Calculating Derivatives for a Least Squares Matrix Function

Yin Zhang, CAAM 454/554
Rice University, Houston, TX 77005

March 19, 2013

Given a symmetric positive semidefinite matrix $A \in \mathbb{R}^{n \times n}$, let

$$
\begin{equation*}
R(X)=X X^{T}-A, \tag{1}
\end{equation*}
$$

where $X \in \mathbb{R}^{n \times k}$ for $k<n$. Consider the nonlinear least squares problem

$$
\begin{equation*}
\min _{X \in \mathbb{R}^{n \times k}} f(X):=\frac{1}{4}\|R(X)\|_{F}^{2}, \tag{2}
\end{equation*}
$$

which should give the best rank- k approximation to A.
We know that the gradient of f has the form

$$
\begin{equation*}
\nabla f(X)=\frac{1}{2} \mathbf{J}(X)^{T}(R(X)) \in \mathbb{R}^{n \times k} \tag{3}
\end{equation*}
$$

where $\mathbf{J}(X)^{T}$ is the adjoint of the linear operator $\mathbf{J}(X): \mathbb{R}^{n \times k} \rightarrow \mathbb{R}^{n \times n}$, i.e., the Jacobian of $R(X)$.
Since

$$
R(X+S)=(X+S)(X+S)^{T}-A=R(X)+S X^{T}+X S^{T}+S S^{T}
$$

$\mathbf{J}(X)$ is clearly defined by

$$
\begin{equation*}
\mathbf{J}(X)(S)=S X^{T}+X S^{T}=S X^{T}+\left(S X^{T}\right)^{T} . \tag{4}
\end{equation*}
$$

Let \mathcal{P}_{n} be the permutation in $\mathbb{R}^{n^{2}}$ so that

$$
\operatorname{vec}\left(M^{T}\right)=\mathcal{P}_{n} \operatorname{vec}(M)
$$

for all $M \in \mathbb{R}^{n \times n}$. It is known that

$$
\mathcal{P}_{n}=\mathcal{P}_{n}^{T}=\mathcal{P}_{n}^{-1} .
$$

In view of the identity

$$
\operatorname{vec}\left(\left(S X^{T}\right)^{T}\right)=\mathcal{P}_{n} \operatorname{vec}\left(S X^{T}\right)
$$

it is easy to derive from (4) that

$$
\operatorname{vec}(\mathbf{J}(X)(S))=\operatorname{vec}\left(S X^{T}\right)+\operatorname{vec}\left(\left(S X^{T}\right)^{T}\right)=\left(I+\mathcal{P}_{n}\right)(X \otimes I) \operatorname{vec} S .
$$

Hence the matrix representation of $\mathbf{J}(X)$ is

$$
\begin{equation*}
J(X)=\left(I+\mathcal{P}_{n}\right)(X \otimes I) \in \mathbb{R}^{n^{2} \times n k} \tag{5}
\end{equation*}
$$

For any symmetric matrix $R \in \mathbb{R}^{n \times n}$, we calculate

$$
\begin{aligned}
J(X)^{T} \mathbf{v e c}(R) & =\left(X^{T} \otimes I\right)\left(I+\mathcal{P}_{n}\right) \operatorname{vec}(R) \\
& =\left(X^{T} \otimes I\right)\left(\operatorname{vec}(R)+\operatorname{vec}\left(R^{T}\right)\right) \\
& =2\left(X^{T} \otimes I\right) \operatorname{vec}(R) \\
& =2 \mathbf{v e c}(R X),
\end{aligned}
$$

that is, for symmetric R,

$$
\begin{equation*}
\mathbf{J}(X)^{T}(R)=2 R X \tag{6}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\nabla f(X)=\frac{1}{2} \mathbf{J}(X)^{T}(R(X))=R(X) X=X\left(X^{T} X\right)-A X \tag{7}
\end{equation*}
$$

If we do Gauss-Newton method, we should examine

$$
\begin{aligned}
J(X)^{T} J(X) & =(X \otimes I)^{T}\left(I+\mathcal{P}_{n}\right)^{2}(X \otimes I) \\
& =2\left(X^{T} \otimes I\right)\left(I+\mathcal{P}_{n}\right)(X \otimes I) \\
& =2\left(X^{T} X \otimes I\right)+2\left(X^{T} \otimes I\right) \mathcal{P}_{n}(X \otimes I) .
\end{aligned}
$$

Unfortunetely, this matrix is not easily invertible, even though the first term is,

$$
\left(X^{T} X \otimes I\right)^{-1}=\left(X^{T} X\right)^{-1} \otimes I
$$

By substituting $\mathbf{J}(X) S$ in (4) into (6) for R, we obtain

$$
\begin{equation*}
\mathbf{J}(X)^{T} \mathbf{J}(X)(S)=2\left(S X^{T} X+X S^{T} X\right) \tag{8}
\end{equation*}
$$

This expression can be used to solve the normal equations by an iterative method.

