Matrix Inverse

A square matrix $S \in \mathbb{R}^{n \times n}$ is invertible if there exists a matrix
$S^{-1} \in \mathbb{R}^{n \times n}$ such that

$$
S^{-1} S=I \quad \text { and } \quad S S^{-1}=I
$$

The matrix S^{-1} is called the inverse of S.

- An invertible matrix is also called non-singular.

A matrix is called non-invertible or singular if it is not invertible.

- A matrix $S \in \mathbb{R}^{n \times n}$ cannot have two different inverses.

In fact, if $X, Y \in \mathbb{R}^{n \times n}$ are two matrices with $X S=I$ and $S Y=I$,
then

$$
X=X I=X(S Y)=(X S) Y=I Y=Y
$$

- If $S \in \mathbb{R}^{n \times n}$ is invertible, then $S x=f$ implies $x=S^{-1} S x=S^{-1} f$, i.e., for every f the linear system $S x=f$ has a solution $x=S^{-1} f$.

The linear system $S x=f$ cannot have more than one solution because $S x=f$ and $S y=f$ imply
$S(x-y)=S x-S y=f-f=0$ and $x-y=S^{-1} 0=0$.
Hence if S is invertible, then for every f the linear system $S x=f$ has the unique solution $x=S^{-1} f$.

- We will see later that if for every f the linear system $S x=f$ has a unique solution x, then S is invertible.
M. Heinkenschloss - CAAM335 Matrix Analysis

Matrix Inverse and LU Decomposition -

$$
S=\left(\begin{array}{ccc}
1 & 0 & 2 \\
2 & -1 & 3 \\
4 & 1 & 8
\end{array}\right)
$$

Use Gaussian Elimination to solve the systems
$S X_{:, 1}=e_{1}, S X_{:, 2}=e_{2}, S X_{:, 3}=e_{3}$ for the three columns of $X=S^{-1}$

$$
\left.\begin{array}{rl}
\left(\begin{array}{rrr|rrr}
1 & 0 & 2 & 1 & 0 & 0 \\
2 & -1 & 3 & 0 & 1 & 0 \\
4 & 1 & 8 & 0 & 0 & 1
\end{array}\right) & \rightarrow\left(\begin{array}{rrr|rrr}
1 & 0 & 2 & 1 & 0 & 0 \\
0 & -1 & -1 & -2 & 1 & 0 \\
0 & 1 & 0 & -4 & 0 & 1
\end{array}\right) \\
& \rightarrow\left(\begin{array}{rrrr}
1 & 0 & 2 & 1
\end{array} 0\right. \\
0 & -1 \\
0 & -1
\end{array}\left|-2 \begin{array}{l}
1 \\
0
\end{array} 00-1\right| \begin{array}{ll}
-6 & 1 \\
1
\end{array}\right) .
$$

$$
S^{-1}=\left(\begin{array}{rrr}
-11 & 2 & 2 \\
-4 & 0 & 1 \\
6 & -1 & -1
\end{array}\right)
$$

Computation of the Matrix Inverse

We want to find the inverse of $S \in \mathbb{R}^{n \times n}$, that is we want to find a matrix $X \in \mathbb{R}^{n \times n}$ such that $S X=I$.

- Let $X_{:, j}$ denote the j th column of X, i.e., $X=\left(X_{:, 1}, \ldots, X_{:, n}\right)$. Consider the matrix-matrix product $S X$. The j th column of $S X$ is the matrix-vector product $S X_{:, j}$, i.e., $S X=\left(S X_{:, 1}, \ldots, S X_{:, n}\right)$. The j th column of the identity I is the j th unit vector $e_{j}=(0, \ldots, 0,1,0, \ldots, 0)^{T}$.
Hence $S X=\left(S X_{:, 1}, \ldots, S X_{:, n}\right)=\left(e_{1}, \ldots, e_{n}\right)=I$ implies that we can compute the columns $X_{:, 1}, \ldots, X_{:, n}$ of the inverse of S by solving n systems of linear equations

$$
\begin{gathered}
S X_{:, 1}=e_{1}, \\
\vdots \\
S X_{:, n}=e_{n} .
\end{gathered}
$$

Note that if for every f the linear system $S x=f$ has a unique solution x, then there exists a unique $X=\left(X_{:, 1}, \ldots, X_{:, n}\right)$ with $S X=I$.
M. Heinkenschloss - CAAM335 Matrix Analysis

Matrix Inverse and LU Decomposition -

LU-Decomposition

Consider

$$
S=\left(\begin{array}{ccc}
1 & 0 & 2 \\
2 & -1 & 3 \\
4 & 1 & 8
\end{array}\right)
$$

Express Gaussian Elimination using Matrix-Matrix-multiplications

$$
\underbrace{\left(\begin{array}{rrr}
1 & 0 & 0 \\
-2 & 1 & 0 \\
-4 & 0 & 1
\end{array}\right)}_{=E_{1}} \underbrace{\left(\begin{array}{rrr}
1 & 0 & 2 \\
2 & -1 & 3 \\
4 & 1 & 8
\end{array}\right)}_{=S}=\underbrace{\left(\begin{array}{rrr}
1 & 0 & 2 \\
0 & -1 & -1 \\
0 & 1 & 0
\end{array}\right)}_{=E_{1} S}
$$

$$
\underbrace{\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right)}_{=E_{2}} \underbrace{\left(\begin{array}{rrr}
1 & 0 & 2 \\
0 & -1 & -1 \\
0 & 1 & 0
\end{array}\right)}_{=E_{1} S}=\underbrace{\left(\begin{array}{rrr}
1 & 0 & 2 \\
0 & -1 & -1 \\
0 & 0 & -1
\end{array}\right)}_{=E_{2} E_{1} S=U}
$$

Inverses of E_{1} and E_{2} can be easily computed:

$$
E_{1}^{-1}=\left(\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
4 & 0 & 1
\end{array}\right), \quad E_{2}^{-1}=\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -1 & 1
\end{array}\right)
$$

We have

$$
E_{2} E_{1} S=U
$$

Hence

$$
E_{1} S=E_{2}^{-1} U, \quad \text { and } \quad S=E_{1}^{-1} E_{2}^{-1} U
$$

$$
\begin{aligned}
& \underbrace{\left(\begin{array}{ccc}
1 & 0 & 2 \\
2 & -1 & 3 \\
4 & 1 & 8
\end{array}\right)}_{=S}=\underbrace{\left(\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
4 & 0 & 1
\end{array}\right)}_{=E_{1}^{-1}} \underbrace{\left(\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -1 & 1
\end{array}\right)}_{=E_{2}^{-1}} \underbrace{\left(\begin{array}{rrr}
1 & 0 & 0 \\
2 & 0 & 2 \\
0 & -1 & -1 \\
0 & 0 & -1
\end{array}\right)}_{=U} \\
&=\underbrace{\left(\begin{array}{rrr}
1 & 0 & 2 \\
0 & -1 & -1 \\
0 & 0 & -1
\end{array}\right)}_{=E_{1}^{-1} E_{2}^{-1}=L} \underbrace{\left(\begin{array}{rrr}
(1 & 1 & -1
\end{array}\right)}_{=U}
\end{aligned}
$$

Hence we have the LU-Decomposition of S,

$$
S=L U
$$

where L is a lower triangular matrix and U is an upper triangular matrix. In Matlab compute using [L, U]=lu(S).
M. Heinkenschloss - CAAM335 Matrix Analysis Matrix Inverse and LU Decomposition -

In Matlab the matrix inverse is computed using the LU decomposition.
Given S, we want to compute S^{-1}. Recall that the columns
$X_{i, 1}, \ldots, X_{i, n}$ of the inverse $S^{-1}=X$ are the solutions of

$$
\begin{gathered}
S X_{:, 1}=e_{1}, \\
\vdots \\
S X_{:, n}=e_{n} .
\end{gathered}
$$

If we have computed the LU decomposition

$$
S=L U,
$$

then we can use it to solve the n linear systems $S X_{:, j}=e_{j}, j=1, \ldots n$.
Use the LU decomposition to compute the inverse of

$$
\underbrace{\left(\begin{array}{ccc}
1 & 0 & 2 \\
2 & -1 & 3 \\
4 & 1 & 8
\end{array}\right)}_{=S}=\underbrace{\left(\begin{array}{rrr}
1 & 0 & 0 \\
2 & 1 & 0 \\
4 & -1 & 1
\end{array}\right)}_{=L} \underbrace{\left(\begin{array}{rrr}
1 & 0 & 2 \\
0 & -1 & -1 \\
0 & 0 & -1
\end{array}\right)}_{=U}
$$

What do you think of the following approach to solve $S x=f$:

$$
\begin{aligned}
& \text { >> Sinv = inv }(S) \\
& \gg \quad x=\operatorname{Sinv} * f
\end{aligned}
$$

If we have computed the LU decomposition
then we can use it to solve

$$
S x=f .
$$

We replace S by $L U$,

$$
L U x=f
$$

and introduce $y=U x$. This leads to the two linear systems

$$
L y=f \quad \text { and } \quad U x=y .
$$

Since L is lower triangular and U is upper triangular, these two systems can be easily solved.
Example:

$$
\begin{aligned}
& \underbrace{\left(\begin{array}{ccc}
1 & 0 & 2 \\
2 & -1 & 3 \\
4 & 1 & 8
\end{array}\right)}_{=S}=\underbrace{\left(\begin{array}{rrr}
1 & 0 & 0 \\
2 & 1 & 0 \\
4 & -1 & 1
\end{array}\right)}_{=L} \underbrace{\left(\begin{array}{rrr}
1 & 0 & 2 \\
0 & -1 & -1 \\
0 & 0 & -1
\end{array}\right)}_{=U}, f=\left(\begin{array}{l}
-4 \\
-6 \\
-15
\end{array}\right) \\
& \underbrace{\left(\begin{array}{rrr}
1 & 0 & 0 \\
2 & 1 & 0 \\
4 & -1 & 1
\end{array}\right)}_{=L}\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)=\underbrace{\left(\begin{array}{c}
-4 \\
-6 \\
-15
\end{array}\right)}_{=f} \Rightarrow\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)=\left(\begin{array}{c}
-4 \\
2 \\
3
\end{array}\right) \\
& \underbrace{\left(\begin{array}{rrr}
1 & 0 & 2 \\
0 & -1 & -1 \\
0 & 0 & -1
\end{array}\right)}_{=U}\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\underbrace{\left(\begin{array}{c}
-4 \\
2 \\
3
\end{array}\right)}_{=y} \Rightarrow\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
2 \\
1 \\
-3
\end{array}\right)
\end{aligned}
$$

M. Heinkenschloss - CAAM335 Matrix Analysis

[^0]
[^0]: Execute the following
 n = input('Problem size = ');
 S $\quad=\operatorname{rand}(n, n)$;
 $=\operatorname{rand}(n, 1)$;
 ntry $=50$;
 tic
 for $\mathrm{i}=1: \mathrm{ntry}$

 $$
 \mathrm{x}=\mathrm{S} \backslash \mathrm{f}
 $$

 end
 toc
 tic
 for $\mathrm{i}=1$:ntry Sinv $=\operatorname{inv}(S)$
 $\mathrm{x}=$ Sinv*f;
 end
 toc
 tic
 [L,U] =lu(S);
 for $\mathrm{i}=1:$ ntry $\mathrm{x}=\mathrm{U} \backslash(\mathrm{L} \backslash f) ;$
 end
 toc

