
CAAM 454/554: Afternotes on Krylov-Subspace Iterative Methods

Yin Zhang (draft)

CAAM, Rice University, Houston, TX 77005

February 3, 2007

Revised 02/24/2011, 01/29/2013

1 Introduction

These notes are written as supplements to the textbook, “Numerical Linear Algebra” by Lloyd

Trefethen and David Bau, for CAAM 454/554 students. Those who are preparing for the CAAM

Ph.D Qualifying exam on Numerical Analysis should do the exercises provided in these notes.

We will mostly follow the notation of the book. For instance, unless otherwise specified, the

norm ‖ · ‖ refers to the Euclidian norm.

2 Arnoldi – Modified Gram-Schmidt

We consider solving a linear system of equations

Ax = b, (1)

where we will assume, unless specified otherwise, that A is m by m and complex, i.e., A ∈ Cm×m,

nonsingular, and the right-hand side (RHS) vector b ∈ Cm is nonzero.

The n-th Krylov subspace generated by A and b is

Kn := 〈b, Ab, A2b, · · · , An−1b〉 := 〈p1, p2, p3, · · · , pn〉, (2)

where we have introduced the p vector for the ease of notation.

The “natural” basis, {p1, p2, p3, · · · , pn}, for Kn are generally not orthonormal. The Gram-

Schmidt process can be used to generate an orthonormal basis:

q1 =
p1
‖p1‖

, qn+1 =
PK⊥n pn+1

‖PK⊥n pn+1‖
, n = 1, 2, 3, · · · ,

where PK⊥n is the projection onto the orthogonal complement space of Kn. Specifically,

PK⊥n = I −QnQ∗n, and Qn = [q1 q2 · · · qn].

1

Invoking the relation pn+1 = Apn, we rewrite the Gram-Schmidt process:

q1 =
p1
‖p1‖

, qn+1 =
PK⊥nApn

‖PK⊥nApn‖
, n = 1, 2, 3, · · · , (3)

The Arnoldi process can be regarded as a modified Gram-Schmidt process:

q1 =
p1
‖p1‖

, qn+1 =
PK⊥nAqn

‖PK⊥nAqn‖
, n = 1, 2, 3, · · · , (4)

We see that the only difference between the two is the replacement of pn by qn.

2.1 Exercises

1. Verify the formula in (4).

2. Prove that, until a breakdown occurs, (3) and (4) generate the same sequence of vectors

(disregarding possible sign differences).

3. Prove that a breakdown in Arnoldi process happens at the n-th step of the Arnoldi process

if and only if (i) Aqn ∈ Kn, or (ii) Kp = Kn for all p ≥ n, or (iii) dim(Kp) = n for all p ≥ n.

4. Prove that qn+1 satisfies q∗n+1Aqj = 0 for j < n (this property is called A-conjugatcy when A

is Hermitian).

3 GMRES

GMRES Method can be summarized into a one-liner:

xn = arg min
x∈Kn

‖b−Ax‖2.

Since x = Qny for x ∈ Kn, the equations

AQn = Qn+1H̃n and b = ‖b‖q1 ≡ ‖b‖Qn+1e1

allow us to write

‖rn‖ := min
x∈Kn

‖b−Ax‖ = ‖b‖ min
y∈Cn

‖H̃ny − e1‖, (5)

where H̃n ∈ C(n+1)×n, and e1 is the “first unit vector” in <n+1. Upon partitioning, we write the

upper Hessenberg matrix H̃n as

H̃n =

(
H̃n−1 hn

0 · · · 0 hn+1,n

)
, (6)

2

where hn+1,n > 0. Let the QR-factorization of H̃n be

H̃n = Wn+1Rn (7)

where Wn+1 ∈ C(n+1)×(n+1) is unitary and Rn ∈ C(n+1)×n is upper triangular. Clearly, we can

write

Rn =

(
R̂n

0 · · · 0

)
, Rny =

(
R̂ny

0

)
,

where R̂n is n by n and nonsingular. Let the first column of W ∗n+1 (or the first row of W̄n+1) be

W ∗n+1e1 =

(
g

γ

)

where g ∈ Cn and γ ∈ C. Then it is easy to see that since

‖H̃ny − e1‖2 = ‖Rny −W ∗n+1e1‖2 = ‖R̂ny − g‖2 + |γ|2,

we must have

min
y∈Cn

‖H̃ny − e1‖ = |γ| ≡ |Wn+1(1, n+ 1)| , (8)

which is the modulus of the (1, n+ 1)-th element of Wn+1 at its north-eastern corner.

3.1 Residual Updating

Let us denote the last column of Wn as

wn = Wn(:, n) ∈ Cn, n = 1, 2, 3, · · · .

From the recursive relation (6), we have

Wn+1Rn =

[
WnRn−1 hn

0 hn+1,n

]
=

[
Wn 0

0 1

][
Rn−1 W ∗nhn

0 hn+1,n

]
.

Hence,

Rn =

[
In−1 0

0 G

]
Rn−1(1 : n− 1, :) Wn(:, 1 : n− 1)∗hn

0 · · · 0 w∗nhn

0 · · · 0 hn+1,n

 .
where G is the 2-by-2 Givens rotation matrix

G =

[
ν̄n τn

−τn νn

]
,

3

with elements

τn =
hn+1,n√

h2n+1,n + |w∗nhn|2
, νn =

w∗nhn√
h2n+1,n + |w∗nhn|2

, (9)

where τn ∈ [0, 1] and νn may be complex.

On the other hand, letting Ŵn be the sub-matrix consisting of the first n − 1 columns of Wn

and wn be the last column, then

Wn+1 =

[
Wn 0

0 1

][
In−1 0

0 G∗

]
=

([
Ŵn

0

] [
wn 0

0 1

]
G∗

)
,

which leads to the following recursion:

wn+1 =

[
−τnwn
ν∗n

]
. (10)

Therefore, we have
‖rn‖
‖rn−1‖

=
|Wn+1(1, n+ 1)|
|Wn(1, n)|

= τn, (11)

or the residual update formula:

‖rn‖ = τn ‖rn−1‖. (12)

3.2 A GMRES Implementation

When hn+1,n = 0, we know that the solution to Ax = b is

x = Qn(‖b‖y∗), y∗ = arg min
y∈Cn

‖H̃ny − e1‖. (13)

One simple idea of implementing GMRES would be carrying out Arnoldi iterations until hn+1,n = 0,

then getting solution from (13). This way, one would only solve one least squares problem at the

end. However, on a computer, hn+1,n may never be exactly zero. How about setting a small

tolerance for hn+1,n? This is difficult too because the relationship between hn+1,n and the residual

is problem-dependent. Any given tolerance may cause termination to occur too early or too late.

Here we present an implementation based on the recursive formula (12) for the residuals. At

every iteration, we can update the residual at a cost of O(n) operations without solving the least

square problem. In this implementation, we do not need the matrices Wn+1, except its last column,

nor Rn. Only a single least-squares problem is solved at the end of the algorithm at a cost of O(n2)

operations (since H̃n is upper Hensenberg), which is dominated by the O(mn) operations required

by forming the solution x = Qny
∗ in (13) after the least-squares problem is solved.

Algorithm (GMRES):

Initialize: ‖r0‖ = ‖b‖, q1 = b/‖b‖, w1 = 1, H̃0 = [], and set tol > 0.

For n = 1, 2, 3, · · · ,

4

1. Do Arnaldi to get qn+1, hn, hn+1,n and update H̃n as in (6).

2. Compute τn and νn by the formulas in (9).

3. Update to wn+1 by the formula in (10).

4. Update ‖rn‖ by the formula in (12).

5. If ‖rn‖ > tol ‖b‖, go back to step 1.

6. Compute solution x from (13) and exit.

End

The above implementation differs from the standard implementation, given in Saad’s book [4],

in the order of computations. Both are based on the QR factorization of H̃n. In the standard

implementation, the upper triangular matrix Rn (the R-factor of H̃n) and the right-hand vector g

are explicitly stored and updated, while in our implementation only a vector w (the last column of

Wn+1) is stored and updated. On the other hand, at the end of the algorithm, the standard imple-

mentation only requires to solve a triangular system of the form R̂ny = g, while our implementation

required to solve a least-squrares problem with the upper Hensenberg matrix H̃n.

The total number of operations required for the two implementations are essentially the same.

However, our implementation has a considerably simpler and more compact form, involving no

matrix nor matrix operations at every iteration besides those in the Arnoldi process. Hence, it

appears easier to understand and to implement by students and other beginners.

3.3 GMRES at its Worst

In view of (11) and (9), and noting |w∗nhn| ≤ ‖hn‖, we have the estimate

‖rn‖
‖rn−1‖

≥ hn+1,n√
h2n+1,n + ‖hn‖2

, (14)

or equivalently,
‖rn‖
‖rn−1‖

≥
∥∥∥∥PK⊥n Aqn

‖Aqn‖

∥∥∥∥ . (15)

The left-hand sides are the best possible reduction factor in the residual after each and every

iteration. Obviously, when Aqn is almost orthogonal to Kn, or when ‖hn‖ is much less then hn+1,n,

little reduction can be achieved.

The inequality (14) reveals that the best possible convergence rate of GMRES is completely

determined by the Hessenberg factor H of the matrix A, i.e., A = QHQ∗, where the first column

q1 in Q is a normalized initial residual vector. Let us assume that we solve Ax = b starting from

x0 = 0, hence q1 = ±b/‖b‖.

5

It is easy to observe from (14) that the absolutely worst matrix possible for GMRES is A =

QHQ∗ where the upper Hessenberg matrix H has the form

H =



0 ×
× 0 ×

× . . .
...

. . . 0 ×
× ×


m×m

, (16)

where, for non-singularity, the×’s on the sub-diagonal and at the (1,m) position should be nonzeros.

For this H matrix, we have

hn+1,n 6= 0, ‖hn‖ = 0, n < m.

Therefore, τn ≡ 1 for n < m, and

‖rn‖ = ‖b‖, n < m.

That is, GMRES will make no progress at all until the very last iteration where ‖rm‖ = 0. The

iterates are identically zero:

x0 = x1 = · · · = xm−1 = 0,

except for xm = x∗, the solution. This is when GMRES at its worst!

We should point out that this worst behavior of GMRES does not seem a “measure-zero”

phenomenon. In our experience, GMRES behaves almost as badly for matrices A = Q(H + E)Q∗

where H is of the form in (16) and E is a sufficiently small perturbation (even starting from random

initial guesses).

3.4 Exercises

1. Prove (8).

2. Prove (10).

3. Prove (14) and (15).

4 Restarted GMRES(t)

GMRES becomes more and more expensive as the iteration number increases. A popular fix to this

problem is to restart GMRES after every t iterations with the current residual as the right-hand

side. The residual norm will be monotonically non-increasing.

6

GMRES(t) can work really well in most cases, somethimes even better than GMRES in terms

of the total number of (inner) iterations [1]. However, stalling can happen from time to time when

the residual norm stops decreasing at a meaningful rate or at all. What is the best strategy, if there

is one, to choose the restarting frequency t? The following quote is from our own CAAM professor

Embree, an expert [2] in this field:

Optimal selection of the GMRES restart parameter is one of the most perplexing open

questions in the field.

What we can say for sure is that for whatever choice of restarting parameter t < m, non-

convergence can happen, as will be shown next.

4.1 All Restarts Fail in the Worst Case

Let us again consider the worst case for GMRES where A = QHQ∗, and H is of the form (16).

Observe that, starting from q1 = r0 = b/‖b‖, GMRES(t), t < m, restarts from rkt after every p

inner iterations. It is easy to verify that

arg min
x∈Kp

‖Ax− b‖ = 0 ⇒ xkt = 0, rkt = b, ∀p < m.

Therefore, in all outer iterations GMRES(t) always restarts from the same point with xkt = 0 and

rkt = b. Obviously, all the iterates, whether inner or outer, are identically zero for ever.

Although the worst-case picture appears quite gloomy, the occurrence of the worst-cases is really

an unlikely event that one hardly encounters in practical applications. In practice, GMRES(t)

generally works pretty well.

4.2 Exercises

1. Derive an explicit formula for GMRES(1) in the form of xn+1 = xn + dn. What is the main

difference, if any, between GMRES(1) and speediest descent method for min ‖Ax− b‖2?

5 Conjugate Gradient Method

Now we consider linear systems Ax = b with A � 0, meaning that the matrix A ∈ Rm×m is

symmetric and positive definite (i.e., xTAx > 0 for all nonzero x ∈ Rm).

5.1 Framework

We will continue to follow the GMRES idea of minimizing the residual r = b − Ax in the Krylov

subspaces Kn(A, b) with increasing n. However, we will change the norm used to measure residual

sizes.

7

Definition 1. For any m × m symmetric positive definite matrix W � 0, we define a weighted

2-norm for Rm:

‖x‖W ,
√
xTWx, ∀x ∈ Rm.

Conjugate Gradient (CG) Method can be summarized into a one-liner:

xn = arg min
x∈Kn

‖b−Ax‖A−1 . (17)

It is easy to verify that for x∗ = A−1b,

‖b−Ax‖2A−1 = ‖x− x∗‖2A = 2φ(x) + const (18)

where φ(x) is the quadratic function

φ(x) ,
1

2
xTAx− bTx. (19)

Therefore, CG is nothing but

xn = arg min
x∈Kn

φ(x). (20)

The gradient and the Hessian of φ(x) are, respectively,

∇φ(x) = Ax− b and ∇2φ(x) = A.

5.2 A-Conjugacy

Instead of using orthonormal bases for Kn, we will use so-called A-conjugate bases. The benefit of

using such bases will become clear soon.

Definition 2. A set of nonzero vectors {p0, p1, · · · , pn−1} ⊂ Rm is said to be A-conjugate with

respect to a symmetric positive definite matrix A ∈ Rm×m if the vectors satisfy

pTi Apj = 0, ∀ i 6= j.

A-conjugacy allows the following recursion:

Lemma 1. Let {p0, p1, · · · , pn−1} be an A-conjugate basis of Kn for n ≥ 1, and {xn} be defined as

in (20). In addition, let x0 = 0. Then for n ≥ 1

xn = xn−1 + αnpn−1, (21)

where

αn =
rTn−1pn−1

pTn−1Apn−1
= arg min

α∈R
φ(xn−1 + αpn−1). (22)

In this case, minimizing φ(x) in Kn is equivalent to minimizing φ(x) in the direction of pn−1

starting from xn−1.

8

5.3 Exercises

1. Let A be symmetric. Prove, only using the definition

A � 0 ⇐⇒ xTAx > 0, ∀x 6= 0,

that (a) if A � 0, then A is nonsingular and A−1 � 0; (b) the two equalities in (18).

2. Prove that A-conjugacy implies linear independence.

3. Prove Lemma 1.

5.4 Descent Methods

Definition 3. Let ψ : Rm → R be a differentiable function. A vector p ∈ Rm is a descent direction

of ψ at x if

∇ψ(x)T p < 0.

The steepest descent direction of ψ at x is p = −∇ψ(x) if it is nonzero.

Given x and p, if we define

f(α) = ψ(x+ αp),

then it is clear that f is decreasing at α = 0 if f ′(0) = ∇ψ(x)T p < 0.

The descent method framework (with exact line search) is{
αn = arg minα∈R ψ(xn−1 + αpn−1),

xn = xn−1 + αnpn−1.
(23)

Naturally, the steepest descent method corresponds to p = −∇ψ(x).

Since αn is a minimum of f(α), there must hold f ′(αn) = 0; i.e.,

∇ψ(xn)T pn−1 = 0. (24)

For the quadratic function φ(x) defined in (19), the steepest descent direction is the residual at

each iteration since

p = −∇φ(x) = b−Ax = r.

When applied to such a quadratic function φ(x), the steepest descent method takes the following

9

form.

Steepest Descent Method

Set x0 = 0 and p0 = r0 = b.

for k = 1, 2, · · · , do

αn = rTn−1pn−1/p
T
n−1Apn−1;

xn = xn−1 + αnpn−1;

rn = rn−1 − αnApn−1;
pn = rn.

end

It can be directly derive from the algorithm steps that

φ(xn)− φ(x∗)

φ(xn−1)− φ(x∗)
= 1− 1

γ(rn−1)
, (25)

where

γ(d) =
(dTAd)(dTA−1d)

(dTd)2
. (26)

By Kantorovich Inequality,

γ(d) ≤ (λmax(A) + λmin(A))2

4λmax(A)λmin(A)
, ∀d 6= 0, (27)

where λmax(A) and λmin(A) are the largest and the smallest eigenvalues of A, respectively. Hence,

we can derive the convergence rate for the steepest descent method to be

φ(xn)− φ(x∗)

φ(xn−1)− φ(x∗)
≤
(
κ(A)− 1

κ(A) + 1

)2

, (28)

where κ(A) = λmax(A)/λmin(A) is the condition number of A in Euclidean norm.

5.5 Conjugate Gradient Method

CG is a descent method as the steepest descent method is. It differs from the latter only in the

choice of search directions. In the last step for pn, CG adds a portion of the previous search

direction βpn−1 to rn to form the next search direction pn = rn + βpn−1. The parameter β is

chosen to make pn and pn−1 A-conjugate. That is, (rn + βpn−1)
TApn−1 = 0, giving

βn =
−rTnApn−1
pTn−1Apn−1

. (29)

From Lemma 1, we know that A-conjugacy reduces Krylov subspace minimization of φ(x) to a

simple one-dimensional minimization in the direction of pn−1 emitting from xn−1, producing exactly

10

the same update as in the steepest descent method. A preliminary form of CG is as follows.

CG Method

Set x0 = 0 and p0 = r0 = b.

for k = 1, 2, · · · , do

αn = rTn−1pn−1/p
T
n−1Apn−1;

xn = xn−1 + αnpn−1;

rn = rn−1 − αnApn−1;
βn = −rTnApn−1/pTn−1Apn−1;
pn = rn+βnpn−1.

end

Obviously, when βn = 0, CG reduces to the steepest descent method.

Equivalent but more refined expressions for the two parameters αn and βn can be derived from

the properties of the CG method (TB Theorem 38.1); i.e.,

αn =
rTn−1rn−1

pTn−1Apn−1
, βn =

rTn rn

rTn−1rn−1
, (30)

which are slightly more efficient to compute.

5.6 Exercises

1. Prove (24), and then use it to show that the search direction pn in CG is a descent direction

of the quadratic φ(x) at xn.

2. Prove the equality (25) for the steepest descent method.

3. Given (25)-(27), prove the convergence rate estimate (28) for the steepest descent method.

4. Use Theorem 38.1 in TB textbook to derive (30) from their expressions in the preliminary

form of the CG method.

References

[1] Mark Embree. The Tortoise and the Hare Restart GMRES. SIAM Rev. 45 (2003) 259-266.

[2] Mark Embree. Private communications. 2007.

[3] Anne Greenbaum. Iterative Methods for Solving Linear Systems. SIAM, 1997.

[4] Yousef Saad. Iterative Methods for Sparse Linear Systems. 2nd Ed., SIAM, 2003.

11

	Introduction
	Arnoldi – Modified Gram-Schmidt
	Exercises

	GMRES
	Residual Updating
	A GMRES Implementation
	GMRES at its Worst
	Exercises

	Restarted GMRES(t)
	All Restarts Fail in the Worst Case
	Exercises

	Conjugate Gradient Method
	Framework
	A-Conjugacy
	Exercises
	Descent Methods
	Conjugate Gradient Method
	Exercises

