ON THE CONNECTIVITY OF MANIFOLD GRAPHS

ANDERS BJÖRNER AND KATHRIN VORWERK

ABSTRACT. This paper is concerned with lower bounds for the connectivity of graphs (one-dimensional skeleta) of triangulations of compact manifolds. We introduce a structural invariant b_Δ for simplicial d-manifolds Δ taking values in the range $0 \leq b_\Delta \leq d - 1$. The main result is that b_Δ influences connectivity in the following way: The graph of a d-dimensional simplicial compact manifold Δ is $(2d - b_\Delta)$-connected.

The parameter b_Δ has the property that $b_\Delta = 0$ if the complex Δ is flag. Hence, our result interpolates between Barnette’s theorem (1982) that all d-manifold graphs are $(d + 1)$-connected and Athanasiadis’ theorem (2011) that flag d-manifold graphs are $2d$-connected.

The definition of b_Δ involves the concept of banner triangulations of manifolds, a generalization of flag triangulations.

1. INTRODUCTION

Consider a pure d-dimensional polyhedral complex Δ. The graph $G(\Delta)$, or 1-skeleton, of Δ is the undirected simple graph that has the vertices of Δ as nodes and the one-dimensional faces of Δ as edges.

The study of graph-theoretic connectivity of skeleta of polyhedral complexes has its beginning with Steinitz’ Theorem from 1922, which states that a graph is the 1-skeleton of the boundary complex of some 3-dimensional convex polytope if and only if it is 3-connected and planar. Later, Balinski [2] generalized part of this to higher dimensions by showing that the graph of every $(d + 1)$-dimensional convex polytope is $(d + 1)$-connected. This was generalized further by Barnette [3] who showed that the graph of every d-dimensional polyhedral pseudomanifold is $(d + 1)$-connected.

In this paper we consider the simplicial case. A simplicial pseudomanifold is said to be flag if its faces coincide with the cliques of its 1-skeleton, and it is said to be normal if all links of faces are connected. It was shown by Athanasiadis [1] that the graph of a flag simplicial d-pseudomanifold is $2d$-connected.

We introduce an invariant b_Δ for pure d-dimensional simplicial complexes Δ taking values in the range $0 \leq b_\Delta \leq d - 1$. It is shown to affect connectivity in the following way.

Theorem 1.1. Let Δ be a d-dimensional normal simplicial pseudomanifold. Then the graph $G(\Delta)$ is $(2d - b_\Delta)$-connected.

Research supported by the Knut and Alice Wallenberg Foundation, grant KAW.2005.0098.
The definition of b_Δ involves the concept of banner triangulations, a generalization of flag triangulations. We have that $b_\Delta = 0$ if and only if the complex Δ is banner, and in particular if Δ is flag. Thus, for the case of normal simplicial pseudomanifolds our result interpolates between the theorems of Barnette and Athanasiadis.

2. Preliminaries

In this section we collect some definitions and review some auxiliary results needed later in the paper.

2.1. Simplicial complexes. We assume basic knowledge about simplicial complexes. Throughout the paper, Δ will denote a pure finite d-dimensional simplicial complex on vertex set V.

Let τ be a face of Δ. The link of τ in Δ, denoted $\text{link}_\Delta(\tau)$, is the subcomplex that contains a face $\sigma \in \Delta$ if $\sigma \cap \tau = \emptyset$ and $\sigma \cup \tau \in \Delta$.

Let $x \in V$ be a vertex of Δ. The closed star $\text{star}_\Delta(x)$ is the subcomplex of Δ which is the cone over $\text{link}_\Delta(x)$ with apex x. The antistar $\text{astar}_\Delta(x)$ is the subcomplex of Δ induced on the set of vertices $V \setminus \{x\}$. Note that $\text{star}_\Delta(x) \cap \text{astar}_\Delta(x) = \text{link}_\Delta(x)$.

A pure d-dimensional complex Δ is a pseudomanifold if

(i) every $(d-1)$-dimensional face is contained in exactly two facets (maximal faces),

(ii) Δ is strongly-connected, meaning that the facet graph (whose vertices are the facets and edges the pairs of adjacent facets) of Δ is connected.

We use the following property of pseudomanifolds at a crucial point in the paper.

Lemma 2.1 ([3, Lemma 2]). The antistar of any vertex in a pseudomanifold is strongly-connected.

A pure simplicial complex is a homology sphere if its homology is equal to that of a sphere of the same dimension. A complex Δ is a homology manifold if Δ is connected and $\text{link}_\Delta(\tau)$ is a homology sphere for every nonempty face $\tau \in \Delta$.

A pseudomanifold is called normal if all links $\text{link}_\Delta(\tau)$ of dimension at least one are connected. The condition of being normal is quite natural and holds e.g. for all homology manifolds. Most importantly, it is not hard to check that the class of normal pseudomanifolds is closed under taking links. This is not the case for pseudomanifolds in general.

Of the following four properties for a pure simplicial complex Δ, each implies its successor:

(i) Δ is a triangulation of a compact topological manifold,

(ii) Δ is a homology manifold,

(iii) Δ is a normal pseudomanifold,

(iv) Δ is a pseudomanifold.
2.2. **Graph theory.** We assume basic knowledge about graphs and refer to [4] for details.

A graph G is said to be k-connected if G has more than k vertices and $G \setminus S$ is connected for every set of vertices S with $|S| < k$, where $G \setminus S$ denotes the graph that one obtains by deleting the vertices in S and all incident edges.

The following well-known theorem relates the connectivity of a graph to families of independent paths. Here a family of paths between two vertices x and y is called independent if the only vertices contained in more than one path of the family are x and y.

Theorem 2.2 (Menger’s Theorem [4]). A graph G with at least $k + 1$ vertices is k-connected if and only if any two vertices can be joined by k independent paths.

It turns out that it suffices to check this condition for vertices at distance two in the graph. This fact plays a central role for proving the connectivity results in this paper.

Lemma 2.3 (Liu’s criterion, [5]). Let G be a connected graph with at least $k + 1$ vertices. If for any two vertices u and v of G with distance $d_G(u, v) = 2$ there are k independent $u-v$ paths in G, then G is k-connected.

Proof. Assume that G is not k-connected. Choose a set S with less than k vertices such that $G \setminus S$ is disconnected and such that every proper subset of S does not disconnect G. Then there are two vertices x, y in different components of $G \setminus S$ and a path from x to y in G that contains exactly one element s of S. Consider the vertices u and v immediately before and after s on this path. They are at distance two in G and cannot be connected by a path in $G \setminus S$, because x and y cannot. Thus, every $u-v$ path in G must pass through S, so there are at most $|S| \leq k - 1$ independent $u-v$ paths in G. □

3. **Banner complexes**

Here we present the concept of banner triangulations, a generalization of flag triangulations.

Definition 3.1.

(i) A clique is a subset $T \subseteq V$ such that $\{u, v\} \in \Delta$ for all $u, v \in T$. It is a j-clique if $|T| = j$.

(ii) A clique T is spanning if $T \in \Delta$.

(iii) The complex Δ is said to be a flag complex if every clique is spanning.

Flag complexes have been shown to have very strong properties in many situations. This is also the case for the connectivity of their edge graphs $\mathcal{G}(\Delta)$ as the following result shows.

Proposition 3.2 ([1]). Let Δ be a d-dimensional simplicial pseudomanifold. If Δ is flag, then the graph $\mathcal{G}(\Delta)$ is $2d$-connected.

The aim of this paper is to interpolate between the connectivity result of Barnette for general pseudomanifolds and the one of Athanasiadis for flag pseudomanifolds. For that purpose, we introduce the concept of banner complexes.
Definition 3.3.
(i) A clique T is critical if $T \setminus \{v\} \in \Delta$, for some $v \in T$.
(ii) A pure d-dimensional complex Δ is said to be a banner complex if
- every critical $(d+1)$-clique is spanning and
- Δ does not contain the boundary complex of a $(d+1)$-simplex as a subcomplex.

\begin{figure}[h]
\centering
\includegraphics[width=0.3\textwidth]{critical_clique.png}
\caption{A critical non-spanning 4-clique}
\end{figure}

In a flag complex we have that every clique is spanning. Let us call a pure d-dimensional complex Δ, not containing the boundary of a $(d+1)$-simplex as a subcomplex, strongly-banner if every $(d+1)$-clique is spanning. Then

\[\text{flag } \Rightarrow \text{strongly-banner } \Rightarrow \text{banner} \]

All one-dimensional complexes, except the boundary of the 2-simplex, are strongly-banner. For two-dimensional complexes the concepts of banner and flag coincide. This is so because every 3-clique is critical and a non-spanning 3-clique is the same thing as an empty triangle. Furthermore, if every 3-clique is spanning but there is a non-spanning 4-clique then the complex contains the boundary of a 3-simplex as subcomplex. The three concepts become distinct starting in dimension three, as shown by the following examples.

Example 3.4. For any graph $G = (V, E)$ we construct a pure 3-dimensional simplicial complex $\Gamma(G)$ as follows. Just expand each edge e of G to a tetrahedron $\sigma_e = \{v_1, v_2, e_1, e_2\}$, where v_1 and v_2 are the two endpoints of e, and e_1 and e_2 are new vertices specific to e. Then $\Gamma(G)$ is defined as the complex with facets σ_e, $e \in E$. Thus, $\Gamma(G)$ consists of tetrahedra, one for each edge $e \in E$, that pairwise meet in a vertex exactly when the corresponding edges do.

Let $G = K_n$, the complete graph on n vertices. One sees that $\Gamma(K_3)$ is strongly banner but not flag, while $\Gamma(K_4)$ is banner but not strongly banner.

Example 3.5. We now present a detailed construction of a shellable 3-ball Δ on 16 vertices that is strongly-banner but not flag. The vertices are $(i = 1, 2, 3)$:

x_i, a_i, b_i, c_i, d_i and $y,$

and the 26 facets are $(i = 1, 2, 3)$:
Figure 2 shows part of the structure of Δ, namely the subcomplex generated by the 12 facets

\[
\begin{align*}
&x_i, x_{i+1}, a_i, b_i & x_i, a_i, b_i, b_{i-1} & y, a_1, a_2, a_3 \\
x_i, x_{i+1}, b_i, c_i & x_i, a_i, a_{i-1}, b_{i-1} & y, b_1, b_2, b_3 \\
x_i, x_{i+1}, c_i, d_i & y, a_i, b_i, a_{i+1} \\
x_i, x_{i+1}, a_i, d_i & y, b_i, a_{i+1}, b_{i+1} \\
\end{align*}
\]

This subcomplex, a “ring of three bananas,” consists of 3 octahedra on vertices \(\{x_i, x_{i+1}, a_i, b_i, c_i, d_i\}, i \in \mathbb{Z}/3\mathbb{Z}, \) glued together at the common vertices \(x_1, x_2, x_3. \) The rest of Δ is used to “fill the hole” in this octahedral ring.

The complex Δ is shellable. Shellings are obtained by starting with the 8 facets in $\text{star}_\Delta(y)$, at the center of Δ, and then moving out to the facets of the three octahedra. Thus, being a shellable pseudomanifold with boundary, Δ is a 3-dimensional ball. Its f-vector is \((16, 54, 65, 26)\). Its boundary is a 2-sphere with f-vector \((1, 15, 39, 26)\).

The complex Δ has a unique empty triangle, namely $\{x_1, x_2, x_3\}$. Hence, it is not flag. However, it is strongly-banner. One can reason as follows to see that every 4-clique is spanning.

Suppose that F is a 4-clique in $\mathcal{G}(\Delta)$. Dividing the vertices into 3 groups

\[
X = \{x\} \quad A = \{a_i, b_i, c_i, d_i\} \quad Y = \{y\}
\]

we observe that none of the three sets contains a 4-clique and that either $F \cap X = \emptyset$ or $F \cap Y = \emptyset$, since there are no edges $\{x_i, y\}$. So there are two cases to consider:
We leave to the reader the few easy steps left to verify that in both cases F must be one of the 26 facets.

Example 3.6. From the 3-ball of the previous example it is possible to construct a shellable 3-sphere that is strongly-banner but not flag. We sketch the construction.

In general, if a triangulated d-ball Δ is extended by raising a cone with apex x over its boundary complex $\partial \Delta$, we obtain a triangulated d-sphere $\tilde{\Delta} = \Delta \cup (\partial \Delta \ast x)$, see Figure 3.

![Figure 3. The sphere $\tilde{\Delta}$](image)

The j-cliques in $\mathcal{G}(\tilde{\Delta})$ are of three kinds: (1) the j-cliques of $\mathcal{G}(\Delta)$, (2) the $(j-1)$-cliques of $\mathcal{G}(\partial \Delta)$ augmented by x, and (3) the $(j-1)$-cliques of $\mathcal{G}(\Delta)$ with no interior vertex and not of type (2), augmented by x. Thus, for property X being either “flag”, “banner”, or “strongly-banner”, one checks that if Δ lacks $(j-1)$-cliques of type (3) then

$$\tilde{\Delta} \text{ has property } X \iff \Delta \text{ and } \partial \Delta \text{ have property } X$$

If Δ has $(j-1)$-cliques of type (3) these can be gotten rid of by adding new 3-simplices via shelling steps onto the boundary of Δ, making all of the original boundary vertices interior.

Applying this construction to the 3-ball of the previous example we obtain strongly-banner shellable 3-spheres that are not flag.

Example 3.7. A triangulation of a 3-ball that is banner but not strongly-banner can be constructed along the same lines as our 3-ball in Example 3.5, starting this time from a 4-clique, embedding its 6 edges into octahedra to form a “tetrahedron of six bananas”, and then filling in the rest so that it is banner.

From this a triangulated 3-sphere with the same properties can be derived in the same way as in Example 3.6.

The three classes of complexes that we have considered have the property that the graph $\mathcal{G}(\Delta)$ determines the whole complex, or almost. Any complex is of course determined by its facets, and in a strongly-banner complex Δ the facets are determined by the $(d+1)$-cliques of $\mathcal{G}(\Delta)$.

The situation for banner complexes is slightly weaker. The following can be said: If Δ is banner, strongly-connected, and every codimension one face is contained in exactly k facets (e.g., if Δ is a banner pseudomanifold, the $k = 2$ case) then if we know one facet we can identify the rest of the facets among the $(d+1)$-cliques.

We end this section with an important fact.

Lemma 3.8. Let Δ be a pure d-dimensional simplicial complex. If Δ is banner and x is a vertex of Δ, then $\text{link}_\Delta(x)$ is banner. The same is true for being strongly-banner.

Proof. Because $\text{link}_\Delta(x)$ is $(d-1)$-dimensional, we need to show that every critical d-clique is spanning and that $\text{link}_\Delta(x)$ does not contain the boundary of the d-simplex.

Let T be a critical d-clique in $\text{link}_\Delta(x)$. Then $T \setminus v$ is a face of $\text{link}_\Delta(x)$ for some vertex $v \in T$. If we set $T' = T \cup \{x\}$, then T' is a clique and $T' \setminus v$ is a face of Δ. So, T' is a critical $(d+1)$-clique and thus spanning because Δ is banner. Equivalently, T is a face of $\text{link}_\Delta(x)$ and thus spanning.

Assume that $\text{link}_\Delta(x)$ contains the boundary of the d-simplex as a subcomplex. Then the set T of vertices of that simplex in $\text{link}_\Delta(x)$ is a critical $(d+1)$-clique in Δ. Because Δ is banner, T is spanning and the subcomplex of Δ on vertices $T \cup \{x\}$ is the boundary of a $(d+1)$-simplex. □

4. **Connectivity of banner pseudomanifolds**

The aim here is to prove Theorem 4.4. We begin with a few lemmas.

For $x \in V$ let $N(x)$ be the set of vertices of $\text{star}_\Delta(x)$, that is, x together with its neighboring vertices $z \in V$ such that $\{x, z\} \in \Delta$.

Lemma 4.1. Let Δ be a banner pseudomanifold. If $\{x, y\} \in \Delta$ then $N(y) \not\subseteq N(x)$.

Proof. Let F be any maximal face in $\text{link}_\Delta(x)$ that contains y. Then, since Δ is a pseudomanifold, $\text{link}_\Delta(F)$ consists of two isolated vertices, one of which is x. Let w be the other such vertex, so that $F \cup \{w\} \in \Delta$ and $w \not\in F$.

Assume that w is adjacent to x. For any vertex $v \in F$, the set $F \setminus v \cup \{x, w\}$ is a critical $(d+1)$-clique in Δ. Because Δ is assumed to be banner, $F \setminus v \cup \{x, w\}$ is a face of Δ. Since $v \in F$ is arbitrary, this implies that Δ is the boundary of the $(d+1)$-simplex on vertex set $F \cup \{x, w\}$, in contradiction to our assumption that it is banner. Therefore, w is not adjacent to x and $N(y) \not\subseteq N(x)$. □

Lemma 4.2. Let Δ be a pseudomanifold. If Δ is banner, then $\mathcal{G}(\Delta)$ is not a complete graph.

Proof. Follows from the preceding Lemma and is also easy to see directly from the definition. □

We remark that banner complexes that are not pseudomanifolds can have a complete graph. However, this happens only for complexes that are the d-skeleton of a k-simplex with $k \geq d + 2$.
Let Δ be a banner pseudomanifold and let Γ denote the subcomplex of Δ induced on the set $V \setminus N(x)$. We need for our proof that Γ is nonempty and connected. It is clear from Lemma 4.1 that $N(x) \neq V$. That Γ is connected seems very natural but is not to be taken automatically for granted. For instance, for the complex shown in Figure 3 (which is not banner) the subcomplex Γ consists of two isolated vertices u and w.

We offer two proofs. The first one is entirely elementary, relying on Barnette’s Lemma 2.1. The second uses Lefschetz duality, and is therefore valid only for homology manifolds.

Lemma 4.3. Let x be a vertex of a banner pseudomanifold Δ. Then the subcomplex Γ induced on the set of vertices not adjacent to x is connected.

First proof. Let u and w be vertices not adjacent to x, and let σ and τ be facets of $\text{astar}_\Delta(x)$ such that $u \in \sigma$ and $w \in \tau$. From Lemma 2.1 we know that $\text{astar}_\Delta(x)$ is strongly-connected, so we may choose a path $\sigma = \sigma_0 \to \sigma_1 \to \cdots \to \sigma_k = \tau$ in the facet graph of $\text{astar}_\Delta(x)$.

This given, we want to choose vertices u_1, \ldots, u_k such that for all i:

1. $u_i \in \sigma_{i-1} \cap \sigma_i$,
2. $u_i \notin \text{star}(x)$

If this is possible we are done, because then $u = u_0 \to u_1 \to \cdots \to u_k \to w$ is a path in $\text{astar}(x) \setminus \text{star}(x)$, that is, in Γ.

Suppose such a choice of u_i is not possible. Then

$$\sigma_{i-1} \cap \sigma_i \subseteq \text{star}(x)$$

for some i. The ridge $\mu := \sigma_{i-1} \cap \sigma_i$ has the following properties:

1. $\mu \cup \{x\}$ is a $(d+1)$-clique,
2. $\mu \cup \{x\}$ is critical, since $\mu \in \Delta$,
3. $\mu \cup \{x\}$ is not spanning, since μ is contained in 2 facets σ_{i-1} and σ_i already in $\text{astar}(x)$.

This contradicts the assumption that Δ is banner. \qed

Second proof. Here we assume that Δ is a homology manifold. All homology groups are taken over \mathbb{Z}_2. We have that $H_d(\Delta) \cong \mathbb{Z}_2$, as is true for all pseudomanifolds [6, Exercise 43.5d].

Let Σ be the subcomplex of Δ induced on the set $N(x)$ and let Γ be the complex induced on the complementary set of vertices, as before. Consider the long exact sequence for relative homology

$$H_d(\Sigma) \to H_d(\Delta) \to H_d(\Delta; \Sigma) \to H_{d-1}(\Sigma)$$

We have that $\text{star}_\Delta(x) \subseteq \Sigma$, and our assumption that Δ is banner implies that $\text{star}_\Delta(x)$ and Σ have the same faces of dimensions d and $d - 1$. Because $\text{star}_\Delta(x)$ is contractible, it follows that $H_d(\Sigma) = H_{d-1}(\Sigma) = 0$, and thus that $H_d(\Delta; \Sigma) \cong \mathbb{Z}_2$.
By Lefschetz duality \([6, \text{Theorem 70.2}]\), we get that
\[
\mathcal{H}^0(\|\Delta\| \setminus \|\Sigma\|) \cong H_d(\Delta; \Sigma) \cong \mathbb{Z}_2,
\]
which means that the space \(\|\Delta\| \setminus \|\Sigma\|\) is connected. Finally, \(\Gamma\) is a deformation retract of \(\|\Delta\| \setminus \|\Sigma\|\) \([6, \text{Lemma 70.1}]\), and is therefore also connected. This is equivalent to \(\mathcal{G}(\Gamma)\) being connected. □

We have now assembled the pieces of information needed to prove the theorem.

Theorem 4.4. Let \(\Delta\) be a normal \(d\)-dimensional pseudomanifold. If \(\Delta\) is banner, then its graph \(\mathcal{G}(\Delta)\) is \(2d\)-connected.

Proof. We use induction on \(d\) and Liu’s Lemma \(2.3\). For \(d = 1\), \(\Delta\) is a cycle graph and thus \(2\)-connected.

Assume that \(d > 1\), and let \(y\) and \(z\) be a pair of vertices at distance two. From Lemma \(4.2\) we know that \(\mathcal{G}(\Delta)\) is not a complete graph, so such pairs exist.

Let \(x\) be a vertex of \(\Delta\) such that \(y\) and \(z\) are contained in link\(_\Delta(x)\). Because \(\Delta\) is normal, link\(_\Delta(x)\) is a \((d-1)\)-dimensional normal pseudomanifold. Using Lemma \(3.3\) we see that link\(_\Delta(x)\) is banner. So, by induction, the graph of link\(_\Delta(x)\) is \(2(d-1)\)-connected. This means that link\(_\Delta(x)\) contains more than \(2(d-1)\) vertices, and we can find \(2(d-1)\) independent paths from \(y\) to \(z\) in link\(_\Delta(x)\).

By Lemma \(4.1\) we may choose vertices \(u \in N(y) \setminus N(x)\) and \(w \in N(z) \setminus N(x)\). Thus, \(u, w \in \Gamma\). We obtain a path from \(y\) to \(z\) by first going to \(u\). Then, by Lemma \(4.3\) we can continue along a path from \(u\) to \(w\) with all vertices in \(\Gamma\). Finally we go from \(w\) to \(z\). Note that this path has no interior vertices in link\(_\Delta(x)\).

Thus, together with the path \(y \rightarrow x \rightarrow z\) we have found \(2d\) paths from \(y\) to \(z\) which by construction are independent. Also, \(y\) and \(z\) are not adjacent, so the path outside star\(_\Delta(x)\) has at least one inner vertex. This vertex and \(x\) are both outside link\(_\Delta(x)\), so \(\Delta\) has more than \(2d\) vertices. □

5. Complexes with banner links

By definition, a one-dimensional pseudomanifold is banner if and only if it is not the cycle graph \(C_3\), the boundary of a triangle. However, every one-dimensional pseudomanifold – also the boundary of a triangle – is \(2\)-connected. This observation motivates including \(C_3\) in the following definition.

Definition 5.1. Given a pure simplicial complex \(\Delta\), let
\[
b_\Delta = \min\{j : \text{link}_\Delta(x)\text{ is banner or } C_3 \text{ for all } \sigma \in \Delta \text{ such that } |\sigma| = j\}.
\]

We say that \(b_\Delta\) is the *banner number* of \(\Delta\). Directly from the definition we get the following properties,

(i) \(0 \leq b_\Delta \leq d - 1\),
(ii) \(b_\Delta = 0 \iff \Delta\) is banner.

Lemma 5.2. Let \(\Delta\) be a pure simplicial complex of dimension \(d\) and let \(\sigma \in \Delta\) be a face. If \(b_\Delta \geq |\sigma|\), then \(b_{\text{link}_\Delta(\sigma)} \leq b_\Delta - |\sigma|\).
Proof. Let $\tau \in \text{link}_\Delta(\sigma)$ be any face with $|\tau| \geq b_\Delta - |\sigma| \geq 0$. Then
$$\text{link}_{\text{link}_\Delta(\sigma)}(\tau) = \text{link}_\Delta(\sigma \cup \tau)$$
is banner, because $|\sigma \cup \tau| = |\sigma| + |\tau| \geq b_\Delta$. \hfill \square

We can now prove Theorem 1.1 stated in the introduction.

Proof of Theorem 1.1. We use induction on b_Δ. If $b_\Delta = 0$, then Δ is banner and the statement follows from Theorem 4.4.

Assume that $b_\Delta > 0$ and let $x \in \Delta$ be any vertex. Let $\Gamma = \text{link}_\Delta(x)$. By induction, $\mathcal{G}(\Gamma)$ is $(2(d - 1) - b_\Gamma)$-connected. Using Lemma 5.2 we see that $2(d - 1) - b_\Gamma \geq 2d - b_\Delta - 1$. Thus, $\mathcal{G}(\Gamma)$ is $(2d - b_\Delta - 1)$-connected and has at least $2d - b_\Delta$ vertices. Together with x, then $\mathcal{G}(\Delta)$ has at least $2d - b_\Delta + 1$ vertices.

If $\mathcal{G}(\Delta)$ is complete, then we are done. If not, let $z, y \in \Delta$ be two vertices at distance 2 in $\mathcal{G}(\Delta)$. Then we find a vertex $x \in \Delta$ such that $y, z \in \text{link}_\Delta(x)$ and again, let $\Gamma = \text{link}_\Delta(x)$. By induction and Lemma 5.2, there are $2d - b_\Delta - 1$ independent paths from y to z in $\mathcal{G}(\Gamma)$. Together with the path $y - x - z$, this gives us $2d - b_\Delta$ independent paths from y to z in $\mathcal{G}(\Delta)$. By Liu’s Lemma 2.3 this proves the result. \hfill \square

Acknowledgments. We want to thank C. Athanasiadis for bringing Barnette’s Lemma 2.1 to our attention, A. Goodarzi for suggesting Example 3.4, and S. Klee and I. Novik for spotting an error in an earlier version.

References

Royal Institute of Technology, Department of Mathematics, S-100 44 Stockholm, Sweden

E-mail address: bjorner@math.kth.se

Royal Institute of Technology, Department of Mathematics, S-100 44 Stockholm, Sweden

E-mail address: vorwerk@math.kth.se