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Abstract

On the approximation of the Dirichlet to Neumann

map for high contrast two phase composites

by

Yingpei Wang

Many problems in the natural world have high contrast properties, like transport in

composites, fluid in porous media and so on. These problems have huge numerical

difficulties because of the singularities of their solutions. It may be really expensive

to solve these problems directly by traditional numerical methods. It is necessary

and important to understand these problems more in mathematical aspect first, and

then using the mathematical results to simplify the original problems or develop more

efficient numerical methods.

In this thesis we are going to approximate the Dirichlet to Neumann map for the

high contrast two phase composites. The mathematical formulation of our problem is

to approximate the energy for an elliptic equation with arbitrary boundary conditions.

The boundary conditions may have highly oscillations, which makes our problems very

interesting and difficult.

We developed a method to divide the domain into two different subdomains, one

is close to and the other one is far from the boundary, and we can approximate the

energy in these two subdomains separately. In the subdomain far from the boundary,
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the energy is not influenced that much by the boundary conditions. Methods for

approximation of the energy in this subdomain are studied before. In the subdomain

near the boundary, the energy depends on the boundary conditions a lot. We used

a new method to approximate the energy there such that it works for any kind of

boundary conditions. By this way, we can have the approximation for the total energy

of high contrast problems with any boundary conditions.

In other words, we can have a matrix up to any dimension to approximate the

continuous Dirichlet to Neumann map of the high contrast composites. Then we will

use this matrix as a preconditioner in domain decomposition methods, such that our

numerical methods are very efficient to solve the problems in high contrast composites.
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Chapter 1

Introduction and background

This thesis focuses on the elliptic problems with high contrast and rapidly varying

coefficients. The solutions of these problems may vary very fast or have singularities

inside the domain. These problems are much more difficult to solve than general

problems with smooth coefficients, in both theoretical and numerical aspects. We will

discuss some interesting properties of and develop some efficient numerical methods

for this kinds of problems.

1.1 Problems in high contrast media

We are considering the following isotropic elliptic problem in the domain D ∈ IR2

∇ · [σ(x)∇u(x)] = 0, in D (1.1)

with Dirichlet boundary condition

u(x) = ψ(x), on ∂D, (1.2)

1
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or with Neumann boundary condition

σ(x)
∂u(x)

∂n
= I(x), on ∂D,∫

∂D

Ids = 0,
(1.3)

where σ(x) is the conductivity, u(x) is the potential, n is the unit out normal to the

boundary.

The coefficient σ(x) has high contrast values, which means the solutions of the

problem (1.1) may vary fast in some places. In order to present our ideas in this thesis,

we will only focus on the two phase composites media, which has high conductive

inclusions embedded into some smooth background matrix. We suppose that σ only

takes two different values, 1 in the background matrix and ∞ in the inclusions.

In general, we need to solve the problem (1.1) with boundary condition (1.2)

or (1.3). Because of the high contrast of coefficients, it is very difficult to directly

solve this problem numerically. We are more interested in the approximation of the

Dirichlet to Neumann (DtN) map first. The DtN map is defined as following

Λ : H1/2(∂D)→ H−1/2(∂D)

Λψ = σ
∂u

∂n

(1.4)

where u is the solution of (1.1) with boundary condition (1.2).

Then we will use the approximation of DtN map as a preconditioner for the

numerical methods, such that we can solve this kind of problems numerically in some

more efficient way.
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1.2 Overview of previous work

In the work by Borcea [6], Borcea and Papanicolaou [8], Borcea, Berryman and Pa-

panicolaou [7], they first gave a rigorous proof for the approximation of the Dirichlet

to Neumann (DtN) and Neumann to Dirichlet (NtD) maps for a high contrast media.

The idea is to find special trial functions for the variational problems and their dual

problems of the elliptic equations. In this way, they can have upper and lower bounds

for the energies for any smooth boundary condition. Considering the connections be-

tween the energies and the DtN or NtD maps, they can have approximations for these

maps.

In their work, they develop a way to construct these trial functions for the Kozlov’s

model [21] in continuum high contrast media. In some way, they build connections

between the high contrast media with a related discrete resistor network, and use

the properties of this network to approximate the properties of the high contrast

media. For example they use the discrete DtN or NtD maps of the resistor network

to approximate the DtN and NtD maps of the continuous problems in high contrast

media. However, these constructions highly depends on the geometrical features of

the media, which may not be generalized very easily.

In their approximation, they divide the boundary of the domain into pieces and

use a constant in each piece to approximate the potentials on this piece. It works well

for boundary condition without highly oscillation, because the boundary condition

now are like piecewise constants. The error generated by the approximation of the

boundary condition will not influence the whole results. However, when the oscillation

of the boundary condition getting higher, the error from the piecewise constants

approximation of boundary condition will show up. We will take care of it in this

thesis.



4

There are some other models for high contrast media, which will have more geo-

metrical properties. We can also use the similar idea as the work of Borcea et. al.,

which is using discrete resistor networks to simulate the high contrast media. Since

we have more assumptions on geometrical properties of the media, it becomes easier

to generalize the approximation methods. In the following works, they are mostly

interested in the transport properties of high contrast media. However we will be

very easy to know the transport properties if we know the DtN or NtD maps, which

means it will be more difficult to approximate the DtN or NtD maps.

Keller [20] first gave an approximation of the effective conductivity in medium

containing a dense array of perfectly conducting spheres or cylinders. In this kind of

model, there are more geometrical features than Kozlov’s model [21] for continuum

high contrast media. Since the media is periodic in some way, it is very enough to

study a special local problem and use it to approximate the overall properties. More

precisely, it is enough to study the local properties of a square cross section with one

sphere or cylinder as Keller did in his paper [20].

This is actually the idea of homogenization theory, which connects the properties

of heterogeneous media in different scales. However, the homogenization theory works

well for studying properties for finite contrast media, it doesn’t work so well when

the contrast of the media goes to infinity.

This leads to the work of Berlyand and Kolpakov [4], Berlyand and Novikov [5],

Berlyand, Gorb and Novikov [3] and many related work. In their work, they made

the assumptions on the geometrical properties of the media that the distance between

neighbor inclusions and the size of the inclusions are in different scales. In this case,

they can localize the fluxes in some special places of the media. It is enough to

analyze one problem locally to approximate the properties of the whole problem. In

these work, they also use the variational principles and discrete resistor networks
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approximation like the methods introduced by Borcea et. al. However, it is more

flexible and easy to implement because their geometrical assumptions. Novikov [22]

also use the similar method to study the properties of the high contrast media for

nonlinear problems.

1.3 Contribution and outline

It is very important to understand the Dirichlet to Neumann (DtN) or Neumann to

Dirichlet (NtD) map for high contrast problems. As we mentioned before, it will be

very easy to know the transport properties of the media after knowing the maps.

In inverse problems, Calderon [1] suggested to use DtN or NtD maps to recover the

coefficients σ. In other words, we almost have the whole information of the media by

knowing the DtN or NtD maps.

The DtN or NtD maps are also useful in developing efficient numerical methods.

For example, in the nonoverlapping domain decomposition methods, they are used to

be preconditioners for the equations on the interface.

In this thesis, we focus on approximation of the DtN map for the high contrast

two phase composites. In other words, we are going to approximate the energy for

this problem with any boundary conditions, including boundary conditions without

or with oscillations. We will show that there will be three important parts in the

approximation for the energy. The first part comes from the network effect, which is

studied in previous work, for example Borcea et. al. [7]. The second part comes from

the tangential flux effect, this effect will always be there with or without inclusions.

However it is relatively small for boundary condition without that much oscillation,

and it is ignored in previous work. The third part is the resonance effect, which exists

also because of the inclusions and the oscillation of the boundary conditions. We will
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see that it will be small when the boundary condition almost has no oscillation or

has only very high oscillation.

Here is the outline of this thesis. In chapter 2, we will give the mathematical

formulation for our problem and present the mainly results. We will discuss some

interesting properties of the discrete resistor network. In chapter 3, we will split the

problem into two parts, which are problems in the area close to and far from the

boundary. Also we will use the existing results for approximation of energy inside

the domain. In chapter 4, we will carefully analyze the problems in the area close

to the boundary such that our method will take care of any oscillation boundary

conditions. In chapter 5, we will summarize what we did in this thesis and make

proposal about how to apply our approximation for the DtN map to develop efficient

numerical methods.



Chapter 2

Mathematical formulation and

results

In this chapter, we will first give the mathematical formulation of the problem in infi-

nite high contrast composites. Then we will review some results on discrete network

approximation. Later we will discuss two basic problems and the resistor networks

related to our problems. At last, we will present our results in section 2.5.

2.1 Formulation of the problem

2.1.1 The infinite high contrast problem

Infinite high contrast composites are media embedded with perfect conducting inclu-

sions. For problems in infinite high contrast media, the equation (1.1) with boundary

7
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condition (1.2) will have the following form

∆u = 0, in Ω

u = Ui, on ∂Di, i ∈ S∫
∂Di

∂u

∂n
= 0, for all i ∈ S

u = ψ, on ∂D

(2.1)

where D is the disk with radius L = O(1) in IR2 and ψ ∈ H1/2(∂D) is the Dirichlet

boundary condition. Di are identical disk inclusions inside the domain which stand

for the perfect conducting inclusions, and Ω = D \ ∪i∈SDi is the domain where the

material is not so well conducting. n is the outside normal to the boundary ∂Di.

S is an index set for all the inclusions in the domain D, with |S| = N . The

inclusions are densely spaced but not touching each other, and they do not touch the

boundary ∂D either. Let SB be the index set for the inclusions which are very close to

the boundary, with |SB| = NB. SI = S \ SB is the index set for inclusions inside the

domain, with |SI | = NI . Without loss of generality, we first number those inclusions,

which are close to the boundary ∂D, counterclockwise. Thus the inclusions neighbor

∂D are D1, D2, · · · , DNB
. See figure 2.1 for example.

The solution of the problem (2.1) is the couple (u,U), where u is the potential

in Ω. And U = (U1,U2, · · · ,UN) are the potentials on the inclusions, we don’t know

them before solving the problem (2.1). Sometimes we will say u is the solution of the

problem (2.1) without mention U .

From the appendix A.1, we see that the problem (2.1) is the Euler-Lagrange

equation for the following minimization problem of the energy

E(ψ) = min
φ∈V

1

2

∫
Ω

|∇φ|2, (2.2)
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Figure 2.1: The domain with densely packed inclusions.

with the trial space

V = {φ ∈ H1(Ω) : φ|∂D = ψ and φ|∂Di
= constant ,∀i ∈ S} (2.3)

E(ψ) is the energy in the domain Ω of the problem (2.1) with boundary condition ψ.

Also the minimizer of (2.2) satisfies the problem (2.1), which means

E(ψ) =
1

2

∫
Ω

|∇u|2, (2.4)

when (u,U) is the solution of the problem (2.1).
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2.1.2 The Dirichlet to Neumann map

Our main purpose of this thesis is to approximate the DtN map of the problem (2.1),

which is defined by

Λ : H
1
2 (∂D)→ H−

1
2 (∂D)

Λψ = σ
∂u

∂n

(2.5)

where u is the solution of the problem (2.1), and n is the outside normal to the

boundary ∂D.

If ψ ∈ H 1
2 (∂D) is the potential at the boundary, then Λψ = σ ∂u

∂n
∈ H− 1

2 (∂D) is

the current flux at the boundary. We can define the following duality pairing

〈ψ , Λψ〉 :=

∫
∂D

ψ(Λψ)ds. (2.6)

From the definition we can see that the DtN map Λ is self-adjoint and positive semidef-

inite, also see [24].

When (u,U) is the solution for (2.1), we have

〈ψ , Λψ〉 =

∫
∂D

ψ(Λψ)ds =

∫
∂D

ψ
∂u

∂n
=

∫
∂D

ψ
∂u

∂n
−
∑
i∈S

Ui
∫
∂Di

∂u

∂n

=

∫
Ω

|∇u|2 +

∫
Ω

u∆u =

∫
Ω

|∇u|2

= 2E(ψ)

(2.7)

where E(ψ) is the energy defined in (2.2).

In other words, if we can approximate the energy E(ψ) of the problem (2.1) with

any given boundary condition ψ, we can approximate the DtN map Λ for this problem.

For any constant boundary condition ψ, the solution for the problem (2.1) is the
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constant. It means the constant functions are in the null space of the DtN map Λ.

We can add the constraint

∫
∂D

ψds = 0, (2.8)

to the boundary condition ψ, which can deduce the null space of the DtN map Λ.

2.1.3 General high contrast problems

In this thesis, we will focus on the approximation of the DtN map for problems in

infinite high contrast composites, but our approximation method will also work for

problems in general high contrast composites

∇ · (σε∇uε) = 0, in D

uε = ψ, on ∂D

(2.9)

where ψ ∈ H 1
2 (∂D) is the Dirichlet boundary condition as before and

σε =


1/ε, in Di,∀i ∈ S

1, in Ω

(2.10)

where ε > 0 is a small positive parameter which reflects the contrast of coefficients.

For this problem we can also define the energy with boundary condition ψ as

Eε(ψ) =
1

2

∫
D

σε|∇uε|2

where uε is the solution of the problem (2.9).

Suppose the problems (2.1) and (2.9) have the same boundary condition ψ on the
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boundary ∂D, and let E(ψ), Eε(ψ) denote the energy of these two problem separately.

Bao,Li and Yin [2] gave the following approximation between the energy for general

high and infinite high contrast problems

Eε(ψ) = E(ψ) +O(ε). (2.11)

In order to approximate the energy for a high contrast problem, we can approximate

the energy for an infinite high contrast problem first.

Gorb found a first order corrector F and proved that

Eε(ψ) = E(ψ) + εF(ψ) + o(ε). (2.12)

Also, she can improve this result into any higher order.

Calo, Efendiev and Galvis[12] proved the asymptotic expansion for the solution

of high contrast problems to any order

uε = u0 + εu1 + ε2u2 + · · · . (2.13)

Actually, if we extend the solution (u,U) of (2.1) to the whole domain D by the

constant Ui in each Di, then we will have a solution u0 in the whole domain D. Bao,

Li and Yin [2] proved that as ε goes to 0, the solution uε for the problem (2.9) is

weakly converged to u0 in H1(D).

We can do similar approximation of the DtN map in any simple connected domain

in IR2 other then the disk, because any such domain can be mapped uniformly into

an disk.

The inclusions can also have more general shapes other then small disks. Specially,

they can be disks with different radii, which are in the same scale.
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The coefficients can have more general form like

σ(x) = σ0(x)

(
1 +

∑
i∈S

(1/εi − 1)χDi
(x)

)
, (2.14)

where σ0(x) is a smooth function and χDi
is the characteristic function. εi(i ∈ S) are

small positive constants and they are not necessary to be the same.

2.2 The discrete resistor network approximation

Generally speaking, the discrete network approximation is a method to approximate

some properties of the high contrast [7, 8] or infinite contrast [4, 5, 22] media by

related properties of a discrete resistor network.

In this section, we will first review some definition and results about resistor

network. Then we will give some simple examples of approximation in high contrast

problems. At last we will show how to produce a resistor network from a high contrast

composite.

2.2.1 The discrete resistor network

In this section, most definition and results are due to Curtis et. al. [14, 16, 15]. They

summarized most results in the book [17].

Since we are discussing problems in two dimensions, we will only talk about planar

networks in this section. A graph with boundary G = (V, VB, E) is a triple, where V

denotes the set of all the nodes and VB ⊂ V denotes the set of nodes on the boundary.

E ⊂ V × V denotes the set of edges. A planar graph is a graph G with boundary,

which can be embedded into a disk in the plane such that the boundary nodes can

be located at the boundary of the disk and other nodes can be located in the interior
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of the disk.

A resistor network is a pair (G, γ), where γ : E → IR+ is function that associates

each edge eij ∈ E of the graph G a positive conductance γ(eij) = σij. Here σij is the

effective conductance for each edge in E. When we are going to use a resistor network

to simulate the continuous high contrast media, we will show how to construct the

discrete network and give explicit formulas for these σij.

The Kirchhoff matrix K of the resistor network (G, γ) is defined by

Kij =


0, eij /∈ E

−σij, eij ∈ E∑
k 6=i σik, j = i

(2.15)

The Kirchhoff matrix is symmetric and has all row sum zero. If it is necessary, we

can write the matrix into the following blockwise form

K =

KII KIB

KBI KBB


where I is the index set for interior nodes which belong to V \VB, and B is the index

set for boundary nodes in VB.

Suppose there are NI interior nodes and NB boundary nodes. Let UI ∈ IRNI

be the potentials on all interior nodes, J = (J1,J2, · · · ,JNB
)T ∈ IRNB and U =

(U1,U2, · · · ,UNB
)T ∈ IRNB be excitation currents and potentials on the boundary

nodes. Where J also satisfies the condition

NB∑
k=1

Jk = 0.
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From the Kirchhoff law, we will have

KII KIB

KBI KBB


UI
U

 =

 0

J

 (2.16)

The discrete DtN map ΛD : IRNB → IRNB for the discrete resistor network is defined

by

J = ΛDU , ∀ U ∈ IRNB (2.17)

The DtN map ΛD is a NB × NB symmetric, positive and semidefinite matrix. The

null space of ΛD is the constant vectors. We can compute the DtN map from the

Kirchhoff matrix

ΛD = KBB −KBIK
−1
II KIB. (2.18)

Which means we will know the DtN map when we have the resistor network.

The energy of the discrete network with boundary potential U is defined by

ED(U) =
1

2
min
T ∈V D

∑
eij∈E

σij(ti − tj)2 (2.19)

with

V D = {T ∈ IRNI+NB : ti = constant (i ∈ SI) and ti = Ui(i ∈ SB)}

It is proved in [7] that the minimizer of (2.19) will satisfy the equation (2.16), and

we will have the following equality

ED(U) =
1

2
UTΛDU . (2.20)
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2.2.2 Extension of the discrete resistor network

In this section, we will discuss the relationship between the discrete DtN maps when

we extend a resistor network to another one by some special way. The results in

this section will be useful to simplify our final results for the approximation of the

continuous DtN map.

Suppose there is a resistor network (G1, γ1), which has NI interior nodes with

index set SI and NB boundary nodes with index set SB = {1, 2, · · · , NB}. When

eij ∈ E1, suppose γ1(eij) = σij. In this network, eij /∈ E1 when i, j ∈ SB. See

Figure 2.2(a).

Then we connect the neighbors of the boundary nodes to get a graph G2, and

extend the function γ1 to γ2 such that it has definition on the new edges. Suppose

that γ2(eij) = σij when eij ∈ E2 \ E1, and it has the same definition as γ1 on edges

belong to E1. See Figure 2.2(b).

After that, we add NB more nodes into the graph G2, which become the new

boundary nodes with index set SB′ = {1′, 2′, · · · , N ′B}. We add the new edges between

the node i ∈ SB and i′ ∈ SB′ . We can also extend the function γ2 to γ3, such that it

has definition on the new edges. Suppose γ3(eii′) = σi, (i ∈ SB), and it has the same

definition as γ2 on edges belong to E2. See Figure 2.2(c).

(a) (b) (c)

Figure 2.2: (a) The first network G1, (b) The second network G2, (c) The third network G3.

Now suppose that the Kirchhoff matrix related to these three resistor networks
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are K1, K2 ∈ IR(NI+NB)×(NI+NB) and K3 ∈ IR(NI+2NB)×(NI+2NB). Suppose the DtN

maps related to these three resistor networks are ΛD
1 ,Λ

D
2 ,Λ

D
3 ∈ IRNB×NB .

Here are two useful propositions to simplify our result later in this thesis.

Proposition 2.2.1. For a given vector U ∈ IRNB , we have

UTΛD
2 U = UTΛD

1 U +
∑

eij∈E2\E1

σij(Ui − Uj)2.

Proof. Denote a new matrix H ∈ IRNB×NB as following

Hij =


0, i 6= j and eij /∈ E2 \ E1

−σij, i 6= j and eij ∈ E2 \ E1∑
k 6=i σik, j = i

Then we only need to prove

ΛD
2 = ΛD

1 +H.

From the discussion in the last section, we can write K1 into the blockwise form as

K1 =

KII KIB

KBI KBB


From the formula (2.18), we have

ΛD
1 = KBB −KBIK

−1
II KIB
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From the struct of our resistor network, the matrix K2 will have the following form

K2 =

KII KIB

KBI KBB +H


Then

ΛD
2 = (KBB +H)−KBIK

−1
II KIB = ΛD

1 +H.

Proposition 2.2.2. For a given vector Ψ ∈ IRNB , we have

ΨTΛD
3 Ψ = min

U∈IRNB

{
UTΛD

2 U +
∑
i∈SB

σi(Ui −Ψi)
2

}
. (2.21)

Proof. Denote the diagonal matrix G ∈ IRNB×NB as

G = diag{σ1, σ2, · · · , σn}.

Notice that ΛD
2 and G are both symmetric and ΛD

2 only has one zero eigenvalue. It

is easy to prove that ΛD
2 +G is a symmetric positive definite matrix.

We can write the right hand side of (2.21) as

min
U∈IRNB

{
UT (ΛD

2 +G)U − 2UTGΨ + ΨTGΨ
}
,

which has minimizer U∗ = (ΛD
2 +G)−1GΨ and then

min
U∈IRNB

{
UT (ΛD

2 +G)U − 2UTGΨ + ΨTGΨ
}

= ΨT (G−G(ΛD
2 +G)−1G)Ψ



19

Then we need to prove

ΛD
3 = G−G(ΛD

2 +G)−1G. (2.22)

Suppose now we write K2 into the blockwise form as

K2 =

KII KIB

KBI KBB


From the formula (2.18), we have

ΛD
2 = KBB −KBIK

−1
II KIB

From the struct of our resistor network, the matrix K3 will have the following form

K3 =


KII KIB 0

KBI KBB +G −G

0 −G G


Then

ΛD
3 = G−

[
0 −G

]KII KIB

KBI KBB +G


−1 −G

0


= G−G(KBB +G−KBIK

−1
II KIB)−1G

= G−G(ΛD
2 +G)−1G

(2.23)

This proved (2.22).
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2.3 Some basic problems

2.3.1 The two disks problem

An interesting problem is to approximate the effective conductivity for periodic square

lattices of disks, which is first discussed by Keller [20]. Keller derived the asymptotic

formula of effective conductivity for a periodic spaced perfectly conducting disks

embedded in an insulating background.

The mainly idea is that the current flux will only be strong in the area between

closed space inclusions. When there are two perfectly conducting disks Di, Dj embed-

ded in the insulting background, there will be a neck Πij between these two disks,see

Figure 2.3. The flux will be strong in the neck Πij. It is strong in the horizontal

direction and it is almost linear.

Figure 2.3: The neck Πij between Di, Dj

Suppose the centers of these two disks are located at Oi = (0, c) and Oj = (0,−c),

see Figure 2.3. The radius of the two disks are Ri, Rj, and the distance between

them is δij. We denote the up and bottom boundaries of the neck as ∂Π±ij, which are

parallel to the line OiOj. The neck widths S±ij are the distances from ∂Π±ij to the line

OiOj respectively.
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Suppose the potentials are Ui,Uj on these two disks, separately. Then the partial

differential equation yields this problem is

∆u = 0, in Πij

u = Ui, on ∂Di ∩ ∂Πij

u = Uj, on ∂Dj ∩ ∂Πij

∂u

∂n
= 0, on ∂Π±ij

(2.24)

When u is the solution of the above equation, the energy in this neck is

EΠij
=

1

2

∫
Πij

|∇u|2

From the appendix A.1, we see that

EΠij
= min

φ∈VΠij

{
1

2

∫
Πij

|∇φ|2
}
,

with

VΠij
= {φ ∈ H1(Πij) : φ|∂Di∩∂Πij

= Ui and φ|∂Dj∩∂Πij
= Uj}.

Any trial function in VΠij
will give us a upper bound for EΠij

.

For the lower bound, we need to use the Legendre transformation, see A.3,

EΠij
= max

j∈WΠij

{
Ui
∫
∂Di∩∂Πij

j · n + Uj
∫
∂Dj∩∂Πij

j · n− 1

2

∫
Πij

|j|2
}
,

with

WΠij
= {j ∈ L2(Πij) : ∇ · j = 0 and j · n|∂Π±ij

= 0}.
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Here ∇ · j = 0 is defined in the weak sense for j ∈ L2(Πij).

Following the discussion in [4, 5], we will construct special trial functions like

φ =
1

2
(Ui + Uj) +

y

hij(x)
(Ui − Uj) and j = (0,

Ui − Uj
hij(x)

)T (2.25)

where hij(x) = δij + (Ri−
√
R2
i − x2) + (Rj −

√
R2
j − x2) is the distance between the

left and right boundaries of the neck at height x.

For these two trial functions in (2.25), the upper and lower bounds given by the

two variational formulas are very close. They only have O(1) gap, which is relatively

small comparing to the energy

EΠij
= O(

√
R

δij
)� O(1)

which we will see in (2.29).

Then the energy in the neck Πij is approximated by the upper or lower bound,

which will end up with the following integration

EΠij
=

1

2

∫ S+
ij

−S−ij
|Ui − Uj|2

dx

hij(x)
+O(1) =

1

2
(Ui − Uj)2

∫ S+
ij

−S−ij

dx

hij(x)
+O(1)

=
1

2
σ0
ij(Ui − Uj)2 +O(1)

(2.26)

where

σ0
ij =

∫ S+
ij

−S−ij

1

hij(x)
dx

is the effective conductance of the neck Πij.

If we suppose that inclusions are densely spaced δij � min{Ri, Rj}, we will have
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an asymptotical approximation for σ0
ij, which is

σ0
ij = σij +O(1)

where

σij =
π√
δij

√
2RiRj

Ri +Rj

.

When the two disks have equal radii R, the effective conductance has approximation

σij = π

√
R

δij
. (2.27)

This approximation does not depend that much on the width S± of the necks, which

means we have some freedom to choose the width of the necks. In general we can

choose S±ij ≈ R/2, such that we can give the above approximation easily. For more

details, see [4, 5].

In our problem, when one of the disk is near the boundary, say Di with radius

Ri, suppose the distance between the disk and the boundary ∂D is δi now. Then the

approximation effective conductance of this boundary neck will be

σi = π

√
2LRi

(L−Ri)δi
. (2.28)

Here L is the radius of the disk domain D. In Chapter 4, we will show how to get

this approximation in details.

In the work of Berlyand et. al. [4, 5], the boundary is straight there and they

simulate the boundary as a quasi disk with radius ∞. Their formula for the effective

conductance of the neck is an extreme situation when L =∞ in the equation (2.28),
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which is

σi = π

√
2Ri

δi
.

When we are trying to use a resistor network to simulate a high contrast media,

we will see that σij and σi will be the conductivity we assigned to a related edge

in the resistor network. They are actually the approximation of the local effective

conductance in a neck shape area in high contrast media.

So we have the following approximation for energy in a single neck

EΠij
= σij(Ui − Uj)2 +O(1) = σij(Ui − Uj)2[1 +O(

√
δij
R

)] (2.29)

which has the framework like the formula in (2.19). This formula actually separates

the geometry property and physical property of the problem. Then we can associate

an resistor with effective conductance σij for this neck. This is the mainly idea for the

approximation of energy in our thesis, but it is much more complicated when there

are more inclusions and oscillation boundary conditions.

In the formula (2.29), we prefer to absorb the error by the leading order term like

we showed in the third term. This is convenient for summation when we have more

necks later.

2.3.2 The problem with oscillation boundary condition

The second problem is an elliptic equation in homogenous media with oscillation

boundary condition. We will see how does the boundary condition influence the

energy of the problem.
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Let’s consider the following Laplace’s equation

∆u = 0

in the disk

D = {(r, θ) : r < L, 0 ≤ θ < 2π}

with the boundary condition

u(L, θ) = cos kθ,

where k reflects the oscillation of the boundary condition.

We consider this problem in the polar coordinate system. The solution of this

problem is

u(r, θ) = (r/L)k cos kθ

and the flux in radius and tangential directions are

∂u

∂r
=
k

L
(r/L)k−1 cos kθ,

∂u

∂θ
= −k(r/L)k sin kθ.

Near the boundary, the tangential flux has almost the same important influence as

the radius flux. From the discussion for the first problem in this section, we see that

the neck approximation only consider the flux in one direction, but ignore the flux in

the other direction. Which means we cannot just use a neck to simulate the parts of

the domain near boundary when the boundary condition has highly oscillations.

However, the flux decays like (r/L)k−1 when it goes away from the boundary. The
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energy in the whole domain is

E =
1

2

∫
D

|∇u|2 =
kπ

2
. (2.30)

The energy in the boundary layer {(r, θ) ∈ D : (1− δ)L ≤ r ≤ L} is

Eδ =
1

2

∫ L

(1−δ)L
rdr

∫ 2π

0

dθ|∇u|2 =
(
1− (1− δ)2k

) kπ
2

= (1− (1− δ)2k)E ≈ (2kδ)E .
(2.31)

Which means the flux is mainly located in the boundary layer

{(r, θ) ∈ D : (1− 1

2k
)L ≤ r ≤ L}

The oscillation of the boundary will not influence too much far from the boundary.

It suggests us to use discrete networks to simulate the parts far from the boundary,

but not in the area near the boundary.

We can also define the Dirichlet to Neumann map for this problem like before, we

denote it as Λ1. We will have

〈cos kθ , Λ1 cos kθ〉 = kπ. (2.32)

The discussion with boundary condition u(L, θ) = sin kθ will be similar, we will have

〈sin kθ , Λ1 sin kθ〉 = kπ. (2.33)
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It is also very easy to get

〈sin kθ , Λ1 cosmθ〉 = 0, for all k,m

〈cos kθ , Λ1 cosmθ〉 = 0, for all k 6= m

〈sin kθ , Λ1 sinmθ〉 = 0, for all k 6= m

(2.34)

These are result for homogeneous media, which has no inclusions at all. We will see

later that, it always has these parts in related approximation for the DtN map Λ of

high contrast composites problems. However, the results for Λ will have some more

parts which are related to the inclusions, and we call it network effect. As discussed in

the first problem of this section, the network effect will be in the order O(
√

R
δ
)� 1

with an O(1) error. When kπ = O(1), there will no problem to ignore the effect

because of the boundary oscillation.

2.4 Geometric setup and partition of the domain

In this thesis, we will divide the domain Ω = D \ ∪i∈SDi into several subdomains,

such that we can use the discrete network approximation for the parts far from the

boundary and we can do analysis near the boundary such that it will take care of the

oscillation of the boundary condition.

2.4.1 Geometric setup of the problem

First of all, we need to have some assumptions on geometric properties of the domain

in our problems. Remember that the radius of the disk D is L = O(1). We suppose

that the radii of all the inclusions are R � L. The radii of these inclusions are not

necessary to be the same, however it must be in the same scale O(R).
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Later in this section, we will define neighbor inclusions. We say an inclusion

near the boundary ∂D is a neighbor of the boundary and we call it a boundary

inclusion. The distance of two neighbor inclusions are the closest distance between

their boundary. What is more, we assume that the distance between any two neighbor

inclusions Di, Dj is δij > 0, and the distance between the boundary inclusions Di and

the boundary ∂D is δi > 0. We assume that they are bounded up by some parameter

δ, which satisfies δ � R.

In the summary, we have three different scales in our problem

δ � R� L. (2.35)

In generally, we can set the radius of the domain L to be 1. We use L instead of 1

here because we want to make sure that everything in our results is right in the scale

sense.

2.4.2 The partition of the domain

In order to give an exact definition of partition of the domain. We need to draw

another circle Dρ with radius ρ = L − R/2. From the assumptions of the scales in

(2.35), we see that ∂Dρ will intersect with any ∂Di(i ∈ SB) twice.

Remark 2.4.1. It is not necessary for ρ to be exactly 1 − R/2, it can be 1 − R/C

for any reasonable constant C > 1. We only need to ensure that the circle ∂Dρ will

intersect with ∂Di twice for any i ∈ SB.

Now we are going to divide the domain Ω ∩Dρ into small pieces. The method of

the dividing domains mainly comes from [4, 5, 22]. General speaking, we will divide

Ω ∩Dρ into two parts. They are necks Π which will capture the mainly fluxes inside
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the domain, triangles ∆ where the fluxes are weak and can be neglected.

In order to divide the domain, we first need to construct a discrete network from

the high construct domain. The graph G = (V, VB, E) for the discrete network comes

from the Delaunay triangulation of the domain D. The vertices V are centers of

the disk inclusions, VB are centers of inclusions near the boundary or nodes on the

boundary ∂D. The edges E are edges of the Delaunay graph. The dual of Delaunay

triangulation is the Voronoi tessellation, which can be used to define neighbors of the

disks. When two disks share an edge of the Voronoi tessellation, they are neighbors in

the network and there is an edge which connects them in Delaunay graph. A simple

example is showed in Figure 2.4.

(a) (b)

Figure 2.4: Voronoi tessellation and Delaunay graph.

After we have the graph for discrete network, we can divide the domain D into

different parts which are necessary for our discussion later. First we will describe how

to construct triangles in Ω ∩Dρ , the left parts in this domain will be necks. There

are two different kinds of triangles in our problem. The first kind of triangles are

located inside the domain Ω ∩ Dρ. Suppose a vertex O of the Voronoi tessellation

is surrounded by three neighbor disks Di, Dj, Dk with centers Oi, Oj, Ok separately.

When we connect O with Oi, Oj, Ok, there will be one intersection on each circle. We



30

use these three intersections as the vertice of the triangle we are going to construct.

We denote this triangle as ∆ijk, see Figure 2.5(a). Notice that each edge of the

triangle ∆ijk will parallel to OiOj, OjOk, OkOi respectively.

The second kind of triangles are located near the circle ∂Dρ. Suppose the disks

Di, Dj are neighbors and ∂Di, ∂Dj have intersections with the circle ∂Dρ. We can

draw a straight line paralleled to the line OiOj, and it is as closed to ∂Dρ as possible.

In this way we have a small domain between the line and ∂Dρ, we still call it a triangle

and denote it as ∆ij, see Figure 2.5(b).

O

O
i

O
j

O
k

(a)

O
i

O
j

(b)

Figure 2.5: (a) The triangle ∆ijk between the disks Di, Dj , Dk. (b) ∆ij between the dotted circle
∂Dρ and the top solid straight line.

We denote the union of the two kinds of triangles as

∆ :=
⋃

∆ijk, and ∆B :=
⋃

i,j∈SB

∆ij, (2.36)

The second kind of triangles are useful in the approximation for energy near the

boundary. When the are NB inclusions near the boundary ∂D, there are NB such

triangles in our problem.



31

The other parts in Ω ∩ Dρ are necks. Each neck is located between neighbor

disks and lies on an edge of the Delaunay graph. We denote the neck between disks

Di, Dj as Πij. We also divide the necks into two categories, although the methods

for approximation energy in these necks are the same. One kind are necks which are

neighbors of triangles in ∆B, there are NB such necks, we denote the union of them

as

ΠB :=
⋃

i,j∈SB

Πij, (2.37)

and we denote the union of other necks as

Π :=
⋃

i/∈SB or j /∈SB

Πij. (2.38)

We define the outside boundary layer as

B0 = Ω \Dρ, (2.39)

which is the domain between ∂Dρ and ∂D in Ω.

We define the boundary layer in our problem as

B = B0 ∪ ΠB ∪∆B. (2.40)

See Figure 2.6(a) and Figure 2.6(b).

In this way we can divide Ω into three different parts in our problem,

Ω = B ∪ Π ∪∆.



32

(a) (b)

Figure 2.6: (a) The boundary neck in ΠB (b) The boundary triangle in ∆B

See Figure 2.7(a).

(a) (b)

Figure 2.7: (a) The partition of the domain Ω. (b) Nodes on the boundary.

The effect of the boundary conditions oscillations will mainly locate in the bound-

ary layer B. We will see the boundary layer B as a whole part in the discussion in

Chapter 3.

In Chapter 4, we are going to discuss the details of the energy in B and we need

to have partition of B. We already have the partition of B showed in (2.40), we also

need some partition of the domain B0. Remember that we draw another circle Dρ
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with radius ρ = 1−R/2 to give exact definition before. We can also use this circle to

help us divide B0 into some subdomains which is useful in the analysis in Chapter 4.

Suppose the NB inclusions D1, D2, · · · , DNB
are very close to the boundary ∂D.

The center of Di is located at Oi = (ri, θi), and the distance from Di to ∂D is δi, see

Figure 2.7(b). Then

ri +R + δi = L, (2.41)

where L = O(1) is the radius of the disk D. We also have the following assumption

δi ≤ δ � R� L, for all i = 1, 2, · · · , NB (2.42)

This ensures that the circle with radius ρ will intersect with each ∂Di(∀i ∈ SB) twice.

For a special inclusion Di, by connecting the origin O = (0, 0) of the domain D

and the two intersections,there will be two rays from the origin, which are θ = θi±αi

under the polar coordinate system, see Figure 2.8(a). Here the angle αi satisfies

r2
i + ρ2 − 2riρ cosαi = R2 (2.43)

which is uniquely determined by the position of the inclusion Di.

For each Di, denote the domain between these two rays and ∂Di, ∂D as Bi, see

Figure 2.8(b). Which is

Bi = {(r, θ) : L− d(θ) < r < L, θi − αi < θ < θi + αi} (2.44)
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(a) (b)

Figure 2.8: (a) The angles of the partition. (b) The partition of B0.

where

d(θ) = L− ri cos(θ − θi)−
√
R2 − (ri sin(θ − θi))2 (2.45)

with δi ≤ d(θ) ≤ R/2.

For neighbors Di and Dj which are both close to the boundary ∂D, suppose

θi < θj. Denote the area between Bi, Bj and ∂Dρ, ∂D as Bij, see Figure 2.8(b).

Which is

Bij = {(r, θ) : L− d(θ) < r < L, θi + αi < θ < θj − αj} (2.46)

where d(θ) = R/2 is a constant here.

The layer B0 has the following partition

B0 =

(
NB⋃
i=1

Bi

)⋃(⋃
ij

Bij

)
(2.47)
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2.4.3 The resistor networks related to our problem

In this section, we will associate two resistor networks to our problem. The first one

is useful in the discussion, and the second one is useful for simplifying the results.

The first resistor network is (G0, γ0). Here the nodes of G0 are the inclusions

and the edges in G0 are necks in Π introduced in Section 2.4. Notice that now the

boundary nodes are centers of the boundary inclusions. For each eij, we have

γ0(eij) = σij,

where σij is the approximation for the effective conductivity of the neck Πij ∈ Π

introduced in Section 2.3. Suppose the discrete DtN map related to this resistor

network is ΛD
0 ∈ IRNB×NB .

The second network (G, γ) is an extension of the first network, which has NB

more new boundary nodes and 2NB more edges. The new nodes are located on the

boundary ∂D of the domain and new edges will represent the necks Πij ∈ ΠB and

Bi ∈ B0 with

γ(eij) =


γ0(eij), Πij ⊂ Π

σij, Πij ⊂ ΠB

σi, Bi ⊂ B0.

(2.48)

where σij is the approximation for the effective conductivity of the neck Πij ∈ ΠB.

σi tis he approximation for the effective conductivity of the neck Bi ∈ B0, and we

will show how to get this approximation in the analysis of Chapter 4. Suppose the

discrete DtN map related to this resistor network is ΛD ∈ IRNB×NB .

In this section, the extension of networks from (G0, γ0) to (G, γ) is the same as
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the extension of the networks from (G1, γ1) to (G3, γ3) in Section 2.2.2. We have the

following equality from the discussion in Section 2.2.2,

ΨTΛDΨ = min
U∈IRNB

UTΛD
0 U +

∑
Πij⊂ΠB

σij(Ui − Uj)2 +
∑
i∈SB

σi(Ui −Ψi)
2

 (2.49)

for any given vector Ψ ∈ IRNB . This proposition is useful to simplify our results in

Chapter 4.

2.5 The mainly results

We are going to approximate the DtN map Λ for the high contrast problem (2.1) in

IR2. It only depends on the domain and the conductivities, but not on the boundary

condition. However, in order to approximate it, we need to approximate the energy

E(ψ) =
1

2
〈ψ , Λψ〉 =

1

2

∫
∂D

ψΛψ

for any given boundary condition ψ in (2.1).

The discrete network approximation works for boundary condition without that

much oscillation. It uses piecewise constants to approximate the boundary condition,

see [7]. And it also uses some resistor network to simulate the high contrast media,

which can approximate the energy generated by the flux along some necks, see the

first example in Section 2.3.

From the second example in Section 2.3, the oscillation of the boundary condition

will generate some flux which is not along but vertical to the necks. And it will also

have some contribution on the approximation of energy, which is not considered in

[7] and related papers. However, the oscillation will not have so much influence far
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from the boundary, which means we can still use the discrete network approximation

in the domain far from the boundary.

In our problem, the approximation will have two parts. One part is the discrete

network approximation in the domain far from the boundary. The other part is the

approximation in the boundary layer, which is the domain near the boundary. At the

end, we will combine these two approximation in our results.

2.5.1 Review of existing results

For boundary condition without that much oscillations, Borcea et. al. [7] gave rig-

orous proof for the asymptotic resistor network approximation for a general high

contrast problem. They use Kozlov’s model [21] in continuum high contrast media.

They suppose that the conductivity of the high contrast media have the following

form

σ(x) = σ0e
−S(x)/ε. (2.50)

where ε > 0 is a small positive parameter which reflects the contrast of the problem.

They can assign a discrete resistor network to a high contrast media according to the

geometric properties of the function S(x), which is actually the function σ(x). And

use the DtN map for the discrete resistor network to approximate the DtN map of

the high contrast media. They have the following important results in [7]

Lemma 2.5.1. Consider the asymptotic limit ε → 0. For any potential ψ(x) ∈

H
1
2 (∂Ω), it has

(ψ,Λεψ) =< Ψ,ΛD,εΨ > [1 + o(1)]. (2.51)
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The components of Ψ are given by

Ψj = ψ(sj), (2.52)

where sj denotes the point on ∂Ω that is associated with the boundary node j ∈ SB.

They are intersection of ridges of maximal conductivity with the boundary.

For the approximation (2.51), the choice of the potentials Ψj = ψ(sj) does not

take care of the oscillation of the boundary condition. The formular (2.51) may not

be exact when the boundary condition has highly oscillations.

2.5.2 Our approximation with general boundary condition

We are going to approximate the DtN map for the high contrast two phase com-

posites, which is background matrix with low conductivity densely embedded with

high conductivity inclusions. It is a different model from the Kozlov’s model for high

contrast media in [21]. However, our methods of analysis can be easily modified to

problems with Kozlov’s model.

When the boundary condition has different oscillation rate, the solution for the

problem (2.1) will have very different performance. This motivates us to use different

methods to approximate the energy for different kinds of boundary conditions. When

the domain is a disk, the boundary condition ψ(θ) is defined on [0, 2π).

We always suppose that the media is grounded and consider the boundary condi-

tion with finite Fourier modes

ψ(θ) =
K∑
k=1

(ack cos kθ + ask sin kθ) . (2.53)

It is important to discuss the problem with boundary condition which only has
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a single Fourier mode. In this thesis, we are going to state the idea of our method

by approximating 〈cos kθ , Λ cos kθ〉 for arbitrary positive integer k . Then we are

going to generalize the results to problem with general boundary condition in (2.53)

without proof details because the idea will be very similar.

Before we present the main results, we will give some definitions without expla-

nation here.

Ψc
k = (cos kθ1, cos kθ2, · · · , cos kθNB

)

Ψs
k = (sin kθ1, sin kθ2, · · · , sin kθNB

)

(2.54)

with θi showed in Figure 2.8.

Sk = diag{Sk1, Sk2, · · · , SkNB
} is the decay matrix with

Ski = exp

[
−k

√
2Rδi

L(L−R)

]
≈ exp

[
−k
√

2Rδi
L

]
. (2.55)

Rk = (Rk1,Rk2, · · · ,RkNB
)T is the resonance vector with

Rk,i =
σi
4

{√
2kδi
Lπ

Li1/2

(
exp

[
−2kδi

L

])
− exp

[
−2k

√
2Rδi

(L−R)L

]}

≈ σi
4

{
1− exp

[
−2k

√
2Rδi
L

]} (2.56)

with σi defined in (2.28).

Notice that, in the approximation of above formulas we only keep the leading

order. Here is our main result for a general boundary condition.

Theorem 2.5.2. For a general boundary condition showed in (2.53), we have

〈ψ , Λψ〉 =
(
〈ψ , Λ1ψ〉+ Ψ(ψ)TΛDΨ(ψ) + 2R(ψ)

)
[1 + o(1)]. (2.57)
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Where Ψ(ψ) is the boundary potential vector

Ψ(ψ) =
K∑
k=1

Sk(a
c
kΨ

c
k + askΨ

s
k)

and R(ψ) is the resonance term

R(ψ) =
K∑

k,m=1

Rk∧m · {(ackacm + aska
s
m)S|k−m|Ψ

c
k−m + (aska

c
m − ackasm)S|k−m|Ψ

s
k−m}

where k ∧m := min{k,m}.

Here is the explanation for our results. The first term is the energy in the reference

medium with constant conductance one. The second term is the energy related to a

resistor network. The resistor network only depends on the physical properties of the

medium but not on the boundary condition. However, the excited potential vector

depends on the boundary condition, and it has a exponential damping factor before

Fourier modes with different frequencies. The third term is the anomalous energy

due to oscillations of the boundary conditions. It only has contribution to leading

order in a special regime, and we call it the resonance.



Chapter 3

Separation of the problem

In this chapter, we will first show that the perforated energy Ep(ψ) is a good approxi-

mation of the energy E(ψ) for an infinite high contrast problem. Then we will divide

the perforated energy Ep(ψ) into two parts. One part is the energy inside the domain,

which is studied before and we will present the results directly. The other part is the

energy in the boundary layer, we will discuss it in details in the next chapter.

3.1 Variational principles and perforated domain

3.1.1 The primal and dual problems

From the appendix A.1, we see that to solve the problem (2.1) is equivalent to solve

the following minimization problem

E(ψ) =
1

2
min
φ∈V

∫
Ω

|∇φ|2, (3.1)

41
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with the trial function space

V = {φ ∈ H1(Ω) : φ|∂D = ψ, φ|∂Di
= constant ,∀i ∈ S}. (3.2)

In general, we are trying to approximate the energy E(ψ) for any given boundary

condition ψ. From the formulation (3.1), any function in the trial space V will give

E(ψ) an upper bound.

From the appendix appendix A.3, we can do a Legendre transformation to get the

dual of the problem (3.1),

E(ψ) = max
j∈W

{∫
∂D

ψj · n− 1

2

∫
Ω

|j|2
}
, (3.3)

with the trial space

W = {j ∈ L2(Ω) : ∇ · j = 0,

∫
∂Di

j · n = 0,∀i ∈ S}. (3.4)

The flux j in W need not to be continuous, and the derivative of j is in weak sense.

Any trial function in W will give E(ψ) a lower bound.

In order to find trial functions to satisfy the first condition in W , we are not going

to construct a divergence free function directly, but we let

j = ∇⊥H,

for some function H ∈ H1(Ω). Then it will be divergence free automatically.

However, it is difficult to construct a trial function in W which satisfies the con-
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servation condition

∫
∂Di

j · n = 0 for all i ∈ S.

We will see later that when the boundary condition has highly oscillation, the way

to construct the trial functions near the boundary is different from the way in the

inside necks. It is even more difficult to construct j there to satisfy the conservation

condition.

We need some other methods to approximate the energy E(ψ) for the problem

(2.1). The perforated medium approach introduced by Berlyand, Gorb and Novikov

in [3, 22] will work very well here.

3.1.2 The perforated domain

In our problem, we set the perforated domain as

Ωp = B ∪ Π = Ω \∆,

which does not include those triangles and it is a subdomain of Ω, see Figure 3.1.

The idea is that the fluxes in the triangles ∆ is small and the energy in ∆ is also

small in the original problem (3.1). We will see that EP (ψ) defined below in (3.5) is

a good approximation for the energy E(ψ) in (3.1).

We can define the perforated energy in the domain Ωp as

Ep(ψ) =
1

2
min
φ∈Vp

∫
Ωp

|∇φ|2, (3.5)
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Figure 3.1: The perforated domain

where the trial space is smilar like (3.2)

Vp = {φ ∈ H1(Ωp) : φ|∂D = ψ, φ|∂Di
= constant ,∀i ∈ S}, (3.6)

This is a similar but a different minimization problem from (3.1). It is minimization

problem defined in a smaller domain Ωp.

In order to do analysis to the new problem (3.5), let us see the related differential

equations first. From the appendix A.1, we see that minimizing Ep(ψ) over Vp leads

to the following Euler-Lagrange equations:

∆u = 0, in Ωp

u = ti, on ∂Di,∀i ∈ S∫
∂Di

∂u

∂n
= 0, for all i ∈ S

∂u

∂n
= 0, on ∂∆

u = ψ, on ∂D

(3.7)
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From the appendix A.2, the above equation has an unique solution. We would like

to write the solution of this problem as (u,U , T ), where U ∈ IRNB is the vector for

potentials on the boundary inclusions and T ∈ IRNI is the vector for potentials on

the inside inclusions.

3.2 The lower and upper bounds for E(ψ)

In this section, we will first show that the energy Ep(ψ) defined in (3.5) is a lower

bound for the energy E(ψ) defined in (3.1). Then we will show that Ep(ψ) is also a

tight lower bound, hence it is a good approximation for the energy E(ψ).

3.2.1 The lower bound

Because ΩP is a subdomain of Ω, we will have the following result

Lemma 3.2.1 (The lower bound).

Ep(ψ) =
1

2
min
φ∈Vp

∫
Ωp

|∇φ|2 ≤ 1

2
min
φ∈V

∫
Ω

|∇φ|2 = E(ψ), (3.8)

Proof. Suppose u is the solution of the minimization problem (3.1). Because Ωp is a

subset of Ω, u|Ωp is a trial function in Vp. Then

Ep(ψ) =
1

2
min
φ∈Vp

∫
Ωp

|∇φ|2 ≤ 1

2

∫
Ωp

|∇u|2 ≤ 1

2

∫
Ω

|∇u|2 = E(ψ). (3.9)

This means Ep(ψ) is a lower bound for E(ψ) for any given boundary condition ψ.
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3.2.2 The upper bound

Next we will find an upper bound for E(ψ) in (3.1). In Chapter 4, we will prove that

there is a trial function φp ∈ Vp such that

1

2

∫
Ωp

|∇φp|2 = Ep(ψ)[1 +O(

√
δ

R
)], (3.10)

Also from Chapter 4, we will see that the energy Ep(ψ) will be singular when the

boundary condition ψ is not a constant

Ep(ψ) = O(

√
R

δ
)� 1,

where R is the radius of the inclusions and δ is the distance between neighbor inclu-

sions which satisfies the assumption (2.35).

We are going to extend φp from Ωp to Ω, such that the extended function

φ =


φp, in Ωp

φ∆ in ∆

belongs to the trial space V in (3.2) and it will give us an upper bound for E(ψ).

We need the following Kirszbraun’s theorem (see [19, 23]) to extend the trial

function from the perforated domain Ωp to the whole domain Ω.

Lemma 3.2.2 (Kirszbraun’s theorem). If A,B ⊂ IRm and f : A → IRn is Lips-

chitzian, then f has a Lipschitzian extension F : A∪B → IRn with Lip(F ) = Lip(f).

From the Lemma A.4.1, in order to make sure that the extend function φ belongs
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to H1(Ω), we need to ensure that

||γ0φp − γ0φ∆||∂∆ = 0. (3.11)

However, our trial function φp will be continuous in each subdomain (Πij or B) of Ωp.

The Lemma 3.2.2 says that the extended function φ will be Lipschitzian continuous.

It will be continuous across ∂∆, so it satisfies the continuity condition in (3.11). A

Lipschitzian function is differentiable almost everywhere, which means φ∆ will belong

to H1(∆). So the extended function φ will belong to H1(Ω) automatically by applying

the Lemma 3.2.2.

Another property of the extended function φ from the Lemma 3.2.2 is that it will

keep the Lipschitzian constant. In other words,

|∇φ∆| ≤ C sup
x∈Ωp

|∇φp|.

But this bound is not so useful for us because |∇φp| will blow up in some place in

Ωp. However, we can use the value of |∇φp| near the boundary ∂∆ to bound |∇φ∆|,

actually

|∇φ∆| ≤ C sup
x→∂∆

|∇φp|. (3.12)

Suppose the triangle is ∆ijk, whose vertices are located on the boundary of

Di, Dj, Dk respectively. It is surrounded by three necks Πij,Πjk and Πki. Suppose the

potentials on the three neighbor disks are ti, tj, tk respectively. From the construction

of the trial function φp in Section 3.4, we will see that there will be a constant C
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which will not depend on R or δ such that

|∇φp| ≤
CL

R
max (|ti − tj|, |ti − tk|, |tj − tk|) as x→ ∂∆ijk (3.13)

Then the trial function φ satisfies

|∇φ|∆ijk
≤ CL

R
max (|ti − tj|, |ti − tk|, |tj − tk|)

and we will have

1

2

∫
∆ijk

|∇φ|2 ≤ (
CL

R
)2 max

(
|ti − tj|2, |ti − tk|2, |tj − tk|2

)
area(∆ijk)

≤ C max
(
|ti − tj|2, |ti − tk|2, |tj − tk|2

) (3.14)

where the constant C does not depend on R, δ.

From the formula (2.27), we see that

1

2

∫
Πij

|∇φ|2 = O(

√
R

δij
)|ti − tj|2

It is similar in the necks Πjk and Πki.

What we have is

1

2

∫
∆ijk

|∇φ|2 = O(

√
δ

R
) max

{
1

2

∫
Πij

|∇φ|2, 1

2

∫
Πjk

|∇φ|2, 1

2

∫
Πki

|∇φ|2
}
. (3.15)

where δ is the upper bound for all δij. It means the integration of the trial function

φ in ∆ will be small compared to the integration of φ in the necks Π.
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Hence we have

1

2

∫
Ω

|∇φ|2 =
1

2

∫
Ωp∪∆

|∇φ|2 =
1

2

∫
Ωp

|∇φ|2 +
1

2

∫
∆

|∇φ|2

=
1

2

∫
Ωp

|∇φp|2[1 +O(

√
δ

R
)] = Ep(ψ)

[
1 +O(

√
δ

R
)

]2

= Ep(ψ)[1 +O(

√
δ

R
)]

(3.16)

from (3.10). It means we find a trial function φ ∈ V and it will give an upper bound

for E(ψ)

E(ψ) ≤ 1

2

∫
Ω

|∇φ|2 ≤ Ep(ψ)[1 +O(

√
δ

R
)] (3.17)

In the summary, we have

Lemma 3.2.3 (The upper bound).

Ep(ψ) ≤ E(ψ) ≤ Ep(ψ)[1 +O(

√
δ

R
)], as

δ

R
→ 0 (3.18)

for any given boundary condition ψ.

So Ep(ψ) is a good approximation for E(ψ) with any boundary condition ψ. In

order to approximate E(ψ), it is enough to approximate Ep(ψ). In the next section,

we will show how to separare the minimization problem (3.5) into a two lever mini-

mization problem.

Remark 3.2.4. An alternative way to prove that Ep(ψ) is a good approximation for

E(ψ) is to extend the solution up of (3.7) from Ωp to Ω directly. However, we need

to discuss the properties of up near ∂∆ in Ωp. It is not obvious for up to have the

property as φp has in (3.13).
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3.3 Separation of the perforated energy Ep(ψ)

We the boundary condition ψ of the problem (3.5) has highly oscillation, there will be

tangential flux in the boundary layer. However, the oscillation of boundary condition

will not influence too much on the flux far from the boundary. The idea is to separare

the energy Ep(ψ) into two parts, which are the energy inside the domain and the

energy near the boundary. We will use different methods to approximate the energies

in these two different parts.

Notice that the boundary layer B and the union of necks Π are disjoint, we can

separate the minimization problem (3.5) into two parts like following

Lemma 3.3.1 (The first iterative minimization lemma).

Ep(ψ) =
1

2
min
φ∈Vp

∫
Ωp

|∇φ|2

= min
U

(
1

2
min

φ∈VB(U)

∫
B

|∇φ|2 +
1

2
min

φ∈VΠ(U)

∫
Π

|∇φ|2
) (3.19)

where

VB(U) = {φ ∈ H1(B) : φ|∂D = ψ, φ|∂Di
= Ui,∀i ∈ SB}.

VΠ(U) = {φ ∈ H1(Π) : φ|∂Di
= constant ,∀i ∈ SI , φ|∂Di

= Ui,∀i ∈ SB}.

and U ∈ IRNB is a vector for potentials on inclusions which are adjacent to the

boundary ∂D. SB and SI are index sets for inclusions near the boundary and inside

the domain, respectively.

Proof. Define the energy in all the inner necks Π with U given as

EΠ(U) =
1

2
min

φ∈VΠ(U)

∫
Π

|∇φ|2 (3.20)



51

where EΠ depends on the vector U .

Minimizing EΠ(U) over VΠ leads to the following Euler-Lagrange equations:

∆u = 0, in Π

u = ti, on ∂Di,∀i ∈ SI∫
∂Di

∂u

∂n
= 0,∀i ∈ SI

u = Ui, on ∂Di,∀i ∈ SB
∂u

∂n
= 0, on ∂Π ∩ ∂∆

(3.21)

Also we can write the solution of the problem (3.21) as (u, T ), where T ∈ IRNI is the

vector of potentials on the inside disks.

We can also define the erengy in the boundary layer B with ψ and U given as

EB(ψ,U) =
1

2
min

φ∈VB(U)

∫
B

|∇φ|2 (3.22)

Minimizing EB(ψ,U) over VB leads to the following Euler-Lagrange equations:

∆u = 0, in B

u = Ui, on ∂Di,∀i ∈ SB

u = ψ, on ∂D

∂u

∂n
= 0, on ∂B ∩ ∂∆

(3.23)

Now suppose (u∗,U∗, T ∗) is the unique solution of the problem (3.7), it is the

minimizer of Ep(ψ) over Vp. We have

Ep(ψ) =
1

2

∫
Ωp

|∇u∗|2 (3.24)
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Because both the problem (3.21) and (3.23) have unique solutions with given bound-

ary conditions, see proof in appendix A.2. Then u∗|B is the unique solution for the

problem (3.23) with boundary conditions ψ and U∗, and (u∗|Π, T ∗) is the unique

solution for the problem (3.21) with boundary condition U∗. We have

min
U

(EB(ψ,U) + EΠ(U))

≤ EB(ψ,U∗) + EΠ(U∗)

=
1

2

∫
B

|∇u∗|2 +
1

2

∫
Π

|∇u∗|2

=
1

2

∫
Ωp

|∇u∗|2

= Ep(ψ)

(3.25)

On the other hand, for any given vector U , suppose the solution of (3.21) is

(u∗Π, T ∗) with u∗Π ∈ VΠ(U), and the solution of (3.23) is u∗B ∈ VB(U). We can define

a trial function v in Vp such that

v =



u∗B, in B

u∗Π, in Π

T ∗i , on ∂Di(i ∈ SI),

Ui, on ∂Di(i ∈ SB).

(3.26)

v ∈ H1(Ωp) is obvious because Π and B do not share any interface. So we have

v ∈ Vp.
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Then we will have

Ep(ψ) = min
φ∈Vp

1

2

∫
Ωp

|∇φ|2

≤ 1

2

∫
Ωp

|∇v|2

=
1

2

∫
B

|∇u∗B|2 +
1

2

∫
Π

|∇u∗Π|2

= EB(ψ,U) + EΠ(U).

(3.27)

And this is true for arbitrary vector U , so we have

Ep(ψ) ≤ min
U

(EB(ψ,U) + EΠ(U)) .

Then we proved

Ep(ψ) = min
U

(EB(ψ,U) + EΠ(U)) . (3.28)

Remark 3.3.2. The left and right hand sides of (3.28) are two equivalent minimiza-

tion problem. On the right hand side, if we combine the minimizers of the two first

lever minimization problems (3.22) and (3.20) with the minimizer U∗ of the second

lever minimization problem, we will get the minimizer of the problem (3.1) on the left

hand side. Hence it will satisfies the conservation law on the boundary disks

∫
∂Di

∂u

∂n
= 0,∀i ∈ SB

which are not appeared in the Euler-Lagrange equations (3.23) and (3.21).

Remark 3.3.3. From the maximum principle Lemma A.2.2, the entries of the poten-
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tial vector U on the boundary inclusions cannot be arbitrary, it will be bounded from

above and below by the maximum and minimum values of boundary condition ψ.

Now we have separated the problem (3.5) into two problems, (3.20) and (3.22).

The two problems are in two disconnected domains, Π and B. The energies of the

two problems both depends on U . We can first approximate EΠ(U) and EB(ψ,U) by

some formulas of U . Then solve the second step minimization problem over U , which

is a discrete optimization problem.

we need to approximate EΠ(U) and EB(ψ,U) for any given vector U . In the next

section, we will use the discrete network approximation to estimate EΠ(U), which will

only depends on U but not on the boundary condition ψ. And in Chapter 4, we will

use variational principles to approximate EB(ψ,U), which will depends on U and the

boundary condition ψ.

3.4 Approximation in necks

We will use discrete network approximation to estimate EΠ(U). Borcea et al [8, 6, 7]

gave very rigorous proof for this approximation for general high contrast problems.

Berlyand et al [4, 5] discussed the densely packed composites problems very care-

fully. Novikov [22] discussed the nonlinear case for the high contrast problems and

introduced the perforated medium approach there.

The problem (3.20) is defined on a collection of necks, and these necks are sepa-

rated by disks and triangles. We can use the discrete network approximation for this

problem.

From Novikov [22], we have the following iterative minimization lemma. We call

it the second iterative minimization lemma here.
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Lemma 3.4.1 (The second iterative minimization Lemma).

EΠ(U) =
1

2
min
φ∈VΠ

∫
Π

|∇φ|2 = min
T∈V D

0 (U)

∑
Πij

EΠij
|ti − tj|2, (3.29)

where T = (t1, t2, · · · )T is a vector for potentials on all the inclusions and

V D
0 (U) = {T ∈ IRNI+NB : ti = constant (i ∈ SI) and ti = Ui(i ∈ SB)}. (3.30)

The definition for energy in each neck Πij is

EΠij
=

1

2
min
φ∈VΠij

∫
Πij

|∇φ|2 (3.31)

with

VΠij
= {φ ∈ H1(Πij) : φ|∂Di

=
1

2
, φ|∂Dj

= −1

2
}. (3.32)

This lemma separates the minimization problem (3.20) into a two lever mini-

mization problem. The first lever is the minimization problems (3.31), and we have

approximation to EΠij
in Section 2.3, which only depends on the geometric property

of the necks. The second lever is a discrete minimization problem and it can be solved

very easily.

We will have the following asymptotic approximation

EΠ(U) = min
T∈V D

0 (U)

∑
Πij

EΠij
|ti − tj|2

=
1

2
min

T∈V D
0 (U)

∑
Πij

σij|ti − tj|2[1 +O(

√
δij
R

)],

(3.33)
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where σij is an approximation for the effective conductance of the neck Πij.

Define the following approximation energy

E0
Π(U) =

1

2
min

T∈V D
0 (U)

∑
Πij

σij|ti − tj|2 (3.34)

The right hand side of (3.34) is a minimization problem of a quadratic form with σij

given. We can associate this minimization problem with a discrete resistor network

(G0, γ0) introduced in Section 2.4.3.

From Section 2.2, we have

E0
Π(U) =

1

2
min

T∈V D
0 (U)

∑
Πij

σij|ti − tj|2 =
1

2
UTΛD

0 U (3.35)

where ΛD
0 is the DtN map of the discrete resistor network associate with the high

contrast composite introduced in Section 2.4.3.

Then we have the following approximation for the energy in all the necks Π

EΠ(U) =
1

2
UTΛD

0 U [1 +O(

√
δ

R
)]. (3.36)

with given potentials U on the boundary inclusions.



Chapter 4

Analysis in boundary layer

We also need to approximate EB(ψ,U) near the boundary. Here let’s state the problem

again. For a given vector U and the boundary condition ψ. We want to approximate

EB(ψ,U) =
1

2
min

φ∈VB(U)

∫
B

|∇φ|2. (4.1)

with

VB(U) = {φ ∈ H1(B) : φ|∂D = ψ, φ|∂Di
= Ui, i ∈ SB}. (4.2)

We are going to prove that we can also have an quadratic form of U for the approxi-

mation of EB(ψ,U). However, the coefficients for the quadratic form here will depend

on the boundary condition ψ now.

From the appendix A.1, the minimizer of the problem (4.1) is the solution of the

57



58

following Euler-Lagrange equations

∆u = 0, in B

u = Ui, on ∂B ∩ ∂Di,∀i ∈ SB
∂u

∂n
= 0, on ∂B ∩ ∂∆

u = ψ. on ∂D

(4.3)

In order to get the lower bound, we need to do a Legendre transformation (see

appendix A.3)

EB(ψ,U) = max
j∈WB

{∫
∂D

ψj · n +
∑
i∈SB

Ui
∫
∂Di∩∂B

j · n− 1

2

∫
Ω

|j|2
}
, (4.4)

with the space

WB = {j ∈ L2(B) : ∇ · j = 0, j · n|∂B∩∂∆ = 0} (4.5)

where the derivative of j is in weak sense. Also we only need j ∈ L2(B), which means

we can construct j from parts by parts.

Remark 4.0.2. In order to make sure the condition j ·n|∂B∩∂∆ = 0 satisfies, we have

to put some necks ΠB into the domain B. It is easy to construct j in necks ΠB such

that this condition satisfies. But it is complicated to construct j in B0 to satisfy this

condition. That is why we put some necks ΠB into the boundary layer B.

In order to present our ideas, we will discuss the situation when the boundary

consition is cos kθ and approximate EB(cos kθ,U) in the following several sections.

Later we will discuss how to approximate EB(ψ,U) with a general boundary condition

ψ.
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4.1 The upper and lower bounds for EB(cos kθ,U)

In this section, we will first discuss how to construct trial functions for upper and

lowers bounds for EB(cos kθ,U). We need to construct the trial functions separately

in ΠB,∆B and B0. Then we will prove that the upper and lower bound are very close

under our construction, which means we can use either the upper or the lower bound

as an approximation for EB(cos kθ,U).

4.1.1 The upper bound for EB(cos kθ,U)

For the upper bound, we need to construct a function in H1(B) and satisfies con-

straints in (4.2). From the Lemma A.4.1, we see that in order to construct a trial

function piece by piece such that the function still belongs to H1(B), we only need

the functions of different pieces match each other on the interface in L2 sense. Now

we are going to construct the trial functions for the upper bound piece by piece.

Construction in ΠB

For a neck showed in Figure 2.3, the flux will be strong in the horizontal direction,

but weak in the vertical direction. We construct the trial functions in the necks Πij

for the upper bound like what we did in Section 2.3

φ(x, y) =
1

2
(Ui + Uj) +

y

hij(x)
(Ui − Uj),∀y ∈ (−hij(x)

2
,
hij(x)

2
), x ∈ (−S−ij , S+

ij ) (4.6)

Under this construction, the trial function φ matches the boundary conditions on the

left and right boundary of the neck Πij. Also like the discussion in Section 2.3, we
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have the following approximation in the neck Πij when δij ≤ δ � R

1

2

∫
Πij

|∇φ(x, y)|2 =
1

2

∫ S+
ij

−S−ij

dy

h(y)
(Uj − Ui)2 +O(1)

=
1

2
σij(Uj − Ui)2[1 +O(

√
δij
R

)].

(4.7)

where σij is the effective conductance of the neck Πij introduced in (2.27).

Construction in B0

Next we are going to construct the trial functions in B0. The flux in the layer B0 is

much more complicated, because we need to consider the flux in both the radius and

tangential directions. However, the idea is still trying to find some φ such that

∆φ ≈ 0

in the domain B0.

We usually cannot give an explicit form of φ such that ∆φ is exactly zero, but we

are trying to make ∆φ to be small. The idea is to write φ into combination of the

boundary conditions and the potentials U , but the linear combination will not take

care of the tangential flux very well. We construct the trial function in the layer B0

like

φ(r, θ) = wk(r, θ) cos kθ + w(r, θ)L(U) (4.8)

where the weight functions wk and w both depend on r and θ. We need to carefully

construct them such that φ(r, θ) showed in (4.8) will be a good approximation of the

solution to ∆φ = 0 in B0.
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We can construct the weight functions like following

wk(r, θ) =
(r/L)k − (1− d(θ)/L)2k(r/L)−k

1− (1− d(θ)/L)2k
, (4.9)

which satisfies

∂2wk
∂r2

+
1

r

∂wk
∂r
− k2

r2
wk = 0,

wk(L− d(θ), θ) = 0 and wk(L, θ) = 1,

(4.10)

and

w(r, θ) =
ln(r/L)

ln(1− d(θ)/L)
(4.11)

which satisfies

∂2w

∂r2
+

1

r

∂w

∂r
= 0,

w(L− d(θ), θ) = 1 and w(L, θ) = 0,

(4.12)

L here is a function of the vector U defined as

L(U) =


Ui, on ∂Di ∩ ∂Bi,

(1− `ij(θ))Ui + `ij(θ)Uj, on ∂∆ij ∩ ∂Bij

(4.13)

where `ij is linear on θ

`ij(θ) =
θ − (θi + αi)

(θj − αj)− (θi + αi)
(4.14)



62

which satisfies

`ij(θi + αi) = 0 and `ij(θj − αj) = 1

See Figure 4.1(a) and Figure 4.1(b) for more details. L is piecewise defined, it is

constants on ∂Bi and linear on ∂Bij.

(a) (b)

Figure 4.1: (a) The angles of the partition. (b) The partition of B0.

Notice that d(θ) is the distance between the two boundaries of B0, it is a positive

function of θ. Under this construction, if the layer width d(θ) ≡ d does not depend

on θ,

∆φ = (
∂2wk
∂r2

+
1

r

∂wk
∂r
− k2

r2
wk) cos kθ + (

∂2w

∂r2
+

1

r

∂w

∂r
)L(U) = 0

because L(U) is linear on θ. This is the reason we construct the weight functions like

(4.9) and (4.11). Later we will see that this is still a good construction when layer

width d(θ) depends on θ.
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Construction in ∆B

The small domains ∆ij are gaps between ΠB and B0, they have very small areas and

the energy in these domains should also be small compared to the total energy. We

need to construct the trial functions in these domains as bridges which can connect

the trial functions in ΠB and B0, such that the trial functions belongs to H1(B) when

we combine them together.

As mentioned before, we need to construct trial functions in different domains

such that they match each others in L2 sense, see Lemma A.4.1. Notice that on the

boundary ∂Π−ij = ∂Πij ∩ ∂∆ij, the trial function φ is linear,

φ|∂Π−ij
=

1

2
(Ui + Uj) +

y

hij(−S−ij )
(Ui − Uj). (4.15)

We can put the neck Πij into the domain D, and transfer the coordinate system from

(x, y) to (r, θ). See Figure 2.6(b). We can define the following parameter along ∂Π−ij

`−ij(θ) =
1

2
− y(r, θ)

hij(−S−ij )
∈ [0, 1] (4.16)

Then (4.15) becomes

φ|∂Π−ij
=
(
1− `−ij(θ)

)
Ui + `−ij(θ)Uj (4.17)

In order to ensure the whole trial function belongs to H1(B), we construct the

trial functions φ in ∆ij such that it satisfies the boundary condition (4.17) and

φ|∂∆ij∩∂B0 = (1− `ij(θ))Ui + `ij(θ)Uj (4.18)

where `ij(θ) is defined in (4.14). From the lemma A.4.1, we see that the function φ
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belongs to H1(B), because we let the trial functions match each other on all interfaces

between different domains.

Also from the Kirszbraun’s theorem Lemma 3.2.2 and the results in Section B.2,

we have

1

2

∫
∆ij

|∇φ|2 ≤ C(Ui − Uj)2 =
1

2
σij(Ui − Uj)2[O(

√
δij
R

)]. (4.19)

Hence we have the following approximation for upper bound in ΠB ∪∆B

1

2

∫
ΠB∪∆B

|∇φ|2 =
∑

Πij⊂B

1

2
σij(Ui − Uj)2[1 +O(

√
δ

R
)] (4.20)

Also, the trial function φ satisfies all the constraints in the space VB. Which means

φ is a qualified trial function to give EB(cos kθ,U) an upper bound. And we have

1

2

∫
B

|∇φ|2 =
∑

Πij⊂B

1

2
σij(Ui − Uj)2[1 +O(

√
δ

R
)] +

1

2

∫
B0

|∇φ|2 (4.21)

where φ is the trial function constructed in this section.

4.1.2 The lower bound for EB(cos kθ,U)

Next we will construct the trial functions in B for the lower bound of EB(cos kθ,U).

From (4.4) and (4.5), we need to construct a vector function j ∈ WB which would

give EB(cos kθ,U) an lower bound. We are going to construct j ∈ WB from parts by

parts just like what we did for the upper bound.

Our approximation method is going to construct trial functions for the upper and

lower bounds, and then using either the upper or the lower bound as an approximation

for the energy. This motivate us to think about the gap between the upper and lower
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bounds before we are constructing trial functions.

To analyze the gap between the upper and low bounds, also to get some clue to

construct the trial functions for the lower bound, we need the following lemma

Lemma 4.1.1. Suppose φ ∈ VB gives EB(ψ,U) an upper bound EB(ψ,U) and j ∈ WB

gives EB(ψ,U) a lower bound EB(ψ,U), then the gap between the upper and lower

bounds is

G(φ, j) = EB(ψ,U)− EB(ψ,U) =
1

2

∫
B

|∇φ− j|2. (4.22)

Proof. By Green’s identity

∫
B

∇φ · j =

∫
B

∇φ · j +

∫
B

φ∇ · j

=

∫
∂D

ψj · n +
∑
i∈SB

Ui
∫
∂Di∩∂B

j · n

Then we have

G(φ, j) =
1

2

∫
B

|∇φ|2 +
1

2

∫
B

|j|2 −
∫
∂D

ψj · n−
∑
i∈SB

Ui
∫
∂Di∩∂B

j · n

=
1

2

∫
B

|∇φ|2 +
1

2

∫
B

|j|2 −
∫
B

∇φ · j

=
1

2

∫
B

|∇φ− j|2

The lemma (4.1.1) suggests us to construct the flux j as close to ∇φ as possible

to make the gap (4.22) small. Notice that the flux j ∈ WB is only required to belong

to the space L2(B), so we can construct the flux j in ΠB,∆B and B0 separately.
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Construction in ΠB

In the necks Πij, we will still use the same coordinate system when we construct φ

for the upper bound. As mentioned before, the flux will be strong in the horizontal

direction but weak in vertical direction. We construct j in Πij like

j =

(
0,
Ui − Uj
hij(x)

)T
, (4.23)

here we use the same coordinate system as in the construction (4.6). It is easy to

check that j is divergence free in Πij and j · n = 0 on ∂Πij ∩ ∂∆. Also we have the

gap in Πij

GΠij
:=

1

2

∫
Πij

|∇φ− j|2 = O(1) = [O(

√
δ

R
)]

∫
Πij

|∇φ|2 (4.24)

from the approximation (4.7) and the discussion in Section 2.3.

Construction in ∆B

In the small areas ∆ij, we just let

j = (0, 0)T . (4.25)

Then we have the gap in ∆ij

G∆ij
:=

1

2

∫
∆ij

|∇φ− j|2 =
1

2

∫
∆ij

|∇φ|2 = O(1) = [O(

√
δ

R
)]

∫
Πij

|∇φ|2 (4.26)

from the approximation (4.19)
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Construction in B0

In the layer B0, we will use the polar coordinate system as in the formula (4.8), also

see appendix A.5 for more details of the polar coordinate system. First we construct

a trial function H(r, θ) ∈ H1(B0), then we let

j = ∇⊥H = −1

r

∂H

∂θ
ur +

∂H

∂r
uθ.

In this way, j will be divergence free in B0 and there is no other requirements for j in

B0,

In order to make the gap in (4.22) small, we need to choose H(r, θ) such that

|∇φ − ∇⊥H| is small. In general we cannot choose H(r, θ) such that ∇⊥H = ∇φ,

otherwise ∆φ = ∇ · (∇φ) = ∇ · (∇⊥H) = 0. But this is not true for a general trial

function in VB, at least it is not true for φ in (4.8). However, we can choose H(r, θ)

such that ∇φ and ∇⊥H equals to each other in one direction. We let

H(r, θ) = F (θ)−
∫ L

r

1

s

∂φ(s, θ)

∂θ
ds (4.27)

where φ is the function showed in (4.8) and F (θ) is a function need to be determined.

By this construction

∂H

∂r
=

1

r

∂φ

∂θ
. (4.28)

In conclusion, the gap in B0 is

GB0 :=
1

2

∫
B0

|∇φ− j|2 =
1

2

∫
B0

|∇φ−∇⊥H|2

=
1

2

∫
B0

{
∂φ

∂r
+

1

r
F ′(θ)− 1

r

∫ L

r

1

s

∂2φ(s, θ)

∂θ2
ds

}2 (4.29)
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Choose F (θ) such that

F ′(θ) = −L∂φ
∂r

(L, θ) (4.30)

By this assumption, j|r=L = ∇φ|r=L, which means j and ∇φ are totally matched at

the boundary ∂D. Then we will have

GB0 =
1

2

∫
B0

{
−1

r

∫ L

r

∂

∂s
(s
∂φ

∂s
)− 1

r

∫ L

r

1

s

∂2φ(s, θ)

∂θ2
ds

}2

=
1

2

∫
B0

{
1

r

∫ L

r

s
∂2φ(s, θ)

∂s2
+
∂φ(s, θ)

∂s
+

1

s

∂2φ(s, θ)

∂θ2
ds

}2

=
1

2

∫
B0

{
1

r

∫ L

r

s∆φ(s, θ)

}2

4.1.3 Bounds of the gap

From (4.24) and (4.26), we will have

GΠB∪∆B
=
∑

Πij⊂B

(GΠij
+G∆ij

) = O(

√
δ

R
)
∑

Πij⊂B

1

2

∫
Πij∪∆ij

|∇φ|2

=
1

2
O(

√
δ

R
)
∑

Πij⊂B

σij(Ui − Uj)2.

(4.31)

Then we are going to prove

GB0 =
1

2

∫
B0

{
1

r

∫ L

r

s∆φ(s, θ)

}2

= O(1) =
1

2
O(

√
δ

R
)

∫
B0

|∇φ|2 (4.32)

for any k and U .

In the domains Bij, the width of the layer d(θ) = R/2 is a constant, neither wk
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nor w depends on θ. And

L(U) = (1− `ij(θ))Ui + `ij(θ)Uj (4.33)

with `ij defined in (4.14).

So in this area

∂L(U)

∂θ
=

Uj − Ui
(θj − αj)− (θi + αi)

∂2L(U)

∂θ2
= 0

(4.34)

From the construction (4.8), we have

∂φ

∂r
=
∂wk
∂r

cos kθ +
∂w

∂r
L(U)

∂2φ

∂r2
=
∂2wk
∂r2

cos kθ +
∂2w

∂r2
L(U)

∂φ

∂θ
= −kwk sin kθ + w

∂L(U)

∂θ
∂2φ

∂θ2
= −k2wk cos kθ

(4.35)

So we will have

∆φ =
∂2φ

∂r2
+

1

r

∂φ

∂r
+

1

r2

∂2φ

∂θ2

= (
∂2wk
∂r2

+
1

r

∂wk
∂r
− k2

r2
wk) cos kθ + (

∂2w

∂r2
+

1

r

∂w

∂r
)L(U)

= 0

(4.36)

which means the gap

GBij
= 0

in the domain Bij.



70

In the domains Bi, L(U) = Ui is a constant. From the construction (4.8), we have

∂φ

∂r
=
∂wk
∂r

cos kθ +
∂w

∂r
Ui

∂2φ

∂r2
=
∂2wk
∂r2

cos kθ +
∂2w

∂r2
Ui

∂φ

∂θ
= −kwk sin kθ +

∂wk
∂θ

cos kθ +
∂w

∂θ
Ui

∂2φ

∂θ2
= −k2wk cos kθ − 2k

∂wk
∂θ

sin kθ +
∂2wk
∂θ2

cos kθ +
∂2w

∂θ2
Ui

(4.37)

So we will have

∆φ =
∂2φ

∂r2
+

1

r

∂φ

∂r
+

1

r2

∂2φ

∂θ2

= (
∂2wk
∂r2

+
1

r

∂wk
∂r
− k2

r2
wk) cos kθ + (

∂2w

∂r2
+

1

r

∂w

∂r
)Ui

+
1

r2

{
−2k

∂wk
∂θ

sin kθ +
∂2wk
∂θ2

cos kθ +
∂2w

∂θ2
Ui
}

=
1

r2

{
−2k

∂wk
∂θ

sin kθ +
∂2wk
∂θ2

cos kθ +
∂2w

∂θ2
Ui
}

(4.38)

Hence the gap in Bi is

GBi
=

1

2

∫ θi+αi

θi−αi

Gi(θ)dθ (4.39)

with

Gi(θ) =

∫ L

L−d(θ)

rdr

{
1

r

∫ L

r

s∆φ(s, θ)ds

}2

=

∫ L

L−d(θ)

dr

r

{∫ L

r

ds

s

(
−2k

∂wk(s, θ)

∂θ
sin kθ +

∂2wk(s, θ)

∂θ2
cos kθ +

∂2w(s, θ)

∂θ2
Ui
)}2

≤ 3Gk
i1(θ) + 3Gk

i2(θ) + 3U2
i Gi3(θ)

(4.40)
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where

Gk
i1(θ) =

∫ L

L−d(θ)

dr

r

(∫ L

r

ds

s
(−2k

∂wk(s, θ)

∂θ
)

)2

Gk
i2(θ) =

∫ L

L−d(θ)

dr

r

(∫ L

r

ds

s

∂2wk(s, θ)

∂θ2

)2

Gi3(θ) =

∫ L

L−d(θ)

dr

r

(∫ L

r

ds

s

∂2w(s, θ)

∂θ2

)2

(4.41)

Here we used Cauchy-Schwars inequality.

In the appendix B, we will prove that

GBi
=

1

2

∫ θi+αi

θi−αi

Gi(θ) = C1 + C2U2
i (4.42)

which will not blow up for any k as δ → 0. Here C1, C2 are constants of O(1). Then

the total gap in B0 is

GB0 =

NB∑
i=1

GBi
=

NB∑
i=1

1

2

∫ θi+αi

θi−αi

Gi(θ)dθ =
1

2
O(

√
δ

R
)

∫
B0

|∇φ|2 (4.43)

In the summary, by the construction of φ for upper bound and the related con-

struction j for the lower bound, we have the following gap in B between the upper and

lower bounds for the energy in B with boundary condition cos(kθ) and any vector U

G(φ, j) =
1

2
O(

√
δ

R
)

∫
B

|∇φ|2

It means

EB(cos kθ,U) =

1

2

∑
Πij⊂B

σij(Ui − Uj)2 +
1

2

∫
B0

|∇φ|2
 [1 +O(

√
δ

R
)] (4.44)
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where φ in B0 is defined in (4.8).

4.2 The approximation for EB(cos kθ,U)

Now we use the formula in (4.44) to approximate EB(cos kθ,U). We need to approx-

imate the following integral in the B0

∫
B0

|∇φ|2 =

NB∑
i=1

∫
Bi

|∇φ|2 +
∑

Bij⊂B0

∫
Bij

|∇φ|2

with φ given in the equation (4.8).

4.2.1 The approximation in Bij

Notice that Bij is the area between the neighbor disk Di, Dj and the boundary ∂D,

see Figure 4.1(a) and Figure 4.1(b). Suppose the center of Di, Dj are located at (ri, θi)

and (rj, θj) respectively. We suppose that θi < θj and denote the angle

αij :=
1

2
((θj − αj)− (θi + αi)) and θij =

1

2
((θi + αi) + (θj − αj)) (4.45)

It will satisfy αij = O(R/L) in our construction when we suppose δ � R. We also

have (θi + αi, θj − αj) = (θij − αij, θij + αij).

In the domain Bij, we can write L(U) as

L(U) =
1

2
(Uj + Ui) +

t

2αij
(Uj − Ui) for all t ∈ (−αij, αij).
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We need to approximate

∫
Bij

|∇φ|2 =

∫ θj−αj

θi+αi

dθ

∫ L

L−R/2
rdr|∇φ|2

Here the layer width d(θ) ≡ R/2, and the weight function wk, w will only depend on

r but not on θ.

From the construction for φ in (4.8), we will have

|∇φ|2 =

(
∂wk
∂r

cos kθ +
∂w

∂r
L(U)

)2

+
1

r2

(
−kwk sin kθ + w

Uj − Ui
2αij

)2

Integrate the above formula in Bij will give us

∫
Bij

|∇φ|2 = kαij +
2kp2

1− p2
αij −

2k2p2 ln(1−R/(2L))

(1− p2)2

∫ θj−αj

θi+αi

cos 2kθdθ

+
2

ln(1−R/(2L))

∫ θj−αj

θi+αi

L(U) cos kθdθ − 1

ln(1−R/(2L))

∫ θj−αj

θi+αi

(L(U))2dθ

+ 2(Uj − Ui)
1− p2 + 2p ln p

ln p(1− p2)
+ (Uj − Ui)2− ln(1−R/(2L))

6αij

(4.46)

where p = (1−R/(2L))k.

We can sum all these integrations in such domains together

∑
i,j∈SB

∫
Bij

|∇φ|2 =
∑
i,j∈SB

kαij +
∑
i,j∈SB

aij(Uj − Ui)2 +

NB∑
i=1

(a0
iU2

i + 2b0
iUi + c0

i ) (4.47)
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where

aij =
1

3

αij
ln(1−R/(2L))

− 1

6

ln(1−R/(2L))

αij

a0
i = − αij + αli

ln(1−R/(2L))
> 0

b0
i =

1

2 ln(1−R/(2L))

∫ θij+αij

θij−αij

cos k(θij + t)dt− 1

2 ln(1−R/(2L))

∫ θij+αij

θij−αij

t

αij
cos k(θij + t)dt

+
1

2 ln(1−R/(2L))

∫ θli+αli

θli−αli

cos k(θli + t)dt+
1

2 ln(1−R/(2L))

∫ θli+αli

θli−αli

t

αli
cos k(θli + t)dt

c0
i =

kp2

1− p2
αij −

k2p2 ln(1−R/(2L))

(1− p2)2

∫ θij+αij

θij−αij

cos 2k(θij + t)dt

+
kp2

1− p2
αli −

k2p2 ln(1−R/(2L))

(1− p2)2

∫ θli+αli

θli−αli

cos 2k(θli + t)dt

Here we suppose for fixed i, the inclusions Dl.Di, Dj are in anticlockwise directions.

Notice that when k is small, kαij will also be O(1). However when k grows,

kαij will blow up. All other terms in (4.47) are the error which is generated by our

approximation. Later we will see that the coefficients for the error terms in (4.47)

will be O(1), which will not blow up as k goes to infinity and will be small comparing

to relative coefficients in the formulas for the total energy.

Since αij = O(R/L) and ln(1−R/(2L)) = O(R/L), it is obvious to obtain

aij = O(1) = O(

√
δ

R
)σij,

where σij is the effective conductance in the neck Πij between the inclusions Di

and Dj. Here Di, Dj are inclusions near the boundary ∂D which are also neighbor

inclusions near the domain Bij we are discussing here.

In the next section, we will show that the integration in each Bi will have the
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following form

∫
Bi

|∇φ|2 = kαi + (aiU2
i + 2biUi + ci)

From the formulas for ai, bi, ci in Section B.5, it is easy to obtain

a0
i = O(1) ≤ O(

√
δ

R
)ai

|2b0
iUi| ≤ U2

i + (b0
i )

2 ≤ U2
i +O(1)

|c0
i | ≤ O(1)

We need to notice that b0
i , c

0
i do not depend on Ui and they both will decay to 0 as k

goes to infinity. Then we can obtain the following approximation

∫
B0

|∇φ|2 = kπ +

NB∑
i

(aiU2
i + 2biUi + ci)[1 +O(

√
δ

R
)]

+
∑
i,j∈SB

σij(Uj − Ui)2O(

√
δ

R
)

(4.48)

since
NB∑
i=1

αi +
∑
Bij⊂B

αij = π.

The last term in above equation is an error term, which will be absorbed by the

energy in the neck Πij between the inclusions Di and Dj. As k goes to infinity, Ui and

the coefficients bi, ci will decay to 0, which means the error will decay to 0 also. In

this case, the energy will just be kπ which equals to the energy for the homogeneous

problem without any inclusions. This means that as the oscillations of the boundary

conditions getting higher and higher, the inclusions inside will not have influence on

the total energy.
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4.2.2 The approximation in Bi

Remember the formular (2.28) in Section 2.3, we define the effective conductance of

the boundary neck, which is Bi here, as

σi = π

√
2LRi

(L−Ri)δi
.

It is actually an approximation of

π

√
2LRi

riδi
= π

√
2LRi

(L−Ri)δi
+O(1).

This is because

ri +Ri + δi = L and δi � Ri � L.

We will show how can we get the formula for effective conductance σi in the approx-

imation for integral in Bi.

Now let’s approximate the integral in Bi, which is the area between the disk Di

and the boundary ∂D, see Figure 4.1(b)

∫
Bi

|∇φ|2 =

∫ θi+αj

θi−αi

dθ

∫ L

L−d(θ)

rdr|∇φ|2

where d(θ) is a function of θ defined in (2.45).

In Bi, we have

|∇φ|2 =

(
∂wk
∂r

cos kθ +
∂w

∂r
Ui
)2

+
1

r2

(
−kwk sin kθ +

∂wk
∂θ

cos kθ +
∂w

∂θ
Ui
)2
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and we want to write the integral into a quadratic form of Ui like following

∫
Bi

|∇φ|2 := kαi + aiU2
i + 2biUi + ci (4.49)

After some calculation, we will have

ai =

∫ θi+αi

θi−αi

dθ

∫ L

L−d(θ)

rdr

{
(
∂w

∂r
)2 +

1

r2
(
∂w

∂θ
)2

}
bi =

∫ θi+αi

θi−αi

dθ

∫ L

L−d(θ)

rdr

{
(
∂wk
∂r

cos kθ)
∂w

∂r
+

1

r2
(−kwk sin kθ +

∂wk
∂θ

cos kθ)
∂w

∂θ

}
ci = −kαi +

∫ θi+αi

θi−αi

dθ

∫ L

L−d(θ)

rdr

{(
∂wk
∂r

cos kθ

)2

+
1

r2

(
−kwk sin kθ +

∂wk
∂θ

cos kθ

)2
}

By the approximation of ai, bi and ci in Section B.5, we will show that

ai = π

√
2LR

riδi
+O(1)

bi = −π
√

2LR

riδi

cos kθi

ek
√

2Rδi/(Lri)
+O(1)

ci = π

√
2LR

riδi
exp

[
−2k

√
2δiR

riL

]
(cos kθi)

2

+
π

2

√
2LR

riδi

(√
2kδi
Lπ

Li1/2(exp

[
−2k

δi
L

]
)− exp

[
−2k

√
2δiR

riL

])
+O(1).

(4.50)

Then we will have∫
Bi

|∇φ|2 = kαi + aiU2
i + 2biUi + ci

= kαi +

π√2LR

riδi

(
Ui − exp

[
−k
√

2Rδi
Lri

]
cos kθi

)2

+ 2Rk,i

 [1 +O(

√
δ

R
)](4.51)
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where the resonance term Rki is

Rki =
π

4

√
2LR

riδi

{√
2kδi
Lπ

Li1/2

(
exp

[
−2kδi

L

])
− exp

[
−2k

√
2Rδi
Lri

]}

=
σi
4

{√
2kδi
Lπ

Li1/2

(
exp

[
−2kδi

L

])
− exp

[
−2k

√
2Rδi
Lri

]} (4.52)

Here Li is the Polylogarithm function which is defined by

Lis(z) :=
∞∑
k=1

zk

ks
. (4.53)

and it has the following asymptotical expansion

Li1/2(e−x) =

√
π

x
+ ζ(1/2)− ζ(−1/2)x+O(x3/2) for 0 < x� 1, (4.54)

where ζ is the Riemann zeta function.

Remark 4.2.1. In the results (4.51), the first term of the second line is the network

effect term. It is similar to the energy in the necks we discussed before, and it has the

same singularity order. The kαi term represents the energy for the tangential fluxes.

The term Rki is the resonance term, and we will discuss it carefully in this section.

The term shows up in the results also because of the inclusions, however it is more

complicated than the network effect.

4.2.3 Summary on the results

We have approximation for the integrals in Bij and Bi separately. But we need to

add them together to get the total energy for given boundary condition cos kθ. First
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of all,

∫
B0

|∇φ|2 =

NB∑
i=1

∫
Bi

|∇φ|2 +
∑
Bij⊂B

|∇φ|2

=

 NB∑
i=1

σi

(
Ui − exp

[
−k

√
2Rδi
L(ri)

]
cos kθi

)2

+ 2

NB∑
i=1

Rki

 [1 +O(

√
δ

R
)]

+

 NB∑
i=1

kαi +
∑
Bij⊂B

kαij

+

( ∑
i,j∈SB

σij(Uj − Ui)2

)
O(

√
δ

R
)

:=

(
kπ +

NB∑
i=1

σi (Ui − SkiΨc
ki)

2 + 2Rk · 1

)
[1 +O(

√
δ

R
)] +

( ∑
i,j∈SB

σij(Uj − Ui)2

)
O(

√
δ

R
).

(4.55)

Where Ψc
k = (Ψc

k1,Ψ
c
k2, · · · ,Ψc

kNB
)T ∈ IRNB×1 is a column vector with ith entry

Ψc
ki = cos kθi. (4.56)

Sk = diag{Sk1, Sk2, · · · , SkNB
} ∈ IRNB×NB is the decay matrix with

Ski = exp

[
−k
√

2Rδi
Lri

]
(4.57)

It is like an average of the boundary condition near each inclusion Di and it decays

to 0 as k grows.

Rk := (Rk1,Rk2, · · · ,RkNB
) ∈ IR1×NB

is the resonance vector with Rki given by

Rki =
σi
4

{√
2kδi
Lπ

Li1/2

(
exp

[
−2kδi

L

])
− exp

[
−2k

√
2Rδi

(L−R)L

]}
. (4.58)
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Notice that we replaced ri by L − R and generate a O(1) error which is ignored in

this definition.

σi = π

√
2LR

(L−R)δi

is the approximation for the effective conductance of the boundary neck Bi.

1 ∈ IRNB×1 is a column vector with all entries 1 and

Rk · 1 =

NB∑
i=1

Rki.

Notice that the definition for Ψc
k, Sk and Rk works for all positive integer k. The

entries of the decay matrix Sk decays to 0 as k grows.

In the summary, also from the formula (2.49), we have

Ep(cos kθ) =
1

2
min
U

UTΛD
0 U +

∑
Πij⊂B

σij(Ui − Uj)2 +

NB∑
i=1

σi (Ui − SkiΨc
ki)

2

 [1 +O(

√
δ

R
)]

+
1

2
(kπ + 2Rk · 1) [1 +O(

√
δ

R
)]

=
1

2

(
kπ + (SkΨ

c
k)
TΛD(SkΨ

c
k) + 2Rk · 1

)
[1 +O(

√
δ

R
)]

(4.59)

Where ΛD
0 ,Λ

D are introduced in Section 2.4.3 for our problem.

In order to simplify the results above, we will simplify some formulas first. There

are three different cases.

Case 1: k . L/R

In this case, it is easy to show that the network effect will dominate.

Ep(cos kθ) =
1

2
(Ψc

k)
TΛDΨc

k[1 + o(1)].
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kπ and the resonance term will be O(1). It will also be right to write above results

as

Ep(cos kθ) =
(
kπ + (SkΨ

c
k)
TΛD(SkΨ

c
k) + 2Rk · 1

)
[1 + o(1)] (4.60)

Case 2: L/R << k << L/δ

In the results, we would like to keep terms of order
√
R/δ or greater than that. We

will keep kπ and the network effect terms there. However, in this case the resonance

Rk = (Rk1,Rk2, · · · ,RkNB
) can be simplified to

Rki =
σi
4

(
1− exp

[
−2k

√
2Rδi

(L−R)L

])
(4.61)

since

σi
4

√
2kδi
Lπ

Li1/2

(
exp

[
−2kδi

L

])
=
σi
4

[1 + o(1)],

and we can drop terms less than
√
R/δ above.

The results would be

〈cos kθ , Λ cos kθ〉 =
(
kπ + (SkΨ

c
k)
TΛD(SkΨ

c
k) + 2Rk · 1

)
[1 + o(1)] (4.62)

where Rk = (Rk1,Rk2, · · · ,RkNB
) is the resonance term with

Rki =
σi
4

(
1− exp

[
−2k

√
2Rδi

(L−R)L

])
(4.63)

Case 3: k & L/δ

In this case

kπ ∼ NBk
R

L
& NB

R

δ
� NB

√
R

δ
.
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It will be much greater than two other terms in(4.59), and we would like to only keep

kπ in the results.

Ep(cos kθ) =
1

2
kπ[1 + o(1)].

However, we can write the results like what we have in (4.62) since it will not change

the leading order of the results.

We can summarize the results in the following unified form

Theorem 4.2.2. For any positive integer k, we have

〈cos kθ , Λ cos kθ〉 =
(
kπ + (SkΨ

c
k)
TΛD(SkΨ

c
k) + 2Rk · 1

)
[1 + o(1)] (4.64)

where Ψc
k is defined in (4.56), Sk is defined in (4.57). ΛD ∈ IRNB×NB is the Dirichlet

to Neumann map for the discrete resistor network introduced in Section 2.4.3. and

Rk = (Rk1,Rk2, · · · ,RkNB
) is the resonance term with

Rki =
σi
4

(
1− exp

[
−2k

√
2Rδi

(L−R)L

])

4.3 The approximation for general boundary con-

ditions

Our goal is to approximate 〈ψ(θ) , Λψ(θ)〉 for any given boundary data ψ(θ), where

Λ is the Dirichlet to Neumann (DtN) map introduced in (2.5).

For a general boundary condition ψ(θ), we can always suppose that the media is

grounded ∫ 2π

0

ψ(θ) = 0,

because for any constant ψ, we have Λψ = 0.
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We would like to suppose that ψ(θ)

ψ(θ) =
K∑
k=1

(ack cos kθ + ask sin kθ). (4.65)

for some positive integer K. Where

ack =
1

π

∫ 2π

0

ψ(θ) cos kθdθ

ask =
1

π

∫ 2π

0

ψ(θ) sin kθdθ

In the previous section, we have the results for ψ(θ) = cos kθ. In this section,

we will first talk about the situation for ψ(θ) = sin kθ. Then we will talk about

the situation when ψ(θ) has two different Fourier modes. At last, we would like to

generalize our results to boundary condition in (4.65).

4.3.1 The approximation for ψ(θ) = sin kθ

The case for boundary condition sin kθ will be very similar to the case for boundary

condition cos kθ. The discussion for parts inside the domain is the same, and we

only need to discuss how to deal with the problem in the boundary layer B. The

trial functions for upper and lower bounds are the same in ΠB as we discussed for

boundary condition cos kθ.

In the domain B0, the trial function for upper bound will be

φ(r, θ) = wk(r, θ) sin kθ + w(r, θ)L(U) (4.66)

which will match the boundary condition sin kθ on ∂D. It is also similar to construct

j in B0 as we discussed for cos kθ.
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In the domains ∆B, for the upper bound we can still extend the trial functions

from ΠB and B0, such that the whole trial function in B belongs to H1(B). We also

let j = 0 in ∆B for the lower bound.

Then we will have the same bound for the gap in ΠB and ∆B as showed in (4.31).

For the gap in B0, it is still 0 in each Bij. In each Bi, we will have

∆φ =
∂2φ

∂r2
+

1

r

∂φ

∂r
+

1

r2

∂2φ

∂θ2

= (
∂2wk
∂r2

+
1

r

∂wk
∂r
− k2

r2
wk) sin kθ + (

∂2w

∂r2
+

1

r

∂w

∂r
)Ui

+
1

r2

{
2k
∂wk
∂θ

cos kθ +
∂2wk
∂θ2

sin kθ +
∂2w

∂θ2
Ui
}

=
1

r2

{
2k
∂wk
∂θ

cos kθ +
∂2wk
∂θ2

sin kθ +
∂2w

∂θ2
Ui
}

(4.67)

Hence the gap in Bi is

GBi
=

1

2

∫ θi+αi

θi−αi

Gi(θ)dθ

with

Gi(θ) =

∫ L

L−d(θ)

rdr

{
1

r

∫ L

r

s∆φ(s, θ)ds

}2

=

∫ L

L−d(θ)

dr

r

{∫ L

r

ds

s

(
2k
∂wk(s, θ)

∂θ
cos kθ +

∂2wk(s, θ)

∂θ2
sin kθ +

∂2w(s, θ)

∂θ2
Ui
)}2

≤ 3Gk
i1(θ) + 3Gk

i2(θ) + 3U2
i Gi3(θ)

where Gk
i1(θ), Gk

i2(θ), Gi3(θ) have the same definition in (4.41) Then we will have the

same approximation as in (4.43). And we will have

EB(sin kθ,U) =

1

2

∑
Πij⊂B

σij(Ui − Uj)2 +
1

2

∫
B0

|∇φ|2
 [1 +O(

√
δ

R
)] (4.68)
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where φ in B0 is defined in (4.66).

We will have a similar approximation like the discussion for situation with bound-

ary condition cos kθ,

∫
B0

|∇φ|2 =

NB∑
i=1

∫
Bi

|∇φ|2 +
∑
Bij⊂B

|∇φ|2

=
(
kπ + σi (Ui − SkiΨs

ki)
2 + 2Rk · 1

)
[1 +O(

√
δ

R
)]

(4.69)

Where Ψs
k = (Ψs

k1,Ψ
s
k2, · · · ,Ψs

kNB
)T ∈ IRNB×1 is a column vector with ith entry

Ψs
ki = sin kθi. (4.70)

And

σi := π

√
2LR

(L−R)δi

is an approximation for the effective conductance of the boundary neck Bi defined as

before. Rk is the same resonance vector as before defined in (4.58).

We can use the same way to put EΠ(U) and E(sin kθ,U) together and eliminate U

as the discussion before. In the summary, we will get the following results:

Theorem 4.3.1. For any positive integer k, we have

〈sin kθ , Λ sin kθ〉 =
(
kπ + (SkΨ

s
k)
TΛD(SkΨ

s
k) + 2Rk · 1

)
[1 + o(1)] (4.71)

where Ψs
k is defined in (4.70), Sk is defined in (4.57), and Rk is the resonance term

defined in (4.63). ΛD ∈ IRNB×NB is the Dirichlet to Neumann map for the discrete

resistor network introduced in Section 2.4.3.
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4.3.2 The approximation for ψ(θ) = sin kθ + cosmθ

We need to approximate

〈(sin kθ + cosmθ) , Λ(sin kθ + cosmθ)〉. (4.72)

Since we only change the boundary condition, the key issue is still to construct special

trial functions in B0, the discussion for other parts will be exactly the same. We

construct it as following

φ(r, θ) = wk(r, θ) sin kθ + wm(r, θ) cosmθ + w(r, θ)L(U) (4.73)

It will be similar to prove that this trial function in B0 combining with trial functions

in other parts will give us a tight upper bound. It means that we can use the upper

bound as an approximation for 〈ψ(θ) , Λψ(θ)〉 like before.

To present the results simpler, we would like to reclaim some definition we used

before. The first one is the resonance vector Rk = (Rk1,Rk2, · · · ,RkNB
) with Rki

defined in (4.63). This definition is for arbitrary positive k.

The second one the is decay matrix Sk = diag{Sk1, Sk2, · · · , SkNB
} with Ski defined

in (4.57).

The third one are boundary vectors Ψc
k,Ψ

s
k associated with boundary conditions

cos kθ, sin kθ respectively. These are defined in (4.56) and (4.70).

In this section, we would like to define the following potential vector for simplicity

Ψ := SkΨ
s
k + SmΨc

m (4.74)

This vector is from the boundary condition ψ(θ) = sin kθ+ cosmθ, however different
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Fourier mode will have different decay rates.

By computing ∇φ in B0, we will have the following expression from what we

already have

〈(sin kθ + cosmθ) , Λ(sin kθ + cosmθ)〉

=
(
(kπ +mπ) + ΨTΛDΨ + 2(Rk +Rm) · 1

)
[1 + o(1)]

+ 2

∫
B0

(
∂wk
∂r

∂wm
∂r

sin kθ cosmθ − km

r2
wkwm cos kθ sinmθ

)
− 2

NB∑
i=1

σi exp

[
−(k +m)

√
2Rδi

L(L−R)

]
sin kθi cosmθi

(4.75)

Remember that

B0 =
(⋃

Bij

)⋃(⋃
Bi

)
.

We need to discuss the integration separately in these subdomains like before.

There are four different cases in our discussion, the approximation depends on the

distance between k and m.

Case 0

First of all, we will discuss the special case when k = m. In each Bij, we will have

∫
Bij

(
∂wk
∂r

∂wm
∂r

sin kθ cosmθ − km

r2
wkwm cos kθ sinmθ

)
=

∫ θj−αj

θi+αi

sin kθ cos kθdθ

∫ L

L−d
rdr

(
(
∂wk
∂r

)2 − k2

r2
w2
k

)
=
−2k2(1− d/L)2k ln[1− d/L]

(1− (1− d/L)2k)2

∫ θi+αi

θi−αi

sin 2kθdθ

= O(1).

(4.76)
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This is because d ≡ R/2 now. From Proposition B.1.1, it is easy to see that

∣∣∣∣−2k2(1− d/L)2k ln[1− d/L]

(1− (1− d/L)2k)2
]

∫ θi+αi

θi−αi

sin 2kθdθ

∣∣∣∣
≤ C

∣∣∣∣2(1−R/(2L))2(R/(2L))

(1− (1−R/(2L))2)2
αi

∣∣∣∣ = O(
Lαi
R

) = O(1).

In each Bi, we will have

∫
Bi

(
∂wk
∂r

∂wm
∂r

sin kθ cosmθ − km

r2
wkwm cos kθ sinmθ

)
=

∫ θi+αi

θi−αi

sin kθ cos kθdθ

∫ L

L−d
rdr

(
(
∂wk
∂r

)2 − k2

r2
w2
k

)
=

∫ θi+αi

θi−αi

−2k2(1− d/L)2k ln[1− d/L]

(1− (1− d/L)2k)2
sin 2kθdθ

= σi exp

[
−2k

√
2Rδi

L(L−R)

]
sin kθi cos kθi +O(1).

(4.77)

This just cancel out the last term in (4.75). We will have

Lemma 4.3.2. When ψ(θ) = sin kθ + cos kθ,

〈ψ(θ) , Λψ(θ)〉 =
(
2kπ + ΨTΛDΨ + 4Rk · 1

)
[1 + o(1)] (4.78)

When k 6= m, it will be more complicated. First we will discuss the integration in

each Bij when the width of the layer d ≡ R/2. From Proposition B.1.1, it is easy to

prove that

∣∣∣∣ km

k +m

(
(1− d/L)2k

1− (1− d/L)2k
+

(1− d/L)2m

1− (1− d/L)2m

)∫ θi+αi

θi−αi

sin[(k −m)θ]dθ

∣∣∣∣ ≤ O(1)∣∣∣∣ km

m− k

(
1

1− (1− d/L)2k
− 1

1− (1− d/L)2m

)∫ θi+αi

θi−αi

sin[(k +m)θ]dθ

∣∣∣∣ ≤ O(1)
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In each Bij, we will have

∫
Bij

(
∂wk
∂r

∂wm
∂r

sin kθ cosmθ − km

r2
wkwm cos kθ sinmθ

)
=

∫ θj−αj

θi+αi

dθ

∫ L

L−d
rdr

(
∂wk
∂r

∂wm
∂r

sin kθ cosmθ − km

r2
wkwm cos kθ sinmθ

)
=

km

k +m

∫ θi+αi

θi−αi

sin[(k −m)θ]dθ

+
km

k +m

(
(1− d/L)2k

1− (1− d/L)2k
+

(1− d/L)2m

1− (1− d/L)2m

)∫ θi+αi

θi−αi

sin[(k −m)θ]dθ

+
km

m− k

(
1

1− (1− d/L)2k
− 1

1− (1− d/L)2m

)∫ θi+αi

θi−αi

sin[(k +m)θ]dθ

=
km

k +m

∫ θj−αj

θi+αi

sin[(k −m)θ]dθ +O(1)

(4.79)

In each Bi, we will have

∫
Bi

(
∂wk
∂r

∂wm
∂r

sin kθ cosmθ − km

r2
wkwm cos kθ sinmθ

)
=

∫ θi+αi

θi−αi

dθ

∫ L

L−d
rdr

(
∂wk
∂r

∂wm
∂r

sin kθ cosmθ − km

r2
wkwm cos kθ sinmθ

)
=

∫ θi+αi

θi−αi

km

k +m
sin[(k −m)θ]dθ

+

∫ θi+αi

θi−αi

km

k +m

(
(1− d/L)2k

1− (1− d/L)2k
+

(1− d/L)2m

1− (1− d/L)2m

)
sin[(k −m)θ]dθ

+

∫ θi+αi

θi−αi

km

m− k

(
1

1− (1− d/L)2k
− 1

1− (1− d/L)2m

)
sin[(k +m)θ]dθ

(4.80)

Notice that when k 6= m, we always have

∑
Bij

∫ θj−αj

θi+αi

sin[(k −m)θ]dθ +
∑
Bi

∫ θi+αi

θi−αi

sin[(k −m)θ]dθ =

∫ 2π

0

sin[(k −m)θ]dθ = 0.

When k 6= m, we will have the following three different cases for the approximation

of integrations in (4.80).
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Case 1

The first case is when

2(k ∧m)
√
Rδ . L and 2|k −m|R < L

where

k ∧m := min{k,m}.

In each Bi, we will have

∫
Bi

(
∂wk
∂r

∂wm
∂r

sin kθ cosmθ − km

r2
wkwm cos kθ sinmθ

)
=

km

k +m

∫ θi+αi

θi−αi

sin[(k −m)θ]dθ

+
1

2
σi

(√
2(k ∧m)δi

Lπ
Li1/2(exp

[
−2(k ∧m)δi

L

]
)

)
sin[(k −m)θi]

+
1

2
σi exp

[
−(m+ k)

√
2Rδi

L(L−R)

]
sin[(k +m)θi] +O(1).

(4.81)

Notice that

1

2
σi exp

[
−(m+ k)

√
2Rδi

L(L−R)

]
(sin[(k +m)θi]− 2 sin kθi cosmθi)

= −1

2
σi exp

[
−(m+ k)

√
2Rδi

L(L−R)

]
sin[(k −m)θi]

In this region, we can replace

√
2(k ∧m)δi

Lπ
Li1/2(exp

[
−2(k ∧m)δi

L

]
)
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by 1 as what we did before in Section 4.2.3, because we would like to drop terms

which is less then order
√
R/δ. We also have

σi exp

[
−(m+ k)

√
2Rδi

L(L−R)

]
= σi exp

[
−2(k ∧m)

√
2Rδi

L(L−R)

]
+O(1)

because 2|k −m|R < L.

In the summary, we will have

〈ψ(θ) , Λψ(θ)〉 =
(
(kπ +mπ) + ΨTΛDΨ + 2R

)
[1 + o(1)] (4.82)

where ψ(θ) = sin kθ + cosmθ and

R = (Rk +Rm) · 1 + 2Rk∧m ·Ψs
k−m.

Here Rk,Rm,Rk∧m is defied in (4.63) and Ψs
k−m is defined in (4.70). Ψ is the vector

defined in (4.74) for boundary condition ψ(θ) = sin kθ + cosmθ.

Case 2

The second case is when

2(k ∧m)
√
Rδ . L and 2|k −m|R ≥ L
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In this case we have∫
Bi

(
∂wk
∂r

∂wm
∂r

sin kθ cosmθ − km

r2
wkwm cos kθ sinmθ

)
=

km

k +m

∫ θi+αi

θi−αi

sin[(k −m)θ]dθ

+
1

2
σi exp

[
−|k −m|

√
2Rδi

L(L−R)

]
sin[(k −m)θi]

+
1

2
σi exp

[
−(m+ k)

√
2Rδi

L(L−R)

]
sin[(k +m)θi] +O(1).

(4.83)

Now we will have

〈ψ(θ) , Λψ(θ)〉 =
(
(kπ +mπ) + ΨTΛDΨ + 2R

)
[1 + o(1)] (4.84)

where ψ(θ) = sin kθ + cosmθ and

R = (Rk +Rm) · 1 + 2Rk∧m · (S|k−m|Ψs
k−m). (4.85)

Here Rk,Rm,Rk∧m is defied in (4.63) and Ψs
k−m is defined in (4.70).

The results in these case 1 and case 2 are the same except the resonance term.

However, under the condition of case 1, we actually have

Rk∧m ·Ψs
k−m = Rk∧m · (S|k−m|Ψs

k−m) +O(1).

It means that we have the same results for case 1 and case 2.



93

Case 3

The last case is

2(k ∧m)
√
Rδ � L

In this case,

kπ +mπ ∼ (k +m)NBR

L
= NB

(k +m)
√
Rδ

L

√
R

δ
� NB

√
R

δ

However, the network effect term, resonance term and the last two lines in (4.80) will

be bounded up by
√
R/δ. It is obvious that the network effect term and resonance

term is bounded up by
√
R/δ and they will decay to 0 as k goes to infinity. To

bound the last two lines in (4.80), we can use the similar methods in the proof for

Proposition B.5.2. It may be difficult to give exact approximation formulas for these

two lines, but it is easy to bound them by
√
R/δ.

Hence we have

〈ψ(θ) , Λψ(θ)〉 = (kπ +mπ)[1 + o(1)] (4.86)

We can still write the results like before in (4.84) since it will not change the leading

order of the results in this case.

Also notice that

kπ +mπ = 〈ψ , Λ1ψ〉

where Λ1 is the DtN map for homogeneous media.

At the end, we summarize the results in this section as a theorem
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Theorem 4.3.3. When ψ(θ) = sin kθ + cosmθ, we have

〈ψ(θ) , Λψ(θ)〉 =
(
〈ψ , Λ1ψ〉+ ΨTΛDΨ + 2R

)
[1 + o(1)] (4.87)

where Ψ = SkΨ
s
k + SmΨc

m and

R = (Rk +Rm) · 1 + 2Rk∧m · (S|k−m|Ψs
k−m). (4.88)

4.3.3 The approximation for general boundary conditions

Similarly, we will have results for boundary condition ψ(θ) = cos kθ + cosmθ and

ψ(θ) = sin kθ + sinmθ. The methods will be very similar like before, we will present

the results as theorems without proof in this section.

Theorem 4.3.4. When ψ(θ) = cos kθ + cosmθ, we have

〈ψ(θ) , Λψ(θ)〉 =
(
〈ψ , Λ1ψ〉+ ΨTΛDΨ + 2R

)
[1 + o(1)] (4.89)

where Ψ = SkΨ
c
k + SmΨc

m and

R = (Rk +Rm) · 1 + 2Rk∧m · (S|k−m|Ψc
k−m). (4.90)

Theorem 4.3.5. When ψ(θ) = sin kθ + sinmθ, we have

〈ψ(θ) , Λψ(θ)〉 =
(
〈ψ , Λ1ψ〉+ ΨTΛDΨ + 2R

)
[1 + o(1)] (4.91)

where Ψ = SkΨ
s
k + SmΨs

m and

R = (Rk +Rm) · 1 + 2Rk∧m · (S|k−m|Ψc
k−m). (4.92)
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From here, it is easy to generalize above results to the boundary condition ψ(θ) =

ask sin kθ + acm cosmθ and similar cases. For general boundary condition, we refer to

Theorem 2.5.2 presented in Chapter 2.



Chapter 5

Summary and future work

5.1 Summary

In this thesis, we use variational methods to approximate the energy for a high con-

trast elliptic problem with any boundary condition. Since the oscillation of the bound-

ary condition will have some effect in the total energy and the effect will not go far

from the boundary, we divide our problem into two problems, which are located in

two separated subdomains. We use existing results to approximate the energy in

the subdomain far from the boundary, and develop a way to approximate the en-

ergy in the area near the boundary. Then we combine these two results and get our

approximation for energy with arbitrary boundary condition. In other words, we ap-

proximated the Dirichlet to Neumann (DtN) map for the problem in high contrast

media.

More precisely, we can use an approximation matrix up to any size to approxi-

mate the continuous DtN map for the high contrast two phase composites. In our

approximation, we basically captured the leading order O(
√

R
δ
) of the DtN map, It

is a singular term because that the distance δ between neighbor inclusions and the

96
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radius R of inclusions are in different scales.

In numerical methods, if we want simulatie the flux for this problem, we need

the mesh size h < δ. We will end up with a very huge linear system and it may be

very difficult to solve. The idea is to use our approximation of the DtN map as a

preconditioner in our numerical method, such that we can solve problems numerically

in high contrast media more efficient.

5.2 Application to domain decomposition meth-

ods

In this section, we will describe how to apply the results we have obtained to develop

fast domain decomposition methods. Because we have the approximation for the

Dirichlet to Neumann map, it will be a good idea to use it as a preconditioner in our

numerical methods.

5.2.1 The problem

We are considering the following elliptic problem in the domain Ω ∈ IR2:

−∇ · σ(x)∇u(x) = f, Ω

u(x) = 0, ∂Ω

(5.1)

Suppose Ω is partitioned into two nonoverlapping subdomains Ω1,Ω2, where Ω =

Ω1∪Ω2,Ω1∩Ω2 = ∅,Γ := ∂Ω1∩∂Ω2. For simplicity in our problem, we suppose that

Ω = B(0, 2),Ω1 = B(0, 1),Ω2 = B(0, 2) \B(0, 1),Γ = ∂B(0, 1), see Figure 5.1.

We also suppose that σ(x) only has high contrast values in Ω1, but it doesn’t have

high contrast values in Ω2. In other words, σ(x) is huge in the inclusions, but it is
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O(1) in the other places, see Figure 5.1.

Figure 5.1: The problem in high contrast domain, the black disks are inclusions.

To present our idea, we only discuss the case for two subdomains here. However

it is easy to generalize our methods to the problem with many subdomains. In each

subdomain which contains inclusions, it should satisfy the geometric assumptions we

made in Section 2.4.

Now we have a high contrast problem. We know that the solution for (1.1) will

change a lot in the necks between different inclusions, and it is smooth in other places

of Ω. In order to catch the big changes of the solution in these necks, we need very

fine mesh to solve the problem numerically.

In this sense, we will have a very large linear system

Au = f. (5.2)
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It will be very difficult to solve this problem directly, because the matrix A may

have huge size and it may be ill conditioned . So we are interested in the domain

decomposition methods for our problem, see [13, 25] and refers therein.

5.2.2 Circular grids and finite volume discretization

In the last section, we didn’t describe what kind of numerical methods we will use to

get the linear system (5.2). We will use a finite volume discretization for our problem

(5.1) on a circular grids, see [9, 10, 11].

In this discretization, there will be M vertexes on the interface Γ. In order to

compute the flux in the necks between inclusions, the mesh size must be smaller than

δ, which is the distance between neighbor inclusions. It means that M ≥ O(1/δ) �

NB, where NB is the number of inclusions near the interface Γ in Ω1.

Remark 5.2.1. I will give more details later.

5.2.3 Nonoverlapping domain decomposition methods

The idea of nonoverlapping domain decomposition methods is to split a problem in a

big domain into many subproblems in small subdomains. It will use the information

on the interface to communicate with each other subdomain. If we can have some

information on the interface, trace of the solution or the flux, we can use it as Dirichlet

condition or Neumann condition for the problems in subdomains. Then we only need

to solve a small linear system in each subdomain to get the solution over the whole

domain. There are many advantages to solve some small systems rather than to solve

a huge linear system.

The key issue of nonoverlapping domain decomposition methods is to solve some

information on the interface first. It could be the trace of the solution or the flux



100

on the interface. After we have the information on the interface, we can use it as a

Dirichlet or Neumann condition to solve problems in each subdomain separately. In

general, we will have interface equations to solve the trace of the solution or the flux

on the interface.

In this section, we will introduce nonoverlapping domain decomposition methods

for two subdomains, and introduce two different kinds of interface equations. We will

follow the idea of Toselli and Widlund’s book [25].

Base on the partition introduced in Section 5.2.1, we can write the linear system

into the following block form:


A11 0 A13

0 A22 A23

AT13 AT23 A33



u1

u2

u3

 =


f1

f2

f3

 . (5.3)

where we divide the degrees of freedom into Ω1,Ω2 and Γ, respectively. The blocks

A12, A21 are zero only under the assumption that the nodes in Ω1 and Ω2 are not

directly coupled. Since we will use finite volume methods for our problem, they are

not directly coupled.

There are inclusions and different scales inside the domain Ω1 and the solution in

Ω1 will change fast in some places, we need really fine mesh inside Ω1. In this sense,

the submatrix A11 will have very large size. We need to avoid solving linear systems

in Ω1 as much as we can. But we can use very coarse mesh in Ω2 because there is

no singularity in Ω2. The matrix A22 will be relatively small and it will not be so

expensive to solve linear systems in Ω2. A33 is matrix belongs to IRM×M .



101

The Schur complement system

If u3 is known, from the equation (5.3) we have

u1 = A−1
11 (f1 − A13u3),

u2 = A−1
22 (f2 − A23u3).

(5.4)

Substituting for u1, u2 in the equation (5.3), we have a reduced problem for the

unknown u3

Su3 = g, (5.5)

where

S = A33 − AT13A
−1
11 A13 − AT23A

−1
22 A23

g = f3 − AT13A
−1
11 f1 − AT23A

−1
22 f2.

(5.6)

This is equation for solving the trace of the solution on the interface Γ. After solving

the problem (5.5), we only need to solve a linear system once in each subdomain to

get u, see (5.4).

The matrix S ∈ IRM×M is the Schur complement of A33 in A, where M is the

number of discretization nodes on the interface Γ. S is very expansive to compute, it

requires M solves in each subdomain because we need to compute A−1
ii Ai3, see (5.6).

S is also a dense matrix, it will be difficult to solve (5.5) directly even if we have the

matrix S.

In general, we will use interface preconditioners to solve the system (5.5) without

computing S explicitly. With a good preconditioner, we have a big chance to get u3

by using far less than M solves in each subdomains.

The main idea is to write S into the sum of two parts which reflect the contribution
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from Ω1 and Ω2 more explicitly. The term A33 can be written as

A33 = A
(1)
33 + A

(2)
33 ,

where A
(i)
33 corresponds to the contribution to A33 from the subdomain Ωi.

In this case, we can write

S = S(1) + S(2),

where

S(i) = A
(i)
33 − ATi3A−1

ii Ai3, i = 1, 2. (5.7)

By this way, we can also split f3

f3 = f
(1)
3 + f

(2)
3 ,

and define

g(i) = f
(i)
3 − ATi3A−1

ii fi. (5.8)

In general, the preconditioner for (5.5) will be S(1)−1,S(2)−1 or the combination of

these two. S(i)−1 is the discretized Neumann to Dirichlet map for the subproblem in

Ωi on the interface Γ, see [13].

Considering we have the approximation for the Dirichlet to Newmann map in our

previous discussion. We will first solve out the flux on the interface, which is a solution

of a flux equation. We can use our approximation of the Dirichlet to Neumann map

as a precondition for the flux equation.
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The equation for flux on interface

Now suppose γ = γ(1) = −γ(2) is the flux on Γ which points from Ω1 to Ω2. If we see

γ(i) as a Neumann condition on the interface Γ and considering

−∇ · (σ∇ui) = fi in Ωi,

ui = 0 on ∂Ωi \ Γ,

∂ui
∂ni

= γ(i) on Γ,

(5.9)

We will have the following equations in each subdomain Ωi,Aii Ai3

A3i A
(i)
33


 ui
u

(i)
3

 =

 fi

f
(i)
3 + γ(i)

 (5.10)

It will give us

u
(i)
3 = S(i)−1(g(i) + γ(i)),

Then the equation for γ on Γ is to ensure that

u
(1)
3 = u

(2)
3 on Γ.

We will have the following equation for flux on Γ

Fγ = d, on Γ (5.11)
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where

F = S(1)−1 + S(2)−1

d = d(1) + d(2) = −S(1)−1g(1) + S(2)−1g(2).

with g(i) is defined in (5.8).

In this case, it is natural to use S(1), S(2) or their combinations as the precondi-

tioner to solve the system (5.11). S(i) is the discretized Dirichlet to Neumann map

of the subproblem in Ωi along the interface Γ. Since we use it as a preconditioner,

we can use an approximation for the Dirichlet to Neumann map instead of the exact

S(i).

This section gave us the idea of domain decomposition methods in matrix forms,

but we don’t really want to compute the matrix S or F to solve the systems (5.6) or

(5.11). People usually use iterative methods to solve the equations on the interface.

We also explained why we prefer to solve the system (5.11) instead of (5.6).

In the next section, we will introduce an iterative method without computing F

in (5.11) explicitly. We will also use our approximation of the Dirichlet to Neumann

map in Ω1 as an alternative preconditioner.

5.2.4 The modified Dirichlet-Dirichlet algorithm

Following Toselli and Widlund’s book [25], we will first introduce the Dirichlet-

Dirichlet algorithm. Then we will introduce our modified algorithm, which will use

our approximation for the Dirichlet to Neumann map in the high contrast subdomain

Ω1.
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The Dirichlet-Dirichlet algorithm

Assume γn = γn1 = −γn2 is flux on Γ in the nth iteration. In this iteration, we need

to update γn to γn+1 in some way. The Dirichlet-Dirichlet algorithm will have the

following three steps in each iteration.

1. The first step is to solve a Neumann problem in each subdomain:

−∇ · (σ∇un+1/2
i ) = fi in Ωi,

u
n+1/2
i = 0 on ∂Ωi \ Γ,

∂u
n+1/2
i

∂ni
= γni on Γ,

(5.12)

2. The second step is to solve a Dirichlet problem in each subdomain

−∇ · (σ∇vn+1
i ) = 0 in Ωi,

vn+1
i = 0 on ∂Ωi \ Γ,

vn+1
i = u

n+1/2
1 − un+1/2

2 on Γ,

(5.13)

3. The third step is to correct γn

γn+1 = γn − θ(∂v
n+1
1

∂n1

+
∂vn+1

2

∂n2

). (5.14)

with a suitable θ ∈ (0, θ̄).

If we write this iteration into the matrix form, we will have

γn+1 − γn = θ(S(1) + S(2))(d− Fγn), (5.15)

which is a preconditioned Richardson iteration for the system (5.11) with the precon-
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ditioner S(1) + S(2).

The modified Dirichlet-Dirichlet algorithm

However in our problem, we will use very fine mesh in Ω1 to ensure the accurace of

the numerical solution. This motivate us to avoid solving subproblems in Ω1, or solve

less subproblems in Ω1. The idea is to use the approximation for the Dirichlet to

Neumann map we obtained before. Actually, we can have a matrix up to any size,

which is an approximation for the Dirichlet to Neumann map. Here we use a matrix

ΛM ∈ IRM×M as an approximation of the Dirichlet to Neumann map in Ω1 on Γ.

When we discretize the problem and trying to solve it numerically, we will have a

discretized Dirichlet to Neumann map S(1) ∈ IRM×M in Ω1. It is natural to use ΛM

to approximate the S(1).

We can now modify the Dirichlet-Dirichlet algorithm and use our approximation

there. Assume γn = γn1 = −γn2 is flux on Γ in the nth iteration. The three steps in

nth iteration will be

1. The first step is still to solve a Neumann problem in each subdomain:

−∇ · (σ∇un+1/2
i ) = fi in Ωi,

u
n+1/2
i = 0 on ∂Ωi \ Γ,

∂u
n+1/2
i

∂ni
= γni on Γ,

(5.16)
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2. The second step is to solve a Dirichlet problem in Ω2 only

−∆vn+1
2 = 0 in Ω2,

vn+1
2 = 0 on ∂Ω,

vn+1
2 = u

n+1/2
1 − un+1/2

2 on Γ,

(5.17)

3. The third step is to correct γn

γn+1 = γn − θ
[
ΛM(u

n+1/2
1 − un+1/2

2 ) +
∂vn+1

2

∂n2

]
. (5.18)

with a suitable θ ∈ (0, θ̄).

In this modified algorithm, we only solve a half number of subproblems in Ω1 as in

the original Dirichlet-Dirichlet algorithm, if they have the same number of iterations

to converge to the true solution.

If we write this new iteration into the matrix form, we will have

γn+1 − γn = θ(ΛM + S(2))(d− Fγn), (5.19)

which is a preconditioned Richardson iteration for the system (5.11) with the precon-

ditioner ΛM + S(2).

We need to prove the following lemma

Lemma 5.2.2. The condition number of the matrix (ΛM +S(2))(S(1)−1 +S(2)−1) will

not depend on neither the contrast of the media or the size of the mesh.

This lemma means that our modified algorithm will have similar iteration steps

as the Dirichlet-Dirichlet algorithm to converge to the true solutions.
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5.2.5 A fast way to get an initial guess

In the iterative methods, a good initial guess is really important. Still remember that

we want to avoid solving subproblems in Ω1. In this section, we will see that in order

to get an initial guess, we don’t need to solve any subproblem in Ω1 at all.

Suppose γ0
n is the flux on Γ which points from Ω1 to Ω2 in the nth iteration to

get an initial guess γ0. Here we can start from γ0
0 = 0. There are two steps in each

iteration.

1. The first step is to solve a Neumann problem in Ω2:

−∆u
n+1/2
2 = f2 in Ω2,

u
n+1/2
2 = 0 on ∂Ω

∂u
n+1/2
2

∂n2

= −γ0
n on Γ,

(5.20)

2. Then we correct γ0
n like following

γ0
n+1 = (1− θ)γ0

n + θ(ΛMu
n+1/2
2 ). (5.21)

with a suitable θ ∈ (0, θ̄).

If ΛM in the iteration step (5.21) is the exact discretized Dirichlet to Neumann

map S(1). The iteration steps above in matrix form will be

γ0
n+1 − γ0

n = θS(1)(d− Fγ0
n). (5.22)

which is a preconditioned Richardson iteration for the system (5.11) with the precon-

ditioner S(1). It will converge to the solution of the system (5.11).

When we use the approximation ΛM for S(1) like showed in (5.21), the convergence
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vector γ0 will be an approximation for the solution of (5.11). It will be a good choice

for the initial guess in our modified Dirichlet-Dirichlet method. Notice that in the

iteration steps to get γ0, we didn’t solve any subproblem in Ω1.



Appendix A

Functional analysis

A.1 Euler-Lagrange Equations

Suppose Ω ∈ IR2 is a domain with some holes Di(i ∈ S) inside. The boundary of Ω is

∂Ω = ΓD ∪ ΓN ∪ (∪i∈S∂Di) (A.1)

where |ΓD| > 0.

We are considering the following minimization problem

E = min
φ∈V

1

2

∫
Ω

|∇φ|2, (A.2)

where

V = {φ ∈ H1(Ω) : φ|ΓD
= ψ, φ|∂Di

= constant ,∀i ∈ S}. (A.3)
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Define another space

V0 = {φ ∈ H1(Ω) : φ|ΓD
= 0, φ|∂Di

= constant ,∀i ∈ S}. (A.4)

Then for any u ∈ V, v ∈ V0 and s ∈ IR, we have u+ sv ∈ V .

Suppose u is the minimizer of the problem (A.2), we are going to find what

condition should the minimizer u satisfy.

Let

F [φ] =
1

2

∫
Ω

|∇φ|2, (A.5)

and

f(s) = F [u+ sv] =
1

2

∫
Ω

|∇(u+ sv)|2 (A.6)

with u ∈ V, v ∈ V0 and s ∈ IR.

u is the minimizer of the problem (A.2) means f ′(0) = 0. From (A.6),

f ′(0) =

∫
Ω

∇u · ∇v,

Then we will have

∫
Ω

∇u · ∇v = 0, for all v ∈ V0 (A.7)
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From Green’s theorem, for all v ∈ V0,

0 = −
∫

Ω

∆uv +

∫
ΓD

∂u

∂n
v +

∫
ΓN

∂u

∂n
v +

∑
i∈S

∫
∂Di

∂u

∂n
v

= −
∫

Ω

∆uv +

∫
ΓN

∂u

∂n
v +

∑
i∈S

v|∂Di

∫
∂Di

∂u

∂n

(A.8)

Then we will have the following equations for u

∆u = 0, in Ω

∂u

∂n
= 0, on ΓN∫

∂Di

∂u

∂n
= 0, on ∂Di, for all i ∈ S

(A.9)

Plus the constraint conditions in the space V , we will have the Euler-Lagrange equa-

tions for the minimizer of the problem (A.2)

∆u = 0, in Ω

u = ti, on ∂Di,∀i ∈ S
∂u

∂n
= 0, on ΓN∫

∂Di

∂u

∂n
= 0, for all i ∈ S

u = ψ, on ΓD

(A.10)

where ti are constants need to be determined from the above equations. We denote

the solution of the problem (A.10) as (u, T ), where T = (t1, t2, · · · )T is a vector of

potentials on ∂Di(i ∈ S).

When there is no holes Di inside the domain, the Euler-Lagrange equations will
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be

∆u = 0, in Ω

∂u

∂n
= 0, on ΓN

u = ψ, on ΓD

(A.11)

A.2 Uniqueness and maximal principle

In this section, we are going to prove two lemmas related to the Euler-Lagrange

equations.

Lemma A.2.1 (Uniqueness). The Euler-Lagrange equations (A.10) have an unique

solution.

Proof. Suppose there are two different solutions of the problem (A.10), they are

(u1, T1) and (u2, T2). Then (u, T ) = (u1−u2, T1−T2) will be solution of the following

problem

∆u = 0, in Ω

u = ti, on ∂Di

∂u

∂n
= 0, on ΓN∫

∂Di

∂u

∂n
= 0, on ∂Di,∀i ∈ S

u = 0, on ΓD

(A.12)

Then

∫
Ω

|∇u|2 = −
∫

Ω

(∆u)u+

∫
ΓD

∂u

∂n
u+

∫
ΓN

∂u

∂n
u+

∑
i∈S

∫
∂Di

∂u

∂n
u = 0. (A.13)
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This means u is a constant in Ω. From the continuity, we have u = 0 and T = 0. So

the Euler-Lagrange equations (A.10) have an unique solution (u, T ). The uniqueness

argument is also true for the equation (A.11).

Lemma A.2.2 (Maximum principle). Let (u, T ) be the solution of the problem (A.10),

then

max
Ω̄
{u} ≤ max

ΓD

{ψ} and max
i
{ti} ≤ max

ΓD

{ψ} (A.14)

Proof. Suppose M := maxΩ̄ u, and let A := {x ∈ Ω : u(x) = M}. In order to prove

the solution (u, T ) will be the constant M everywhere, it is enough to prove that

A = Ω. A is relatively closed in Ω. We will prove that A is also relatively open in

Ω. There will be two different cases in our proof. If there is a x0 ∈ Ω such that

u(x0) = M , from mean value theorem for harmonic functions, there will be a small

enough r such that B(x0, r) ⊂ A.

If there is a ti = M , suppose the radius of the hole Di is Ri and the center of Di

is x0. Define a function

F (r) :=
1

2π(Ri + r)

∫
∂B(x0,Ri+r)

u(x)dS(x),

which is the average of u on the circle ∂B(x0, Ri + r). It is easy to prove that

F ′(r) =
1

2π(Ri + r)

∫
∂B(x0,Ri+r)

∂u

∂n
dS(x).

We can use the Green’s formula in the annulus B(x0, Ri + r) \B(x0, Ri) and the fact
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that ∫
∂Di

∂u

∂n
dS(x) = 0

in (A.10) to obtain

∫
∂B(x0,Ri+r)

∂u

∂n
dS(x) =

∫
B(x0,Ri+r)\B(x0,Ri)

∆udx = 0.

It will give us F ′(r) = 0, which means F (r) is a constant.

Then we will have a similar mean value theorem in the annulus B(x0, Ri+r)\B(x0, Ri)

M =
1

π(Ri + r)2 − πR2
i

∫
B(x0,Ri+r)\B(x0,Ri)

udx ≤M

for small enough r. It means

B(x0, Ri + r) \B(x0, Ri) ⊂ A, for some r > 0

So A is relative open in either situation above. Since Ω is a connected domain

and A 6= ∅ is both relative open and closed in Ω, we have A = Ω. It means the

solution will be a constant if either situation above happened. Until now, we proved

the maximum principle for the equation (A.10).

It will be easy to prove that the solution (u, T ) will also be bounded below by the

minimum values of the boundary condition ψ. From this lemma, we see that U in

Lemma 3.3.1 cannot be arbitrary, it is bounded by the boundary condition ψ.
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A.3 Legendre Transformation

We are still considering the minimization problem (A.2) with the test space V in

(A.3). In this section we are going to get the dual problem of the minimization

problem (A.2), which is a maximization problem.

First let us introduce the following space

W = {j ∈ L2(Ω) : ∇ · j = 0,

∫
Di

j · n = 0(∀i ∈ S), j · n|ΓN
= 0}. (A.15)

The derivative of the trial functions j is in week sense, for example ∇ · j = 0 means

∫
Ω

∇φ · j = −
∫

Ω

∇ · jφ = 0, for all φ ∈ C∞0 (Ω).

The Legendre transformation for any vector v ∈ IR2 is

1

2
v2 = max

j∈IR2
(vj− 1

2
j2) (A.16)

This is true because

max
j∈IR2

(vj− 1

2
j2) =

1

2
v2 − 1

2
max
j∈IR2

(v − j)2 =
1

2
v2.

Then (A.2) becomes

E = min
φ∈V

1

2

∫
Ω

|∇φ|2

= min
φ∈V

max
j∈W

∫
Ω

(∇φ · j− 1

2
j2)

= max
j∈W

min
φ∈V

∫
Ω

(∇φ · j− 1

2
j2)

(A.17)
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The last equality of (A.17) is true because F [φ] satisfies the conditions of Proposition

5.2 in Chapter 3 [18], then we can change the order of min and max. So we have

E = max
j∈W

min
φ∈V

∫
Ω

(∇φ · j− 1

2
j2)

= max
j∈W

{
−1

2

∫
Ω

j2 + min
φ∈V

∫
Ω

∇φ · j
}

= max
j∈W

{
−1

2

∫
Ω

j2 + min
φ∈V

[
−
∫

Ω

∇ · jφ+

∫
ΓD

φj · n +

∫
ΓN

φj · n +
∑
i∈S

∫
∂Di

φj · n

]}(A.18)

Considering the conditions for j ∈ W , we will have

E = max
j∈W

{
−1

2

∫
Ω

j2 + min
φ∈V

∫
ΓD

ψj · n
}

= max
j∈W

{
−1

2

∫
Ω

j2 +

∫
ΓD

ψj · n
} (A.19)

So the dual problem of (A.2) is the maximization problem

E = max
j∈W

{∫
ΓD

ψj · n− 1

2

∫
Ω

j2

}
(A.20)

with the space W given in (A.15).

A.4 Functions in H1

In this thesis, we need to construct trial functions in H1(Ω) where Ω ∈ IR2. However,

we need to construct the function piece by piece sometimes, and the following lemma

will be useful.

Lemma A.4.1. Suppose Ω = Ω1 ∪ Ω2 ∪ γ is a Lipschitz domain in IR2, where γ =

∂Ω1 ∩ ∂Ω2 is the interface shared by the Lipschitz domains Ω1 and Ω2. Suppose
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ui ∈ H1(Ωi)(i = 1, 2), and

||γ0u1 − γ0u2||L2(γ) = 0,

where γ0ui is the trace of ui(i = 1, 2) on γ. Then

u =


γ0u1, on γ

u1, in Ω1

u2, in Ω2

(A.21)

belongs to H1(Ω).

Proof. Let

Γ1 = ∂Ω ∩ ∂Ω1 and Γ2 = ∂Ω ∩ ∂Ω2.

Then ∂Ω = Γ1 ∪ Γ2. Suppose ni(i = 1, 2) is the outward unit normal of the domain

Ωi. Notice that n1 = −n2 on γ.

Define

∇u =


∇u1, in Ω1

∇u2, in Ω2

(A.22)

Because γ is a measure zero set in Ω, we can give any reasonable definition for ∇u

on γ. Also because ui ∈ H1(Ωi)(i = 1, 2), we have ∇u ∈ L2(Ω). The left thing is to

prove ∇u is the weak derivative of u in Ω.
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For any vector function v ∈ (C∞0 (Ω))2,

|
∫
γ

(u1 − u2)v · n1| ≤ ||γ0u1 − γ0u2||L2(γ) · ||v · n1||L2(γ) = 0

So we have
∫
γ
(u1 − u2)v · n1 = 0.

From Green’s identities

−
∫

Ω

u∇ · v = −
∫

Ω1

u1∇ · v −
∫

Ω2

u2∇ · v

=

∫
Ω1

∇u1 · v −
∫

Γ1

u1v · n1 −
∫
γ

u1v · n1

+

∫
Ω2

∇u2 · v −
∫

Γ2

u2v · n2 −
∫
γ

u2v · n2

=

∫
Ω

∇u · v −
∫
γ

(u1 − u2)v · n1

=

∫
Ω

∇u · v.

(A.23)

Which means ∇u is the weak derivative of u in the whole space Ω, so u ∈ H1(Ω).

In order to construct a function in H1(Ω), we can construct it piece by piece in

different subdomains and let them matched each other on the interface.

A.5 The polar coordinate system

Let (ex, ey) be basis vectors of Cartesian coordinate system (x, y), and (ur,uθ) be

basis vectors of the polar coordinate system (r, θ). We have

ex = cos θur − sin θuθ,

ey = sin θur + cos θuθ,

(A.24)
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For a function φ(r, θ),

∇φ(r, θ) =
∂φ

∂r
ur +

1

r

∂φ

∂θ
uθ,

∇⊥φ(r, θ) = −1

r

∂φ

∂θ
ur +

∂φ

∂r
uθ,

(A.25)

For a vector function j = jrur + jθuθ,

∇ · j =
1

r

∂

∂r
(rjr) +

1

r

∂

∂θ
(jθ). (A.26)

Then

∆φ(r, θ) = ∇ · (∇φ) =
∂2φ

∂r2
+

1

r

∂φ

∂r
+

1

r2

∂2φ

∂θ2
(A.27)



Appendix B

Local approximation

B.1 Properties of some functions

In this thesis, we need to use some properties of some functions. The proof of these

properties are very easy and we will state them in this section.

Proposition B.1.1. When a ∈ (0, 1) and b ≥ 1, the following function

f(k) =
kabk

1− abk

is a monotonically decreasing function for k ≥ 1.

The proof for this proposition is just basic calculus. Notice that for any positive

integer k, we have

f(k) ≤ f(1) =
ab

1− ab
.
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B.2 The approximation in ∆ij

We need to show that we can have an extension of the trial function φ from ΠB ∪B0

into the domain ∆, actually fro Πij ∪Bij into the domain ∆ij locally.

In order to use the Kirszbraun’s theorem introduced in the lemma 3.2.2. We need

to evaluate |∇φ| near ∂∆ij in Πij ∪Bij.

In the neck Πij, we already show in the section 3.2 that

|∇φ| ≤ C

R
(Ui − Uj)2 on ∂∆ij ∩ ∂Πij

In the domain Bij, the trial function is given in (4.8). The weight functions wk, w

only depends on θ because d(θ) ≡ R/2. On the boundary ∂∆ij ∩ ∂Bij

|∇φ|2 =

∣∣∣∣∂wk∂r
cos kθ +

∂w

∂r
L(U)

∣∣∣∣2
r=L−R/2

+

∣∣∣∣−krwk sin kθ +
1

r
w
∂L(U)

∂θ

∣∣∣∣2
r=L−R/2

≤ C

∣∣∣∣ k(1−R/(2L))2k

1− (1−R/(2L))2k

∣∣∣∣2 + C

∣∣∣∣ 1

ln(1−R/(2L))

∣∣∣∣2 + C

∣∣∣∣Ui − Ujαij

∣∣∣∣2
≤ C

R2
+
C

R2
(Ui − Uj)2 ≤ C

R2

where C is a constant and αij = O(R) is defined in (4.45). Here we also used the

proposition B.1.1 and the fact that

∣∣∣∣ 1

ln(1−R/(2L))

∣∣∣∣ =
2L

R
+O(1).

From the Kirszbraun’s theorem, we can extend the trial function from Πij ∪ Bij

into the domain ∆ij, and it will satisfy

|∇φ| ≤ C/R in ∆ij (B.1)
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It is easy to show that the area of ∆ij is O(R2). Hence we have

∫
∆ij

|∇φ|2 ≤ C

R2
|∆ij| = O(1). (B.2)

B.3 Some properties of d(θ) in Bi

Without loss of generality, we can suppose that θi = 0. This assumption will not

affect the approximation for Gi(θ) in (4.40).

Now we have

d(θ) = L− ri cos(θ)−
√
R2 − (ri sin θ)2

= δi + ri(1− cos(θ)) + (R−
√
R2 − (ri sin(θ))2)

> R−
√
R2 − (ri sin(θ))2

(B.3)

and d(θ) is bounded above by R/2.

Also we have

d′(θ) = ri sin(θ)

(
1 +

ri cos θ√
R2 − (ri sin θ)2

)

=
ri sin(θ)√

R2 − (ri sin θ)2
(L− d(θ)

(B.4)

Suppose Pi is one of the intersections between ∂Dρ and ∂Di. Considering the area

the triangle OOiPi and using Heron’s formula, there will be

1

2
ρri sinαi =

√
(ri + ρ+R)(−ri + ρ+R)(ri − ρ+R)(ri + ρ−R)

16
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From (2.41) and (2.42), we have ri ≈ L−R, also notice that ρ = L−R/2. Hence

ri sinαi ≈
1

2(L−R/2)

√
(2L−R/2)(3R/2)(R/2)(2L− 5R/2)

=

√
3R

2(L−R/2)

√
(L−R/4)(L− 5R/4)

≤
√

3R

2(L−R/2)

√
(L− 3R/4)2

=

√
3R(L− 3R/4)

2(L−R/2)

≤
√

3R

2

(B.5)

From(B.5), we have for any θ ∈ (−αi, αi)

ri sin(θ) ≤ ri sin(αi) ≤
√

3R

2
(B.6)

So we have

|d′(θ)| = |ri sin θ|√
R2 − (ri sin θ)2

(L− d(θ))

≤ L|ri sin θ|√
R2 − 3R2/4

=
2L

R
|ri sin θ|

≤
√

3L = O(1)

(B.7)

and

d′2(θ)

d(θ)
≤ 4

R2

(ri sin θ)
2

R−
√
R2 − (ri sin θ)2

=
4L2

R2
(R +

√
R2 − (ri sin θ)2)

≤ 4L2

R2
(R +R) =

8L2

R
= O(L2R−1)

(B.8)
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Also because ri cos θ ≤ L and ri sin θ ≤
√

3R/2, we have

|d′′(θ)| =
∣∣∣∣ ri cos θR2

(R2 − (ri sin θ)2)3/2
− (ri sin θ)

2

R2 − (ri sin θ)2

∣∣∣∣ (L− d(θ))

≤ max{8L

R
ri cos θ, 3L}

≤ 8L2

R
= O(L2R−1)

(B.9)

Since δi ≤ d(θ) ≤ R/2� L we have following approximation

− 1

ln(1− d/L)
=
L

d
+O(1).

Here we will talk about the approximation for integration of 1/d(θ) in Bi. Re-

member that

d(θ) = δi + ri(1− cos(θ)) +R(1−
√

1− (ri sin(θ)/R)2)

where θ ∈ (−αi, αi) with αi = O(R/L).

First from Taylor’s expansion theorem, we can easily have

|ri(1− cos(θ))− riθ
2

2
| ≤ riθ

4

24
(B.10)

Also from Taylor expansion theorem, we can easily have

1

2
x ≤ 1−

√
1− x ≤ 1

2
x+

x2

8(1− γ)3/2
for all x ∈ [0, γ] (B.11)

where 0 < γ < 1 is a positive constant.
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Notice that we already proved (B.6). From the (B.11), we will have

∣∣∣∣(1−√1− (ri sin(θ)/R)2)− 1

2
(
riθ

R
)2

∣∣∣∣
≤
∣∣∣∣(1−√1− (ri sin(θ)/R)2)− 1

2
(
ri sin θ

R
)2

∣∣∣∣+

∣∣∣∣12(
ri sin θ

R
)2 − 1

2
(
riθ

R
)2

∣∣∣∣
≤ C(

ri sin(θ)

R
)4 + C(

ri
R

)2θ4

≤ C

(
Lθ

R

)4

(B.12)

where C is a constant which does not depend on δi or R.

Denota the approximation for d(θ) as

d̃(θ) = δi +
riL

2R
θ2 = δi +

riθ
2

2
+
R

2
(
riθ

R
)2 +

riδi
2R

θ2.

Put above bounds together, we will have

|d(θ)− d̃(θ)| =
∣∣∣∣d(θ)−

(
δi +

riθ
2

2
+
R

2
(
riθ

R
)2 +

riδi
2R

θ2

)∣∣∣∣
≤
∣∣∣∣ri(1− cos(θ))− riθ

2

2

∣∣∣∣+R

∣∣∣∣(1−√1− (ri sin(θ)/R)2)− 1

2
(
riθ

R
)2

∣∣∣∣+

∣∣∣∣riδi2R
θ2

∣∣∣∣
≤ riθ

4

24
+ C(

Lθ

R
)4R + CLδiR

−1θ2

≤ CL4R−3θ4 + CLδiR
−1θ2

(B.13)

Next we will prove that

∣∣∣∣ 1

d(θ)
− 1

d̃(θ)

∣∣∣∣ ≤ O(R−1) for all θ ∈ (−αi, αi) (B.14)

We need to prove the above bound in different regions. We first divide the region
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(−αi, αi) into two regions

|θ| ≤ βi and βi ≤ |θ| ≤ αi

where βi =
√

2Rδi/L. Actually, any βi = O(
√
Rδi/L) would be fine to get the bound

(B.14).

When |θ| ≤ βi, we have

∣∣∣d(θ)− d̃(θ)
∣∣∣ ≤ CR−3θ4 + CLδiR

−1θ2 ≤ CR−1δ2
i

d(θ) ≥ δi and d̃(θ) ≥ δi

(B.15)

hence we have

∣∣∣∣ 1

d(θ)
− 1

d̃(θ)

∣∣∣∣ =

∣∣∣∣∣d(θ)− d̃(θ)

d(θ)d̃(θ)

∣∣∣∣∣ ≤ CR−1δ2
i

δ2
i

= O(R−1).

When βi ≤ |θ| ≤ αi, first we will easily have

d̃(θ) = δi +
riL

2R
θ2 ≥ riL

2R
θ2 = CR−1L2θ2

Using the formula (B.11), we have

d(θ) ≥ R(1−
√

1− (ri sin θ/R)2) ≥ r2
i

2R
(sin θ)2 ≥ r2

i

2R
(
2

π
θ)2 ≥ CR−1L2θ2,

here we used the formula sin θ ≥ 2
π
θ ∀θ ∈ [0, π/2].

Hence in the region βi ≤ |θ| ≤ αi, we also have

∣∣∣∣ 1

d(θ)
− 1

d̃(θ)

∣∣∣∣ =

∣∣∣∣∣d(θ)− d̃(θ)

d(θ)d̃(θ)

∣∣∣∣∣ ≤ CR−3L4θ4 + CLδiR
−1θ2

(CR−1L2θ2)2
≤ O(R−1).
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In the summary, we proved (B.14).

Notice that αi = O(R/L), we have

∫ αi

−αi

Ldθ

d(θ)
=

∫ αi

−αi

Ldθ

d̃(θ)
+O(1) =

∫ αi

−αi

Ldθ

δi + Lri
2R
θ2

+O(1)

= 2

√
2LR

riδi
arctan

√
Lri

2Rδi
αi +O(1)

= 2

√
2LR

riδi
(
π

2
−
√

2Rδi√
Lriαi

) +O(1)

=

√
2LR

riδi
π +O(1)

(B.16)

Notice that √
Lri

2Rδi
αi = O(

√
R

δi
)� 1,

and we used the following approximation above

arctan(x) =
π

2
− 1

x
+O(x−3), as x→∞.

B.4 The approximation for Gi(θ)

In order to approximate Gi(θ) in (4.40), we need to approximate the following three

integrals one by one

Gk
i1(θ) :=

∫ L

L−d(θ)

dr

r

(∫ L

r

ds

s
(−2k

∂wk(s, θ)

∂θ
)

)2

Gk
i2(θ) :=

∫ L

L−d(θ)

dr

r

(∫ L

r

ds

s

∂2wk(s, θ)

∂θ2

)2

Gi3(θ) :=

∫ L

L−d(θ)

dr

r

(∫ L

r

ds

s

∂2w(s, θ)

∂θ2

)2

(B.17)
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In this situation, we also denote p(θ) = (1− d(θ)/L)k for simplicity. Then from (4.9)

wk(r, θ) =
(r/L)k − p2(r/L)−k

1− p2
=

(r/L)k − (r/L)−k

1− p2
+ (r/L)−k

∂wk(r, θ)

∂θ
= [(r/L)k − (r/L)−k]

(
−2kp2d′

(1− p2)2(L− d)

)
∂2wk(r, θ)

∂θ2
= k[(r/L)k − (r/L)−k]

(
p2((4k + 2)p2 + 4k − 2)d′2

(1− p2)3(L− d)2
+

−2p2d′′

(1− p2)2(L− d)

)(B.18)

and

w(r, θ) =
1

ln(1− d/L)
ln
r

L

∂w(r, θ)

∂θ
=

d′

(L− d)(ln(1− d/L))2
ln(

r

L
)

∂2w(r, θ)

∂θ2
=

(
2d′2

(L− d)2(ln(1− d/L))3
+

d′2 + (L− d)d′′

(L− d)2(ln(1− d/L))2

)
ln(

r

L
)

(B.19)

We will use C to denote some general constant which will change in different cases,

but doesn’t depend on k,R or δ in the following approximation.

1. Because δ ≤ d(θ) ≤ R/2, we have

(1− d/L)2k−1 ≤ Cp2 and (1− d/L)2k−2 ≤ Cp2.

(2−(r/L)k−(r/L)−k)2 is monotonic decreasing on r because its derivative is negative

when r ∈ (L− d, L). Hence we have

(2− (r/L)k − (r/L)−k)2 ≤ (2− (1− d/L)k − (1− d/L)−k)2 = p−2(1− p)4, ∀r ∈ (L− d, L)
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also

1

1− p2
=

1

(1− p)(1 + p)
≤ 1

1− p

Then we have

Gk
i1(θ) =

∫ L

L−d(θ)

dr

r

(∫ L

r

ds

s
(−2k

∂wk(s, θ)

∂θ
)

)2

≤ C

(
kp2d′

(L− d)(1− p)2

)2 ∫ L

L−d(θ)

dr

r

(∫ 1

r/L

kdt

t
(tk − t−k)

)2

= C

(
kp2d′

(L− d)(1− p)2

)2 ∫ L

L−d(θ)

dr

r
(2− (r/L)k − (r/L)−k)2

≤ C

(
kd′p2

(L− d)(1− p)2

)2 ∫ L

L−d(θ)

dr

r
p−2(1− p)4

= C(d′/L)2k2p2[− ln(1− d/L)]

(B.20)

where we changed parameter t = s/L on the second line.

Here k2p2 = k2(1− d/L)2k will get it’s maximal value when k = −1/ ln(1− d/L),

which means

k2p2 ≤ 1

[− ln(1− d/L)]2
e−2

Then we have

Gi1(θ) ≤ C
d′2

L2[− ln(1− d/L)]
≤ C

d′2

Ld
≤ C

L

R
(B.21)

because d′2/d = O(L2R−1).
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2. Similarly, by integration over s we will have

Gk
i2(θ) =

∫ L

L−d(θ)

dr

r

(∫ L

r

ds

s

∂2wk(s, θ)

∂θ2

)2

≤ C

(
d′2p2[(4k + 2)p2 + (4k − 2)]

(L− d)2(1− p2)3

)2

[− ln(1− d/L)]p−2(1− p)4

+ C

(
−2d′′p2

(L− d)(1− p2)2

)2

[− ln(1− d/L)]p−2(1− p)4

(B.22)

Since (4k+2)p2 +(4k−2) ≤ (4k+2)+(4k−2) = 8k and − ln(1−d/L) = d
L

(1+o(1))

Also from the approximation (B.9), we have

Gk
i2(θ) ≤ C

d′4

(L− d)4

k2p2

(1− p)2
[− ln(1− d/L)] + C(

d′′

L
)2p2[− ln(1− d/L)]

≤ C
d′4

(L− d)4

k2p2

(1− p)2

d

L
+ C(

L

R
)2 d

L

(B.23)

From the Proposition B.1.1, we have

k2p2

(1− p)2
=

(
k(1− d/L)k

1− (1− d/L)k

)2

≤
(

(1− d/L)

1− (1− d/L)

)2

≤ C(
L

d
)2

Since (L− d)4 = L4(1 + o(1)), we have

Gk
i2(θ) ≤ C

d′2

L2

d′2

Ld
+ C

L

R
≤ C

d′2

Ld
+ C

L

R
≤ C

L

R
, (B.24)

because d′/L = O(1) and d′2/d = O(L2R−1) from (B.7) and (B.8).
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3. For the last integration,

Gi3(θ) =

∫ L

L−d(θ)

dr

r

(∫ L

r

ds

s

∂2w(s, θ)

∂θ2

)2

=

(
2d′2

(L− d)2[ln(1− d/L)]3
+

d′2 + d′′(L− d)

(L− d)2[ln(1− d/L)]2

)2 ∫ L

L−d(θ)

dr

r
(

∫ 1

r/L

ln tdt

t
)2

=

(
[2 + ln(1− d/L)]d′2

[ln(1− d/L)]3(L− d)2
+

d′′

(L− d)[ln(1− d/L)]2

)2 −(ln(1− d/L))5

20

(B.25)

Because 2+ln(1−d/L) = 2(1+o(1)) and (L−d) = L(1+o(1)), by Cauchy-Schwardz

inequality we have

Gi3(θ) ≤ 2

(
[2 + ln(1− d/L)]2d′4

20[− ln(1− d/L)](L− d)4
+
d′′2[− ln(1− d/L)]

20(L− d)2

)
≤ C

d′4

− ln(1− d/L)L4
+ C

d′′2

L2
[− ln(1− d/L)]

≤ C
d′4

L3d
+ C(

L

R
)2 d

L
≤ C

d′2

Ld
+ C(

L

R
)2R

L

≤ C
L

R

(B.26)

In conclusion, we have

1

2

∫ θi+αi

θi−αi

Gi(θ)dθ =
1

2

∫ θi+αi

θi−αi

(
Gk
i1(θ) +Gk

i2(θ) +Gi3(θ)
)
dθ ≤ C

Lαi
R

= O(1) (B.27)

because αi = O(R/L).

B.5 The approximation for ai, bi, ci

In this section, we will approximate ai, bi and ci separately.
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Approximation for ai

First let’s look at ai,

ai =

∫ θi+αi

θi−αi

dθ

∫ L

L−d(θ)

rdr

(
(
∂w

∂r
)2 +

1

r2
(
∂w

∂θ
)2

)
=

∫ θi+αi

θi−αi

(
1

− ln(1− d/L)
+

d′2

3(L− d)2(− ln(1− d/L))

)
dθ

(B.28)

We can bound the second integration like following

∣∣∣∣∫ θi+αi

θi−αi

d′2

3(L− d)2(− ln(1− d/L))
dθ

∣∣∣∣ ≤ C

∣∣∣∣∫ θi+αi

θi−αi

d′2

Ld
dθ

∣∣∣∣ ≤ C

∣∣∣∣∫ θi+αi

θi−αi

L

R
dθ

∣∣∣∣ = O(1)

Also notice that

1

− ln(1− d/L)
=
L

d
+O(1),

In this approximation, we requires that R� L.

Hence from (B.16), we will have

ai =

∫ θi+αi

θi−αi

dθ

− ln(1− d(θ)/L)
+O(1) =

∫ αi

−αi

Ldt

d(θi + t)
+O(1)

= π

√
2LR

riδi
+O(1)

(B.29)

where

d(θi + t) = L− ri cos t−
√
R2 − (ri sin t)2 = δi + ri(1− cos t) + (R−

√
R2 − (ri sin t)2)

for t ∈ (−αi, αi). Here we changed parameter θ = θi + t.
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Approximation for bi

For bi, we have

bi =

∫ θi+αi

θi−αi

dθ

∫ L

L−d(θ)

rdr

{
(
∂wk
∂r

cos kθ)
∂w

∂r
+

1

r2
(−kwk sin kθ +

∂wk
∂θ

cos kθ)
∂w

∂θ

}
=

∫ θi+αi

θi−αi

cos kθ

ln(1− d/L)
dθ +

∫ θi+αi

θi−αi

kd′ sin kθ

(L− d)

1− p2 + 2p ln p

(ln p)2(1− p2)
dθ

−
∫ θi+αi

θi−αi

2d′2 cos kθ

(L− d)2 ln(1− d/L)

p[1− p2 + (1 + p2) ln p]

ln p(1− p2)2
dθ

(B.30)

where p(θ) = (1− d(θ)/L)k.

We can first show that

F1(p) =
1− p2 + 2p ln p

(ln p)2(1− p2)

F2(p) =
p[1− p2 + (1 + p2) ln p]

ln p(1− p2)2

F3(p) =
(1− p2)2 + (1− p2)p ln p− (1 + p2)p(ln p)2

(ln p)2(1− p2)2

are bounded for any p ∈ (0, 1). This is easy to see because the functions of p above

are bounded when p→ 0 or p→ 1.

Also from B.3, we have

d′

L− d
= O(1),

d′2

d
= O(L2R−1) and d′′ = O(L2R−1)
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From integration by parts and αi = O(R/L), we will have

∣∣∣∣∫ θi+αi

θi−αi

kd′ sin kθ

(L− d)

1− p2 + 2p ln p

(ln p)2(1− p2)
dθ

∣∣∣∣ =

∣∣∣∣∫ θi+αi

θi−αi

d′

(L− d)

1− p2 + 2p ln p

(ln p)2(1− p2)
d(cos kθ)

∣∣∣∣
= O(1) +

∣∣∣∣∫ θi+αi

θi−αi

cos kθd

{
d′

(L− d)

1− p2 + 2p ln p

(ln p)2(1− p2)

}∣∣∣∣
≤ O(1) +

∣∣∣∣∫ θi+αi

θi−αi

(d′′(L− d) + d′2) cos kθ

(L− d)2

1− p2 + 2p ln p

(ln p)2(1− p2)
dθ

∣∣∣∣
+

∣∣∣∣∫ θi+αi

θi−αi

2d′2 cos kθ

(L− d)2 ln(1− d/L)

(1− p2)2 + (1− p2)p ln p− (1 + p2)p(ln p)2

(ln p)2(1− p2)2
dθ

∣∣∣∣
≤ O(1) + C

∣∣∣∣∫ θi+αi

θi−αi

d′′(L− d) + d′2

(L− d)2
dθ

∣∣∣∣+ C

∣∣∣∣∫ θi+αi

θi−αi

2d′2

(L− d)2 ln(1− d/L)

∣∣∣∣
≤ O(1) +O(LR−1)αi +O(LR−1)αi

= O(1)

We also have∣∣∣∣∫ θi+αi

θi−αi

2d′2 cos kθ

(L− d)2 ln(1− d/L)

p[1− p2 + (1 + p2) ln p]

ln p(1− p2)2
dθ

∣∣∣∣
≤ C

∣∣∣∣∫ θi+αi

θi−αi

d′2

Ld
dθ

∣∣∣∣ ≤ O(LR−1)αi = O(1).

So we have

bi =

∫ θi+αi

θi−αi

cos kθ

ln(1− d(θ)/L)
dθ +O(1). (B.31)

Also from the approximation (B.16), we will have

∫ θi+αi

θi−αi

cos kθ

ln(1− d(θ)/L)
dθ = −

∫ αi

−αi

L cos k(θi + t)

δi + Lrit2

2R

dt+O(1).



136

What we need to approximate is

∫ αi

−αi

L cos k(θi + t)

δi + Lrit2

2R

dt = <

{
L

∫ αi

−αi

eik(θi+t)

δi + rit2

2R

dt

}

= <

{
Leikθi

∫ αi

−αi

eikt

δi + Lrit2

2R

dt

}
= <

{√
2LR

riδi
eikθi

∫ Si

−Si

eik
√

2Rδi/(Lri)x

1 + x2
dx

} (B.32)

Here we changed parameter and

Si =
αi√

2Rδi/(Lri)
= O(

√
R

δi
)� 1.

From the residue formula, we have

∫ Si

−Si

eik
√

2Rδi/(Lri)x

1 + x2
dx+

∫
CSi

eik
√

2Rδi/(Lri)x

1 + x2
dx = πe−k

√
2Rδi/(Lri) (B.33)

where CSi
= {Sieiθ, 0 ≤ θ ≤ π} is the circle with radius Si in the upper half complex

plane. And

∣∣∣∣∣
∫
CSi

eik
√

2Rδi/(Lri)x

1 + x2
dx

∣∣∣∣∣ ≤
∣∣∣∣∣
∫
CSi

1

1 + S2
i e

2iθ
dx

∣∣∣∣∣ ≤ πSi
S2
i − 1

= O(S−1
i ) = O(

√
δi
R

).

Hence we have

∫ Si

−Si

eik
√

2Rδi/(Lri)x

1 + x2
dx = πe−k

√
2Rδi/(Lri) +O(

√
δi
R

).
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In the summary

bi = −<

{√
2LR

riδi
eikθi

∫ Si

−Si

eik
√

2Rδi/(Lri)x

1 + x2
dx

}
+O(1)

= −<

{√
2LR

riδi
eikθi(πe−k

√
2Rδi/(Lri) +O(

√
δi
R

))

}
+O(1)

= −π
√

2LR

riδi

cos kθi

ek
√

2Rδi/(Lri)
+O(1)

(B.34)

Approximation for ci

At last, let’s look at ci,

ci = −kαi +

∫ θi+αi

θi−αi

dθ

∫ L

L−d(θ)

r

(
∂wk
∂r

cos kθ

)2

+
1

r

(
−kwk sin kθ +

∂wk
∂θ

cos kθ

)2

dr

= −kαi +

∫ θi+αi

θi−αi

[
k

2

1 + p2

1− p2

]
dθ −

∫ θi+αi

θi−αi

[
2k2p2 ln(1− d/L)

(1− p2)2
cos 2kθ

]
dθ

+

∫ θi+αi

θi−αi

2kd′p

(L− d)

p[1− p2 + (1 + p2) ln p]

(1− p2)3
sin 2kθdθ

+

∫ θi+αi

θi−αi

2k2d′2p2 ln(1− d/L)

(L− d)2(1− p2)2

1− p4 + 4p2 ln p

ln p(1− p2)2
cos2 kθdθ

(B.35)

Like before we can first show that

F1(p) =
p[1− p2 + (1 + p2) ln p]

(1− p2)3

F2(p) =
1− p4 + 4p2 ln p

ln p(1− p2)2

are both bounded for any p ∈ (0, 1).
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Then we will have∣∣∣∣∫ θi+αi

θi−αi

2kd′p

(L− d)

p[1− p2 + (1 + p2) ln p]

(1− p2)3
sin 2kθdθ

∣∣∣∣
≤ C

∣∣∣∣∫ θi+αi

θi−αi

2kd′(L− d)k−1dθ

∣∣∣∣ ≤ C

∣∣∣∣∫ L−δi

L−R/2
ksk−1ds

∣∣∣∣
≤ C|(L−R/2)k − (L− δi)k| = O(1)

Here we changed parameter s = L− d(θ).

Like the proof in appendix B.4, we can prove

∣∣∣∣2k2d′2p2 ln(1− d/L)

(L− d)2(1− p2)2

∣∣∣∣ ≤ C
d′2

Ld
,

which will give us

∣∣∣∣∫ θi+αi

θi−αi

2k2d′2p2 ln(1− d/L)

(L− d)2(1− p2)2

1− p4 + 4p2 ln p

ln p(1− p2)2
cos2 kθdθ

∣∣∣∣
≤ C

∣∣∣∣∫ θi+αi

θi−αi

d′2

d
dθ

∣∣∣∣ = O(1)

So we have

ci =− kαi +

∫ θi+αi

θi−αi

k

2

1 + p2

1− p2
dθ −

∫ θi+αi

θi−αi

2k2p2 ln(1− d/L)

(1− p2)2
cos 2kθdθ +O(1)

=

∫ θi+αi

θi−αi

(
kp2

1− p2
− 2kp2 ln p

(1− p2)2
cos 2kθ

)
dθ +O(1)

(B.36)
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Later in this section, we will prove the following results as two propositions.

∫ θi+αi

θi−αi

kp2

1− p2
=
π

2

√
2LR

riδi

√
2kδi
Lπ

Li1/2(e−2kδi/L) +O(1),∫ θi+αi

θi−αi

−2kp2 ln p

(1− p2)2
cos 2kθdθ =

π

2

√
2LR

riδi
exp

[
−2k

√
2δiR

riL

]
cos 2kθi +O(1)

= π

√
2LR

riδi
exp

[
−2k

√
2δiR

riL

]
(cos kθi)

2 − π

2

√
2LR

riδi
exp

[
−2k

√
2δiR

riL

]
+O(1).

(B.37)

In the summary, we have

ci = π

√
2LR

riδi
exp

[
−2k

√
2δiR

riL

]
(cos kθi)

2

+
π

2

√
2LR

riδi

(√
2kδi
Lπ

Li1/2(exp

[
−2k

δi
L

]
)− exp

[
−2k

√
2δiR

riL

])
+O(1).

(B.38)

Now we are going to estimate two integrals in (B.37). We state them as two

propositions here and we will prove them separately.

Proposition B.5.1. The first integral

∫ θi+αi

θi−αi

kp2

1− p2
dθ =

π

2

√
2LR

riδi

√
2kδi
Lπ

Li1/2(exp

[
−2k

δi
L

]
) +O(1),

where p = (1− d(θ)/L)k.

Proof. Here is the proof for this proposition, it has several steps.

1. First notice that

p = (1− d(θ)/L)k, θ ∈ (θi − αi, θi + αi)
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where

d(θi + θ) = L− ri cos θ −
√
R2 − (ri sin θ)2 = δi + ri(1− cos θ) + (R−

√
R2 − (ri sin θ)2)

We can change parameter θ = θi + t to get

∫ θi+αi

θi−αi

kp2

1− p2
dθ =

∫ αi

−αi

kp2

1− p2
dt

where

p2 = (1− d(t)/L)2k = e2k ln(1−d(t)/L), t ∈ (−αi, αi)

with

d(t) = L− ri cos t−
√
R2 − (ri sin t)2 = δi + ri(1− cos t) + (R−

√
R2 − (ri sin t)2)

Define

d̃(t) = δi +
Lri
2R

t2

which is an approximation for d(t). We are going to replace d(t) in the integral by

d̃(t).

2. Then let’s look at the following function

F (k, x) =
ke−2kx

1− e−2kx
=

k

e2kx − 1
.
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For fixed k,

∣∣∣∣∂F (k, x)

∂x

∣∣∣∣ =

∣∣∣∣ −2ke2kx

(e2kx − 1)2

∣∣∣∣ ≤ 2e2x

(e2x − 1)2
≤ C

x2
, |x| � 1.

This is because for fixed x,

∣∣∣∣ −2ke2kx

(e2kx − 1)2

∣∣∣∣
is a decrease function of k.

So we have the following approximation

kp2

1− p2
=

k

e−2k ln(1−d(t)/L) − 1
=

k

e2kd̃(t)/L − 1
+
∂F

∂x
(k, ξ)(− ln(1− d(t)/L)− d̃(t)/L).

where ξ ≈ d̃(t)/L. From the analysis above and the approximation in Section B.3,

we have

∣∣∣∣∂F∂x (k, ξ)(− ln(1− d(t)/L)− d̃(t)/L)

∣∣∣∣ ≤ C

∣∣∣∣∣d(t)/L− d̃(t)/L

ξ2

∣∣∣∣∣ ≤ O(L/R).

which means ∫ αi

−αi

kp2

1− p2
dt =

∫ αi

−αi

kdt

e2kd̃(t)/L − 1
+O(1)

=

√
2Rδi
Lri

∫ Si

−Si

kdx

e2kδi/L(1+x2) − 1
+O(1)

=
1

2

√
2LR

riδi

∫ Si

−Si

2kδi/Ldx

e2kδi/L(1+x2) − 1
+O(1)

(B.39)
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where we changed parameter t =
√

2Rδi/(Lri)x and

Si =
αi√

2Rδi/(Lri)
= O(

√
R/δi)� 1.

3. Denote λ = 2kδi/L here, so λ changes from δi/L to infinity as k increase from 1

to ∞. It is also easy to see that λ/(eλ(1+x2) − 1) is a decreasing function of λ, hence

λ

eλ(1+x2)) − 1
≤ lim

λ→0

λ

eλ(1+x2)) − 1
=

1

1 + x2

So we have

∫
|x|>Si

λ

eλ(1+x2)) − 1
≤
∫
|x|>Si

1

1 + x2
= O(1/Si) = O(

√
δi
R

)

In the summary we have

∫ αi

−αi

kp2

1− p2
dt =

1

2

√
2LR

riδi

∫ Si

−Si

λdx

eλ(1+x2) − 1
+O(1)] =

1

2

√
2LR

riδi

∫ ∞
−∞

λdx

eλ(1+x2) − 1
+O(1)

=
1

2

√
2LR

riδi

√
λ

∫ ∞
0

y−1/2dy

ey/e−λ − 1
+O(1) =

1

2

√
2LR

riδi

√
λπLi1/2(e−λ)

=
π

2

√
2LR

riδi

√
2kδi
Lπ

Li1/2(e−2kδi/L),

(B.40)

by considering the definition

Lis(z) :=
1

Γ(s)

∫ ∞
0

ts−1

et/z − 1
dt

and the fact that Γ(1/2) =
√
π.
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Proposition B.5.2. The second integral

∫ θi+αi

θi−αi

−2kp2 ln p

(1− p2)2
cos 2kθdθ =

π

2

√
2LR

riδi
exp

[
−2k

√
2δiR

riL

]
cos 2kθi +O(1) (B.41)

where p = (1− d(θ)/L)k.

Proof. The proof steps will be very similar to the proof in Proposition B.5.1.

1. The first step is still to change parameter θ = θi + t, and use the formula

cos 2k(θi + t) = cos 2kθi cos 2kt− sin 2kθi sin 2kt.

Notice that sin 2kt is an odd function and the other terms in the integration are even

functions. Which means

∫ θi+αi

θi−αi

−2kp2 ln p

(1− p2)2
cos 2kθdθ = cos 2kθi

∫ αi

−αi

−2k2(1− d(t)/L)2k ln(1− d(t)/L)

(1− (1− d(t)/L)2k)2
cos 2ktdt

2. By using the similar method in the proof for Proposition B.5.1, we first use d̃(t)

to approximate d(t) and then change the parameter. We will end up with

∫ θi+αi

θi−αi

−2kp2 ln p

(1− p2)2
cos 2kθdθ

=
1

2
hi cos 2kθi

∫ Si

−Si

λ2(1 + x2)eλ(1+x2)

(eλ(1+x2) − 1)2
cos(λhix)dx+O(1)

=
1

2
hi cos 2kθi

∫ ∞
−∞

λ2(1 + x2)eλ(1+x2)

(eλ(1+x2) − 1)2
cos(λhix)dx+O(1)

=
1

2
hi cos 2kθi<

{∫ ∞
−∞

λ2(1 + z2)eλ(1+z2)

(eλ(1+z2) − 1)2
eiλhizdz

}
+O(1).
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where hi =
√

2LR
riδi

= O(
√

R
δi

). Si and λ has the exactly same definition as in Propo-

sition B.5.1. Remember that λ = 2kδi/L.

3. In order to approximate the integral

∫ ∞
−∞

λ2(1 + z2)eλ(1+z2)

(eλ(1+z2) − 1)2
eiλhizdz

with λ > 0. We consider the following three contours

C1 = {x+ iy : y = 0, −∞ < x <∞}

C2 = {x+ iy : 2λxy = π, 0 < y <∞}

C3 = {x+ iy : 2λxy = −π, 0 < y <∞}

Actually C1 is the real axis, C2 and C3 are symmetric along the image axis.

C1 ∪C2 ∪ (−C3) is a closed contour with counter clockwise direction. Assume the

domain between this contour is D. Then the function

λ2(1 + z2)eλ(1+z2)

(eλ(1+z2) − 1)2
eiλhiz

only has one singular point z = i in D, because 0 ≤ =(λ(1 + z2)) ≤ π in D.

From the residue theorem, we have

∫
C1∪C2∪(−C3)

λ2(1 + z2)eλ(1+z2)

(eλ(1+z2) − 1)2
eiλhizdz =

π

2
e−λhi .

Because

∫
C1

λ2(1 + z2)eλ(1+z2)

(eλ(1+z2) − 1)2
eiλhizdz =

∫ ∞
−∞

λ2(1 + z2)eλ(1+z2)

(eλ(1+z2) − 1)2
eiλhizdz
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is the integral we want to approximate. Considering the symmetric of C2 and C3, it

is enough to prove

∣∣∣∣∣
∫
C2

λ2(1 + z2)eλ(1+z2)

(eλ(1+z2) − 1)2
eiλhizdz

∣∣∣∣∣ = O(1).

4. On the contour C2, 2λxy = π, we have

λ(1 + z2) = λ(1 + x2 − y2) + iπ

hence

eλ(1+z2) = eλ(1+x2−y2)+iπ = −eλ(1+x2−y2)

Also

|eiλhiz| = |eiλhixe−λhiy| = e−λhiy

And we have

|dz| = |dx+ idy| =
√

1 + x′(y)2dy =

√
1 + (

π

2λ
)2

1

y4
dy =

√
1 + (

2λ

π
)2x4dy.

So for large x, we will have

∣∣∣∣∣λ(1 + z2)eλ(1+z2)

(eλ(1+z2) − 1)2
dz

∣∣∣∣∣ ≤
∣∣∣∣∣λ(1 + z2)eλ(1+x2−y2)

(eλ(1+x2−y2) + 1)2
dz

∣∣∣∣∣ ≤
∣∣∣∣ λ(1 + z2)

eλ(1+x2−y2) + 1
dz

∣∣∣∣
≤ C

∣∣∣∣λx2λx2

eλx2 dy

∣∣∣∣ ≤ Cdy

(B.42)
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And for large y, we will have

∣∣∣∣∣λ(1 + z2)eλ(1+z2)

(eλ(1+z2) − 1)2
dz

∣∣∣∣∣ ≤
∣∣∣∣∣λ(1 + z2)eλ(1+x2−y2)

(eλ(1+x2−y2) + 1)2
dz

∣∣∣∣∣ ≤ C

∣∣∣∣λ(1 + z2)

eλy2 dz

∣∣∣∣
≤ C

∣∣∣∣ λy2

eλy2 dy

∣∣∣∣ ≤ Cdy

(B.43)

Hence we will have

∣∣∣∣∣λ(1 + z2)eλ(1+z2)

(eλ(1+z2) − 1)2
dz

∣∣∣∣∣ ≤ Cdy

for any x, y > 0 such that 2λxy = π. Which will give us

∣∣∣∣∣
∫
C2

λ2(1 + z2)eλ(1+z2)

(eλ(1+z2) − 1)2
eiλhizdz

∣∣∣∣∣ ≤
∫ ∞

0

Cλe−λhiydy =
C

hi
� O(1),

because

hi = O(

√
R

δi
)� 1.

In the summary we proved (B.41) for any k.
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