lambda_n\}_n \) is the zero set of \(Q \) and \(a \) is a complex constant. If this zero set is empty then the product defaults to one and \(Q(\lambda) = e^{a\lambda} \). As \(Q(\lambda) \) is real for real \(\lambda \) it follows that \(a \) is real and in fact \(a = \int_0^1 \rho \, dx \). We now deduce the restraints this places on \(\phi \). We follow Kac and Krein [7, §2] and develop \(\phi \), as the solution of (2.7), in powers of \(\lambda^2 \),

\[\phi(x, \lambda) = \sum_{n=0}^{\infty} \phi_n(x)\lambda^{2n}, \quad \phi_0(x) \equiv 1, \quad \phi_{j+1}(x) = \int_0^x (x-s)\rho^2 \phi_j \, ds. \] (2.10)ps

It follows that \(\lambda \mapsto \phi(1, \lambda) \) and \(\lambda \mapsto \phi'(1, \lambda)/\lambda \) are power series in \(\lambda^2 \) and \(\lambda \) respectively. As \(Q(\lambda) = e^{a\lambda} = \cosh(a\lambda) + \sinh(a\lambda) \) we find the explicit representations

\[\phi(1, \lambda) = \cosh(a\lambda) \quad \text{and} \quad \phi'(1, \lambda) = \lambda \sinh(a\lambda). \] (2.11)dsh

We recognize the former as the shooting function for the Neumann–Dirichlet problem

\[\eta'' = \nu^2 \rho^2 \eta, \quad \eta'(0) = \eta(1) = 0, \]

and the latter as the shooting function for the Neumann–Neumann problem

\[\zeta'' = \chi^2 \rho^2 \zeta, \quad \zeta'(0) = \zeta'(1) = 0. \]

In particular, from (2.11) it follows that

\[\nu_n = \frac{i\pi}{2a}(2n-1) \quad \text{and} \quad \chi_n = \frac{i\pi}{a}(n-1), \quad n = 1, 2, \ldots \]
On recalling the well known fact, see, e.g., [3, §6.6], that two such spectra uniquely determine a bounded \(\rho \) we immediately conclude that \(\rho \) is identically \(a \). Hence, it suffices to restrict ourselves to constant \(\rho \).

From the introduction we now recall that \(Q(\lambda) = e^{\rho \lambda} \) if and only if \(\rho = 1 \).

If \(\lambda_n \in \sigma(A) \) we note that as a consequence of the uniqueness of \(\phi(1, \lambda_n) \) that each eigenvector of \(A \) corresponding to \(\lambda_n \) must be a scalar multiple of \(U_n(x) \equiv \phi(x, \lambda_n)[1, \lambda_n] \). In other words, the geometric multiplicity of each eigenvalue is one. As a result, the algebraic multiplicity of an eigenvalue is its order as pole of \((A - \lambda)^{-1} \). We now associate this order with \(Q \).

If \(\lambda \not\in \sigma(A) \) then (2.3) has a unique solution that is consistent with (2.2). In particular,

\[
w(x) = G(\lambda)\{\rho^2(\lambda f_1 + f_2 + \frac{1}{2}\lambda^2 f_1(1-x^2)) + f_1(1)\},
\]

where \(G(\lambda) \) is the Green’s operator

\[
G(\lambda)\eta(x) = \int_0^1 g(x, \xi, \lambda)\eta(\xi) \, d\xi, \quad \text{where}
\]

\[
g(x, \xi, \lambda) = \begin{cases} \frac{\psi(x, \lambda)\phi(\xi, \lambda)}{Q(\lambda)} & \text{if } 0 \leq \xi \leq x \leq 1 \\ \frac{\psi(\xi, \lambda)\phi(x, \lambda)}{Q(\lambda)} & \text{if } 0 \leq x \leq \xi \leq 1. \end{cases}
\]

Hence the algebraic multiplicity of \(\lambda_n \in \sigma(A) \) is its order as a zero of \(Q \).

Some preliminary information is obtained upon taking the \(L^2(0,1) \) inner product of (2.5) at \(\lambda = \lambda_n \) with \(\phi_n(x) \equiv \phi(x, \lambda_n) \). One finds

\[
\lambda_n^2 \int_0^1 \rho^2|\phi_n|^2 \, dx + \lambda_n|\phi_n(1)|^2 + \int_0^1 |\phi_n'|^2 \, dx = 0,
\]

and therefore

\[
\lambda_n = \frac{-|\phi_n(1)|^2 \pm \sqrt{|\phi_n(1)|^4 - 4 \int_0^1 \rho^2|\phi_n|^2 \, dx \int_0^1 |\phi_n'|^2 \, dx}}{2 \int_0^1 \rho^2|\phi_n|^2 \, dx}.
\]

It follows that \(\Re \lambda_n \leq 0 \), in fact \(\Re \lambda_n < 0 \), for equality would force \(\phi_n(1) = \phi_n'(1) = 0 \) and hence \(\phi_n \equiv 0 \). Dym and McKean [3, §6.3] also show that

\[
\int_{-\infty}^{\infty} \frac{\log_+ |Q(-ix)|}{1 + x^2} \, dx < \infty,
\]

from which it follows, see, e.g., Levin [14, §V.4, Theorem 11], that there exist \(C_1 \) and \(C_2 \) for which

\[
|\Re \lambda_n| \leq C_1 + C_2|3\lambda_n|.
\]
Majda [16], in the context of (**), has bettered this with

\[|\Re \lambda_n| \leq C_1 + C_2 |\Im \lambda_n|^{3/4}. \]

We shall soon see in fact that \(|\Re \lambda_n| \leq C_1 \) when \(\rho \) is Lipschitz.

3. The Completeness of the Root Vectors

We follow Krein and Nudelman [11] in their application of the following result of Livšic. We assume throughout that \(\rho \) is not identically one.

Theorem 3.1. ([10, §2.5]) If \(H \) is Hilbert and \(T : H \to H \) is linear and compact and \(T_{\Re} \equiv \frac{1}{2} (T + T^*) \) is nonpositive and of finite trace then

\[\sum_{\nu_n \in \sigma(T)} |\Re \nu_n| \leq -\text{tr} (T_{\Re}), \quad (3.1)_{\text{liv}} \]

where the \(\nu_n \) are repeated according to their algebraic multiplicity. Equality holds in (3.1) if and only if the root vectors of \(T \) are complete in \(H \).

We note that \((T^*)_{\Re} = T_{\Re} \) and that if \(T \) is real then \(\sigma(T^*) = \sigma(T) \) including algebraic multiplicities. Hence, if \(T \) is real and equality holds in (3.1) then the root vectors of \(T^* \) are complete in \(H \) as well.

We show that \((A^{-1})_{\Re} \) is nonpositive and of rank one. In particular,

\[
(A^{-1})^*[f_1, f_2] = \left[\int_0^1 (1 - s) \rho^2 f_2 \, ds - \int_0^x (x - s) \rho^2 f_2 \, ds + \int_0^1 \rho^2 f_1 \, ds + 2 \int_0^1 \rho^2 \, ds \int_0^1 \rho^2 f_2 \, ds, -f_1 - 2 \int_0^1 \rho^2 f_2 \, ds \right],
\]

and so

\[
(A^{-1})_{\Re}[f_1, f_2] = \int_0^1 \rho^2 f_2 \, dx \left[\int_0^1 \rho^2 \, dx, -1 \right]
\]

is indeed rank-one while

\[
\langle (A^{-1})_{\Re}[f_1, f_2], [f_1, f_2] \rangle = -\left| \int_0^1 \rho^2 f_2 \, ds \right|^2
\]

and

\[
\text{tr} (A^{-1})_{\Re} = -\int_0^1 \rho^2 \, dx.
\]

From Theorem 3.1 we may now draw
Corollary 3.2. If ρ satisfies (1.2) then
$$ \sum_{\lambda_n \in \sigma(A)} \frac{\Re \lambda_n}{|\lambda_n|^2} \leq \int_0^1 \rho^2 \, dx. $$

We now produce conditions under which equality holds in Corollary 3.2. In the constant case we offer the following elementary argument.

Theorem 3.3. If ρ is a positive constant distinct from one then the $\lambda_n \in \sigma(A)$, see (1.4), are each of algebraic multiplicity one and their associated eigenvectors are complete in V.

Proof: We assume $\rho > 1$. The other case being similar. We sum the $|\Re \lambda_n|/|\lambda_n|^2$ without repetition,
$$ \sum_n \frac{|\Re \lambda_n|}{|\lambda_n|^2} = \frac{\rho}{\nu} + 2\nu \rho \sum_{n=1}^{\infty} \frac{1}{\nu^2 + n^2 \pi^2}, \quad \nu \equiv \frac{1}{2} \log \left(\frac{\rho + 1}{\rho - 1} \right). \quad (3.2)_{\text{sum}} $$

As $\nu^2 + n^2 \pi^2$ is the nth eigenvalue of $Lu \equiv -u'' + \nu^2 u$, $u \in H^1_0(0,1)$, it follows from the standard trace formula that
$$ \sum_{n=1}^{\infty} \frac{1}{\nu^2 + n^2 \pi^2} = \int_0^1 g(x,x) \, dx $$

where
$$ g(x,y) = \frac{\sinh \nu (x \vee y) \sinh \nu (1 - (x \wedge y))}{\nu \sinh \nu} $$
is the Green’s function for L. Hence,
$$ \sum_{n=1}^{\infty} \frac{1}{\nu^2 + n^2 \pi^2} = \frac{\nu \cosh \nu - \sinh \nu}{2\nu^2 \sinh \nu} = \frac{\rho}{2\nu} - \frac{1}{2\nu^2}. $$

inserting this sum in (3.2) we find that equality holds in Corollary 3.2. \qed

The fact that a (bi)normalized copy of $\{U_n\}_n$ for constant ρ is in fact a Riesz basis for V now follows easily. As in [2] our principal tool is the following result of Bari.

Theorem 3.4. [4, Theorem 2.1, Chapter VI] $\{f_n\}_n$ is a Riesz basis for the Hilbert space H if and only if $\{f_n\}_n$ is complete in H and there corresponds to it a complete biorthogonal sequence $\{g_n\}_n$, and for any $f \in H$ both $\{\langle f_n, f \rangle\}_n$ and $\{\langle g_n, f \rangle\}_n$ are square summable.

We shall also make use of the equivalent statement that $\{f_n\}_n$ is a Riesz basis for H iff $\{f_n\}_n$ is complete and there exist two constants c_0 and c_1 such
$$ c_0 \sum_{n=1}^{N} |a_n|^2 \leq \left\| \sum_{n=1}^{N} a_n f_n \right\|_H^2 \leq c_1 \sum_{n=1}^{N} |a_n|^2 \quad (3.3)_{b2} $$

for each N and each $\{a_n\}_n \in \mathbb{C}^N$.

7
The sequence biorthogonal to \(\{U_n\}_n \) is built from the eigenvectors of the adjoint of \(A \),
\[
A^* = -\begin{pmatrix} 0 & d^2 \rho x \frac{d^2}{dx^2} \\ \rho^2 x \frac{d^2}{dx^2} & 0 \end{pmatrix} \quad D(A^*) = \{ [u, v] \in (H^2(0, 1) \times H^1(0, 1)) \cap V : u'(0) = u'(1) - v(1) = 0 \}.
\]

We note that \(\sigma(A^*) = \sigma(A) \) and that if \(W_k \) is an eigenvector of \(A^* \) corresponding to \(\overline{\lambda}_k \) then, for constant \(\rho \), \(W_k(x) = \cosh(\overline{\lambda}_k \rho x)[-1, \overline{\lambda}_k] \) and \(\langle U_j, W_k \rangle = \lambda^2_k \rho^2 \delta_{jk} \). As a result
\[
\begin{align*}
\tilde{U}_k(x) &= \frac{1}{\lambda_k \rho} \cosh(\lambda_k \rho x)[1, \lambda_k], \\
\tilde{W}_k(x) &= \frac{1}{\lambda_k \rho} \cosh(\overline{\lambda}_k \rho x)[-1, \overline{\lambda}_k] \tag{3.4}_{\text{rncon}}
\end{align*}
\]
satisfy \(\langle \tilde{U}_j, \tilde{W}_k \rangle = \delta_{jk} \), i.e., they constitute a biorthogonal set in \(V \). That \(\{\tilde{W}_n\}_n \) is complete in \(V \) follows from the remark following Theorem 3.1. It remains to select \([f_1, f_2] \in V \) and check \(\{\langle \tilde{U}_n, [f_1, f_2] \rangle \} \in \ell^2(C) \). We suppose \(\rho > 1 \), the other case being similar, and recall the definition of \(\nu \) in (3.2). That
\[
\langle \tilde{U}_n, [f_1, f_2] \rangle = \int_0^1 \sinh(\lambda_n \rho x) \overline{f}_1 + \rho \cosh(\lambda_n \rho x) \overline{f}_2 \ dx
\]
\[
= \int_0^1 (\sinh(\nu) \overline{f}_1 + \rho \cosh(\nu) \overline{f}_2) \cos(n \pi x) \ dx + i \int_0^1 (\cosh(\nu) \overline{f}_1 + \rho \sinh(\nu) \overline{f}_2) \sin(n \pi x) \ dx
\]
is square summable now follows directly from \([f_1, f_2] \in V \). The verification that \(\{\langle \tilde{W}_n, [f_1, f_2] \rangle \}_n \in \ell^2(C) \) is just as simple. From Theorem 3.4. we may now deduce

Theorem 3.5. If \(\rho \) is a positive constant distinct from one then the eigenvectors \(\{\tilde{U}_n\}_n \), see (3.4), constitute a Riesz basis for \(V \). If we append to this sequence the vector \([1, 0] \), corresponding to the zero eigenvalue of \(A \) in \(X \), we obtain a Riesz basis for \(X \).

We now return to the variable coefficient case and address the extent to which the root vectors of \(A \) are complete in \(V \). In particular, we return to [11] and equate the power series representation of \(Q \) stemming from (2.10) with a refinement of (2.9). First, it follows directly from (2.8) and (2.10) that
\[
Q(\lambda) = 1 + \lambda \int_0^1 \rho^2 dx + O(\lambda^2). \tag{3.5}_{\text{rep1}}
\]
Next, from the summability of \(|\Re\lambda_n|/|\lambda_n|^2 \) comes the fact that one may remove the exponential factors in (2.9), i.e.,
\[
Q(\lambda) = e^{a\lambda} \prod_{\lambda_n > 0} \left(1 - \frac{\lambda}{\lambda_n} \right) \left(1 - \frac{\lambda}{\lambda_n} \right) \prod_{\lambda_n = 0} \left(1 - \frac{\lambda}{\lambda_n} \right) \tag{3.6}_{\text{rep2}}
\]
See [3, §6.2] for an independent proof. From the easily verified fact that if \(\rho(x) = 1 \) for \(x \in (\ell, 1) \) then \(\sigma(A) \) coincides with the spectrum associated with (1.1) for \(x \in (0, \ell) \) subject to \(u_x(0, t) = u_x(\ell, t) + u_t(\ell, t) = 0 \) Krein and Nudelman next deduce that \(a \) is in fact the largest number \(b \) for which \(\rho \) is identically one on the interval \((1 - b, 1) \). Identifying the coefficients of \(\lambda \) in (3.5) and (3.6) we find

\[
\int_0^1 \rho^2 \, dx = a - \sum_{\lambda_n \in \sigma(A)} \frac{\Re \lambda_n}{|\lambda_n|^2}.
\]

As a result, analogous to [11, Theorem 2], we have

Theorem 3.6. If \(\rho \) satisfies (1.2) then the root vectors of \(A \) are complete in \(V \) if and only if \(\rho \) is not identically one on any interval of the form \((\ell, 1) \).

The proof that these root vectors indeed make up a basis for \(V \) will require a considerably more detailed study of the \(\lambda_n \). In the next three sections we respectively analyze the real eigenvalues, establish a crude lower bound on \(\Re \lambda_n \), and develop asymptotic estimates for \(\lambda_n \).

high 4. High Frequencies

We now develop asymptotic formulas for \(\lambda_n \) and \(U_n \) as \(|\lambda_n| \to \infty \). Our development can be seen both as an elaboration of [6], where few details are provided and more function theory is invoked, and as a special case of [22], where, in her desire to permit \(\rho \) to either vanish or become infinite at the damped end, Shubov requires a twenty page immersion in special functions. At the heart of both approaches, as with our previous work [2], is a fake potential that has the advantage that its introduction into (2.6) permits one to find an explicit solution. One then argues that the fake potential has a negligible effect on the high frequencies. The fake potential in this case

\[
q(x) \equiv \rho^{1/2}(x) \left(\rho^{-1/2}(x) \right)' = \frac{3}{4} \left(\frac{\rho'(x)}{\rho(x)} \right)^2 - \frac{\rho''(x)}{2\rho(x)},
\]

lies in \(L^2(0, 1) \) so long as, in addition to (1.2), \(\rho \in H^2(0, 1) \). Its addition to (2.6) brings us to

\[
z'' - qz = \lambda^2 \rho^2 z, \quad z(1) = \lambda^{-1}, \quad z'(1) = -1,
\]

the solution to which is

\[
z(x, \lambda) = \frac{\rho_1 \cosh(\lambda \int_x^1 \rho \, ds) + \sinh(\lambda \int_x^1 \rho \, ds)}{\lambda \sqrt{\rho_1 \rho(x)}} - \frac{(\log \rho)'(1) \sinh(\lambda \int_x^1 \rho \, ds)}{2\lambda^2 \sqrt{\rho_1 \rho(x)}}
\]

\[
\equiv w_1(x, \lambda) + O(|\lambda|^{-2}).
\]
Recall that in (***) we defined \(\rho_1 \equiv \rho(1) \). As \(z'(0, \lambda) \) will serve as our fake shooting function, we require
\[
 z'(x, \lambda) = -\frac{\sqrt{\rho(x)}}{\sqrt{\rho_1}} \left\{ \rho_1 \sinh(\lambda \int_x^1 \rho ds) + \cosh(\lambda \int_x^1 \rho ds) \right\} - \\
\frac{\rho'(x)}{2\lambda \rho^{3/2}(x) \sqrt{\rho_1}} \left\{ \rho_1 \cosh(\lambda \int_x^1 \rho ds) + \sinh(\lambda \int_x^1 \rho ds) \right\} + \\
\frac{\sqrt{\rho(x)(\log \rho)'(1)}}{2\lambda \sqrt{\rho_1}} \cosh(\lambda \int_x^1 \rho ds) + \frac{\rho'(x)(\log \rho)'(1)}{4\lambda^2 \rho^{3/2}(x) \sqrt{\rho_1}} \sinh(\lambda \int_x^1 \rho ds)
\]
\[
\equiv w_2(x, \lambda) + O(|\lambda|^{-1}).
\]

We see on inspection that \(z(x, \cdot) \) and \(z'(x, \cdot) \) are asymptotically close to \(w_1(x, \cdot) \) and \(w_2(x, \cdot) \). We now show in fact that \(\psi(x, \lambda) \) and \(\psi'(x, \lambda) \) are asymptotically close to \(w_1(x, \cdot) \) and \(w_2(x, \cdot) \), where \(\psi(x, \lambda) \) is the actual solution to (2.6). By Theorem ???.1 it suffices to work in the band \(-\kappa \leq \Re \lambda \leq 0\).

Theorem 4.1. Assume that \(\rho \in H^2(0, 1) \), \(\rho_1 \neq 1 \), and \(\rho \) satisfies (1.2). Then there exist constants \(C_0 \) and \(C_1 \) such that
\[
|\psi(x, \lambda) - w_1(x, \lambda)| \leq C_0|\lambda|^{-2}, \quad (4.3)_{\text{pest}}
\]
\[
|\psi'(x, \lambda) - w_2(x, \lambda)| \leq C_1|\lambda|^{-1}, \quad (4.4)_{\text{pest}}
\]
uniformly for \(0 < x < 1 \) and
\[
-\kappa \leq \Re \lambda \leq 0 \quad |\lambda| \geq \max\{1, \frac{\|\rho\|_\infty}{2\alpha}\}. \quad (4.5)_{\text{labnd}}
\]

Proof: We note that \(\psi \) satisfies
\[
\psi'' - q\psi - \lambda^2 \rho^2 \psi = -q\psi, \quad \psi(1, \lambda) = 1/\lambda, \quad \psi'(1, \lambda) = -1,
\]
and therefore the integral equation
\[
\psi(x, \lambda) = z(x, \lambda) - \int_x^1 K(x, t, \lambda) q(t) \psi(t, \lambda) \, dt \quad (4.6)_{\text{intp}}
\]
with \(K(x, t, \lambda) = z(x, \lambda) \tilde{z}(t, \lambda) - z(t, \lambda) \tilde{z}(x, \lambda) \) where
\[
\tilde{z}(x, \lambda) = \frac{-1}{\sqrt{\rho_1 \rho(x)}} \sinh(\lambda \int_x^1 \rho ds),
\]
satisfies the same differential equation as \(z \) but with terminal data \(\tilde{z}(1, \lambda) = 0, \tilde{z}'(1, \lambda) = \lambda \).

We solve the integral equation (4.6) in series form
\[
\psi(x, \lambda) = \sum_{n=0}^\infty S_n(x, \lambda), \quad (4.7)_{\text{ser}}
\]
where $S_0 = z$ and

$$S_n(x, \lambda) = - \int_x^1 K(x, t, \lambda) q(t) S_{n-1}(t, \lambda) \, dt$$

$$= (-1)^n \int_1^{t_1 \geq \cdots \geq t_{n+1} = x} z(t_1, \lambda) \prod_{i=1}^n [K(t_{i+1}, t_i, \lambda) q(t_i)] \, dt_1 \cdots dt_n.$$

In order to establish the convergence of (4.7) we proceed to derive uniform estimates for the S_n. To begin, we recall $m = \int_0^1 \rho \, dx$ and observe that

$$|z(x, \lambda)| \leq \frac{(\beta + 1)e^{km}}{\alpha |\lambda|} + \frac{\|\rho'\|_\infty e^{km}}{2\alpha^2|\lambda|} \leq \frac{(\beta + 2)e^{km}}{\alpha |\lambda|}$$

when λ obeys (4.5). Likewise, as

$$|\tilde{z}(x, \lambda)| \leq \frac{e^{km}}{\alpha}$$

it follows that

$$|K(x, t, \lambda)| \leq \frac{2(\beta + 2)e^{2km}}{\alpha^2|\lambda|}$$

and hence

$$|S_n(x, \lambda)| \leq \frac{(\beta + 2)e^{km}}{\alpha |\lambda|} \left(\frac{2(\beta + 2)e^{2km}}{\alpha^2|\lambda|} \right)^n \frac{\|q\|_1^n}{n!}$$

$$\leq \frac{(\beta + 2)e^{km}}{\alpha |\lambda|^2} \frac{(2\alpha^{-2}(\beta + 2)\|q\|_2^2 e^{2km})^n}{n!}.$$

From the Weierstrass comparison test it now follows that (4.7) converges uniformly for $0 \leq x \leq 1$ and λ satisfying (4.5). Moreover,

$$|\psi(x, \lambda) - w_1(x, \lambda)| \leq |\psi(x, \lambda) - z(x, \lambda)| + |z(x, \lambda) - w_1(x, \lambda)|$$

$$\leq \sum_{n=1}^\infty |S_n(x, \lambda)| + \frac{e^{km}\|\rho'\|_\infty}{2\alpha|\lambda|^2}$$

$$\leq \frac{e^{km}}{\alpha |\lambda|^2} \left(\frac{1}{2}\|\rho'\|_\infty + (\beta + 2)e^{2\alpha^{-2}(\beta + 2)\|q\|_2 e^{2km}} \right)$$

$$\equiv C_0|\lambda|^{-2}$$

now establishes (4.3).

Regarding the estimate for ψ' we differentiate (4.6) and find

$$\psi'(x, \lambda) - z'(x, \lambda) = - \int_x^1 K_x(x, t, \lambda) q(t) \psi(t, \lambda) \, dt,$$

(4.8)pre
and so it remains to simply bound ψ and K_x. With respect to the former

$$|\psi(x, \lambda)| \leq |\psi(x, \lambda) - w_1(x, \lambda)| + |w_1(x, \lambda)| \leq \frac{C_0 + (1 + \beta)\alpha^{-1}e^{\kappa m}}{\lambda},$$

while the latter requires both

$$|z'(x, \lambda)| \leq e^{\kappa m} \left(1 + \frac{1}{\alpha} + \sqrt{\frac{\beta}{\alpha}}\right)(1 + \beta) \quad \text{and} \quad |\tilde{z}'(x, \lambda)| \leq \frac{|\lambda|e^{\kappa m}}{\alpha}(1 + \beta).$$

Assembling these bounds we find

$$|K_x(x, t, \lambda)| \leq |z'(x, \lambda)||\tilde{z}(t, \lambda)| + |z(t, \lambda)||\tilde{z}'(x, \lambda)|$$

$$\leq \frac{e^{2\kappa m}}{\alpha} \left(1 + \frac{1}{\alpha} + \sqrt{\frac{\beta}{\alpha}}\right)(1 + \beta) + \frac{e^{2\kappa m}}{\alpha^2}(2 + \beta)(1 + \beta)$$

$$\leq \frac{4e^{2\kappa m}}{\alpha^2}(1 + \beta)^2.$$

Now (4.8) yields (4.4),

$$|\psi'(x, \lambda) - w_2(x, \lambda)| \leq |\psi'(x, \lambda) - z'(x, \lambda)| + |z'(x, \lambda) - w_2(x, \lambda)|$$

$$\leq \int_0^1 |K_x(x, t, \lambda)||\psi(t, \lambda)||q(t)||dt + \frac{e^{\kappa m}\|\rho'\|_\infty}{2|\lambda|\alpha^2}(1 + \beta)^2$$

$$\leq \frac{4(1 + \beta)^3 e^{3\kappa m}}{\alpha^2|\lambda|}((C_0 + \alpha^{-1})\|q\|_2 + \|\rho'\|_\infty)$$

$$\equiv C_1|\lambda|^{-1}. \blacksquare$$

On close inspection of the estimate for S_n it follows that dq need only be a finite measure, i.e., it suffices to require that ρ' simply have finite total variation.

We now show that the zeros of $\psi'(0, \lambda)$ are close to the zeros of $w_2'(0, \lambda)$, these being

$$\mu_n = -\frac{1}{2m} \log \left|\frac{1 + \rho_1}{\rho_1 - 1}\right| + \frac{i\pi}{m} \left\{ \begin{array}{ll} n & \text{if } \rho_1 > 1 \\ n + \frac{1}{2} & \text{if } \rho_1 < 1 \end{array} \right. \quad n \in \mathbb{Z}. \quad (4.9)_{\text{mus}}$$

This is done by choosing r_n in

$$\Gamma_n = \{\lambda \in \mathbb{C} : |\lambda - \mu_n| = r_n\}$$

in such a way that the Γ_n do not intersect and

$$|\psi'(0, \lambda) - w_2(0, \lambda)| < |w_2(0, \lambda)|, \quad \lambda \in \Gamma_n.$$
By the previous Theorem it suffices to show that

\[|w_2(0, \lambda)| > \frac{C_1}{|\lambda|}, \quad \lambda \in \Gamma_n. \]

We proceed under the assumption that \(\rho_1 > 1 \), the other case following similarly. If \(\lambda \in \Gamma_n \) then \(\lambda = \mu_n + r_ne^{i\theta} \) where \(\theta \in [0, 2\pi) \) and

\[
\begin{align*}
\lambda w_2(0, \lambda) &= -\lambda \sqrt{\rho_0/\rho_1} \{ \rho_1 \sinh(m(\mu_n + r_ne^{i\theta})) + \cosh(m(\mu_n + r_ne^{i\theta})) \} \\
&= -\lambda \sqrt{\rho_0/\rho_1} (\rho_1^2 - 1) \sinh(m\mu_n) \sinh(mr_ne^{i\theta}) \\
&= (-1)^n \sqrt{\rho_0/\rho_1} (\rho_1^2 - 1) \sinh(m\mu_0)(\mu_n + r_ne^{i\theta}) \sinh(mr_ne^{i\theta})
\end{align*}
\]

Hence, if \(C' \equiv \sqrt{\rho_0/\rho_1}(1 - \rho_1^2) \sinh(m\mu_0) \) then

\[
|\lambda||w_2(0, \lambda)| > C'(|n|\pi/m - r_n)|\sinh(mr_ne^{i\theta})| \\
\geq C'(|n|\pi/m - r_n)(mr_n - \frac{1}{2}m^2r_n^2) \\
\geq C'r_n(|n|\pi - mr_n(1 + \frac{1}{2}|n|\pi)).
\]

One makes the obvious guess \(r_n = \frac{2C_1}{C'|n|\pi} \) and finds that

\[
|\lambda||w_2(0, \lambda)| \geq C'r_n(|n|\pi - mr_n(1 + \frac{1}{2}|n|\pi)) \\
= C_1 \left(2 - \frac{4C_1m}{C'|n|\pi} \left(\frac{1}{2} + \frac{1}{|n|\pi} \right) \right) \\
> C_1, \quad \text{when } |n| > N_1 = \left\lceil \frac{4C_1m}{C'|\pi} \right\rceil,
\]

where \(\lceil x \rceil \) denotes the least integer greater than \(x \). Furthermore, this choice of \(N \) renders \(r_n < 1/(2m) \). As the distance between centers of the \(\Gamma_n \) is \(\pi/m \) it follows that the contours are nonintersecting. To capture the remaining eigenvalues we consider

\[Z_n = \left\{ \lambda \in \mathbb{C} : |\lambda - \mu_0| = \frac{\pi}{m}(n + \frac{1}{2}) \right\}, \]

and denote by \(N_2 \) the smallest integer \(n > 0 \) for which \(Z_n \) encircles the disk of radius \(C_1/C' \) centered at the origin. For each \(n \) we note that if \(\lambda \in Z_n \) then \(|w_2(0, \lambda)| \geq C' \) while when \(n > N_2 \) we find \(|\lambda| > C_1/C' \) as well. As a result,

\[
|\lambda||w_2(0, \lambda)| > C_1, \quad \lambda \in Z_n, \quad n \geq N_2.
\]

With \(N \equiv \max\{N_1, N_2\} \), from the Theorem of Rouché follows
Theorem 4.2. If \(\rho \in H^2(0,1), \rho_1 \neq 1, \) and \(\rho \) satisfies (1.2) then \(A(\rho) \) has exactly \(2N + 1 \) eigenvalues, including multiplicity, in \(\mathbb{Z}_N \) and one simple eigenvalue in \(\Gamma_n \) for \(|n| > N \). This exhausts the spectrum of \(A \).

From the estimate \(\lambda_n = \mu_n + O(|n|^{-1}) \) one easily improves those of Theorem 4.1 at \(\lambda = \lambda_n \).

Corollary 4.3. If \(\rho \in H^2(0,1), \rho_1 \neq 1, \) and \(\rho \) satisfies (1.2) then, uniformly for \(0 < x < 1 \),

\[
\psi(x, \lambda_n) = w_1(x, \mu_n) + O(|n|^{-2}) \\
\psi'(x, \lambda_n) = w_2(x, \mu_n) + O(|n|^{-1}).
\]

Root 5. The Root Vectors Comprise a Riesz Basis

We denote the algebraic multiplicity of \(\lambda_n \) by \(\nu_n \) and to \(\lambda_n \) associate the Jordan Chain of root vectors, \(\{U_{n,j}\}_{j=0}^{\nu_n-1} \),

\[
U_{n,0}(x) = \psi(x, \lambda_n)[1, \lambda_n], \\
AU_{n,j} = \lambda_n U_{n,j} + U_{n,j-1}, \quad \langle U_{n,j}, U_{n,0} \rangle = 0, \quad j = 1, \ldots, \nu_n - 1.
\]

Clearly, \(U_{n,0} \) is an eigenvector and the chain is a basis for the root subspace

\[
\mathcal{L}_n \equiv \{ U : (A - \lambda_n)^{\nu_n} U = 0 \}.
\]

We construct a biorthogonal sequence to \(\{\tilde{U}_{n,j}\}_{n,j} \) from the eigenvectors of the adjoint, \(A^* \). We recall that \(\sigma(A) = \sigma(A^*) \), including multiplicities, and to \(\overline{\lambda}_n \) we associate the Jordan Chain of root vectors, \(\{W_{n,j}\}_{j=0}^{\nu_n-1} \), where

\[
W_{n,0}(x) = \psi(x, \overline{\lambda}_n)[1, -\overline{\lambda}_n], \\
A^* W_{n,j} = \overline{\lambda}_n W_{n,j} + W_{n,j-1}, \quad \langle W_{n,j}, V_{n,\nu_n-1} \rangle = 0, \quad j = 1, \ldots, \nu_n - 1.
\]

Observe that \(W_{n,0} \) is an eigenvector for \(A^* \) and that the subsequent \(W_{n,j} \) are uniquely determined so long as \(\langle W_{n,0}, V_{n,\nu_n-1} \rangle \neq 0 \). In addition, the chain \(\{W_{n,j}\}_{j=0}^{\nu_n-1} \) is a basis for the root subspace

\[
\mathcal{L}_n^* \equiv \{ W : (A^* - \overline{\lambda}_n)^{\nu_n} W = 0 \}.
\]

Lemma 5.1. If \(\rho \in H^2(0,1), \rho_1 \neq 1, \) and \(\rho \) satisfies (1.2) then there exists a \(c > 0 \) such that

\[
|\langle U_{n,p}, W_{j,k} \rangle| = |\langle U_{n,p}, W_{n,\nu_n-1-p} \rangle| \delta_{n,j} \delta_{\nu_n-1-p,k} \geq c \delta_{n,j} \delta_{\nu_n-1-p,k}.
\]

Proof: The biorthogonality is an algebraic result that follows essentially by construction. For details see [2, Lemma 6.2]. The fact that \(c > 0 \), i.e., that the two sequences may be
binormalized, is a consequence of the asymptotic formulas of Corollary 4.3. In particular, we recall from Theorem 4.2 that \(\mu_n = 1 \) for \(n > |N| \) and proceed for such \(n \) to establish

\[
\langle U_{n,0}, W_{n,0} \rangle = \langle \psi(x, \lambda_n)[1, \lambda_n], \psi(x, \lambda_n)[1, -\lambda_n] \rangle \\
= \int_0^1 (\psi'(x, \lambda_n))^2 - \lambda_n^2 \rho^2 \psi^2(x, \lambda_n) \, dx \\
= \int_0^1 w_2^2(x, \mu_n) - \mu_n^2 \rho^2 w_1^2(x, \mu_n) \, dx + O(|n|^{-1}) \\
= \int_0^1 \frac{\rho}{\rho_1} \left(\left\{ \rho_1 \sinh(\mu_n \int_x^1 \rho \, ds) + \cosh(\mu_n \int_x^1 \rho \, ds) \right\}^2 \\
- \left\{ \rho_1 \cosh(\mu_n \int_x^1 \rho \, ds) + \sinh(\mu_n \int_x^1 \rho \, ds) \right\}^2 \right) \, dx + O(|n|^{-1}) \\
= \frac{m}{\rho_1} (1 - \rho_1^2) + O(|n|^{-1})
\]

As \(\rho_1 \neq 1 \) it follows that \(|\langle U_{n,0}, W_{n,0} \rangle| \geq \frac{m}{2 \rho_1} (1 - \rho_1^2) \) for \(n \) of sufficient magnitude.

We may therefore binormalize,

\[
\tilde{U}_{n,0}(x) = \langle U_{n,0}, W_{n,0} \rangle^{-1/2} U_{n,0}(x) = U_{n,0}(x) + O(1/|n|), \quad \text{and} \\
\tilde{W}_{n,0}(x) = \langle U_{n,0}, W_{n,0} \rangle^{-1/2} W_{n,0}(x) = W_{n,0}(x) + O(1/|n|)
\]

for \(|n| > N \). Having demonstrated completeness, in order to invoke Bari’s Theorem it suffices to check that \(\{\langle \tilde{U}_{n,0}, [f, g] \rangle\}_n \in \ell^2(C) \) for each \([f, g] \in V\). Drawing once again on Corollary 4.3 we find

\[
\langle \tilde{U}_{n,0}, [f, g] \rangle = \int_0^1 \psi(x, \lambda_n) f' + \rho^2 \lambda_n \psi(x, \lambda_n) g \, dx + O(|n|^{-1}) \\
= \int_0^1 w_2(x, \mu_n) f' + \rho^2 \mu_n w_1(x, \mu_n) g \, dx + O(|n|^{-1}) \\
= \int_0^1 \frac{\sqrt{\rho}}{\sqrt{\rho_1}} \left(\sinh(\mu_n \int_x^1 \rho \, ds)(\rho g - \rho_1 f') \\
+ \cosh(\mu_n \int_x^1 \rho \, ds)(\rho_1 \rho g - f') \right) \, dx + O(|n|^{-1}).
\]

Its square summability is evidently determined by that of terms of the form

\[
\int_0^1 h(x) \sin(n \pi \xi(x)) \, dx, \quad \text{where} \quad \xi(x) = \frac{\int_x^1 \rho \, ds}{\int_0^1 \rho \, ds}
\]
for \(h \in L^2(0, 1) \). On performing the change of variables \(t = \xi(x) \) we find

\[
\int_0^1 h(x) \sin(n\pi \xi(x)) \, dx = \int_0^1 \frac{h(\xi^{-1}(t))}{\rho(\xi^{-1}(t))} \sin(n\pi t) \, dt,
\]

without doubt an element of \(\ell^2(C) \). Hence,

Theorem 5.2. If \(\rho \in H^2(0, 1), \rho_1 \neq 1, \) and \(\rho \) satisfies (1.2) then the root vectors of \(A(\rho) \) comprise a Riesz basis for \(V \) and \(\omega(\rho) = \mu(\rho) \).

6. **Finer Asymptotics**

We set

\[
m \equiv \int_0^1 \rho(y) \, dy \quad \text{and} \quad \tilde{\rho}(x) \equiv \rho(x) - m
\]

and refine our asymptotic result via the simple identity

\[
\lambda_n(\rho) - \lambda_n(m) = \int_0^1 \frac{d}{dt} \lambda_n(m + t\tilde{\rho}) \, dt
\]

\[
= \int_0^1 \frac{\langle A'(m + t\tilde{\rho})U_n(m + t\tilde{\rho}), W_n(m + t\tilde{\rho}) \rangle}{\langle U_n(m + t\tilde{\rho}), W_n(m + t\tilde{\rho}) \rangle} \, dt
\]

It remains to assemble the integrand. From

\[
A(m + t\tilde{\rho}) = \begin{pmatrix}
0 & 1 \\
\frac{1}{(m + t\tilde{\rho})^2} \frac{d^2}{dx^2} & I
\end{pmatrix}
\]

we glean

\[
A'(m + t\tilde{\rho}) = \begin{pmatrix}
0 & 0 \\
\frac{-2\tilde{\rho}}{(m + t\tilde{\rho})^2} \frac{d^2}{dx^2} & 0
\end{pmatrix}
\]

Next, recalling §5

\[
U_n(m + t\tilde{\rho}) = \psi(x, \lambda_n)[1, \lambda_n] \quad \text{and} \quad W_n(m + t\tilde{\rho}) = \psi(x, \overline{\lambda_n})[1, -\lambda_n]
\]

Hence

\[
A'(m + t\tilde{\rho})U_n(m + t\tilde{\rho}) = [0, \frac{-2\tilde{\rho}}{(m + t\tilde{\rho})^2}\psi''(x, \lambda_n)] = \left[0, \frac{-2\tilde{\rho}\lambda_n^2(m + t\tilde{\rho})}{m + t\tilde{\rho}}\psi(x, \lambda_n(m + t\tilde{\rho}))\right],
\]

and

7. **REFERENCES**

[22] Shubov, M.A., Asymptotics of resonances and geometry of resonance states in the problem of scattering of acoustic waves by a spherically symmetric inhomogeneity of the density, Differential and Integral Eqns., to appear.
