
____________________________________________________________________________________________________________________________________

Using AMPL Under MS-DOS

This booklet supplements AMPL: A Modeling Language for Mathematical Programming for
users of AMPL on personal computers running MS-DOS and compatible operating systems. The
AMPL software consists of an implementation of the AMPL command environment and language
processor that may be used with a variety of solvers. All features of AMPL and the solvers are sup-
ported. This booklet describes the installation and use of AMPL under DOS. Separate booklets are
available for each solver; they contains advice on using the solvers, and on options specific to an
individual solver or algorithm.

Student and professional editions of AMPL are available on a variety of computers, in conjunc-
tion with a variety of solvers. For full information, contact:

Boyd & Fraser Publishing Company
55 Ferncroft Road
Danvers, MA 01923

800-225-3782; 508-777-9069; fax 508-777-9068

Electronic mail: ampl@research.att.com

Using AMPL
The AMPL software described in this booklet runs under MS-DOS version 3.2 or later, and com-

patible operating systems such as Microsoft Windows.
Hardware requirements include an Intel 80386 or compatible microprocessor, a few megabytes

for program files, and 2 or more megabytes of main memory. Any monitor is acceptable, and a
numeric coprocessor is not required.

Section §1 explains how to install AMPL. The remainder of this booklet covers system-specific
aspects of running AMPL under MS-DOS, including interactions with text editors and Microsoft
Windows, memory requirements, and management of files.

§1 Installation
The AMPL software distribution consists of AMPL itself, any solvers that may be included, and

a directory MODELS of models and data from the AMPL book. To install, put the distribution disk
into a floppy drive, and invoke install on that drive. For example, if you put the distribution
disk into floppy drive A, type

a:install

Similarly, if using floppy drive B, you would type

b:install



2 USING AMPL UNDER MS-DOS

The installation program will let you specify where the AMPL software should be installed, with
C:\AMPL as the default choice. The material on the distribution disk is compressed. The installa-
tion program gives a running commentary of the files it installs and ends by offering to adjust or
suggest how to adjust your AUTOEXEC.BAT file to add your new AMPL directory to your search
path, so that you can invoke AMPL from any directory. To test that the installation is complete,
make the new AMPL directory the current directory, and try solving one of the small sample prob-
lems from the distribution disk:

C:\> cd ampl
C:\AMPL> ampl
ampl: model models\steel.mod;
ampl: data models\steel.dat;

ampl data: solve;
MINOS 5.4: optimal solution found.
2 iterations, objective 192000

ampl: option solver cplex;
ampl: solve;
CPLEX 2.1: optimal solution; objective 192000
2 iterations (0 in phase I)

ampl: quit;
C:\AMPL>

(You may have a different set of solvers on your system.)
If this test is unsuccessful, you may need to adjust your CONFIG.SYS file. For details see the

file README.TXT that is copied to your disk during the installation.

§2 Running AMPL

Once the installation is complete, you can run AMPL by typing ampl at the prompt, as shown
in the preceding example. The AMPL command quit returns you to the DOS prompt.

It is inconvenient to have to leave AMPL every time you want to edit a model or data file.
Instead you can use AMPL’s shell command to invoke an editing program from within the AMPL
environment. You may be able to use a full-featured word processor for this purpose, but you will
have to take care that it doesn’t write additional formatting information into your file. A simpler
editor is usually a better choice; many versions of DOS provide a command such as edit or e, for
example, that calls up a basic full-screen, character-based text editor. To use edit on the file
diet.dat, you simply type

ampl: shell ’edit diet.dat’;

The screen of AMPL commands and output is then replaced by the editor’s screen, and you can use
the editor just as if you had typed edit diet.dat from the DOS prompt. When you exit the edi-
tor, the ampl: prompt reappears, and you can resume using AMPL where you left off:

ampl: reset data;
ampl: data diet.dat;

As this example suggests, editing a file does not have an effect on your work until you explicitly
direct AMPL to read the edited file.

You can also invoke AMPL from within Microsoft Windows, either by selecting AMPL.EXE
from the File/Run dialog, or by using the File/New dialog to set up a program item for AMPL.
You can keep an editor and AMPL active at the same time under Windows, so that AMPL’s shell
command is not needed. We recommend using AMPL with the Notepad editor that comes with
most versions of Windows.

For many modeling projects, this is all you need to know about invoking AMPL.
The ampl command has longer forms that are convenient or necessary in certain circum-

stances. The general form of the command is:



USING AMPL UNDER MS-DOS 3

________________________________________________________________________________
____________________________________________________________________________________________________________________________________________________________________________________

Switch Option Interpretation

-Cn Cautions n n = 0: suppress caution messages
n = 1: report caution messages (default)
n = 2: treat cautions as errors

-en eexit n n > 0: abandon a command after n errors
n < 0: abort AMPL after n errors
n = 0: report any number of errors

-L linelim 1 when using ‘‘defining’’ equations to substitute a linear
expression for a variable, make an explicit substitution,
so that the resulting model can be recognized as linear

-P presolve 0 turn off the presolve phase
-s randseed ’’ use current time for random number seed
-sn randseed n use n for random number seed
-S substout 1 use ‘‘defining’’ equations to eliminate variables
-T gentimes 1 show the time taken to generate each model component
-t times 1 show the time taken in each model translation phase

Table 1: Command-line switches.
____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

ampl switch - list opt filename - list opt

The optional switch-list contains items that turn certain AMPL features on or off. These items
begin with the - character. Such items are often called ‘‘command-line options’’, but here we call
them ‘‘switches’’ to distinguish them from the ‘‘options’’ controlled by AMPL’s option com-
mand. The items in the filename-list are filenames, or the - character alone. One or more spaces
must separate each item from the next. We describe the switches first, and then the use of the file-
names.

AMPL can also be instructed through DOS environment variables to initialize certain options, or
to read an initialization file automatically upon invocation. These features are explained at the end
of this section.

Switches
Many command-line switches are simply synonyms for options that can be set within the

AMPL command environment. For example, the -P switch,

C:\> ampl -P
ampl:

has the same effect as setting the presolve option to zero:

C:\> ampl
ampl: option presolve 0;
ampl:

Table 1 lists all of these alternatives. The -v switch reports the version of AMPL you are running,
and the -? switch provides a summary of command-line switches.

Filenames
If you give one or more filenames on the command line, AMPL will read model declarations,

data statements and commands from these files in the order given, instead of entering the usual
command environment. This provides a way of running AMPL as a ‘‘batch’’ program, rather than
interactively. For example, the command

C:\> ampl diet.mod d:case2\diet.dat \tmp\diet.run
C:\>



4 USING AMPL UNDER MS-DOS

accomplishes the same thing as

C:\> ampl
ampl: include diet.mod;
ampl: include d:case2\diet.dat;
ampl: include \tmp\diet.run;
ampl: quit;
C:\>

We assume that diet.mod contains declarations for an AMPL model, d:case2\diet.dat
contains a data statement followed by data for a particular case, and \tmp\diet.run contains
AMPL commands for solving the resulting mathematical program and reporting the results. This is
only one possible arrangement, however; the contents of all three files might instead be concate-
nated into one, and in general any command-line file may contain a combination of declarations,
data and commands.

To combine reading from command-line files with interactive operation of AMPL, place the
character - in the filename-list to indicate where interactive operation is to begin. Most com-
monly, it appears at the end; to read files diet.mod and d:case2\diet.dat, and then give
further instructions interactively, you would type:

C:\> ampl diet.mod d:case2\diet.dat -
ampl:

A - character can precede another filename, however, if you want to type a few lines interactively
before proceeding to read the next file:

C:\> ampl diet.mod d:case2\diet.dat - \tmp\diet.run
ampl: let n_max[’NA’] := 50000;
ampl: end;
C:\>

The end command terminates the interactive environment, after which commands are read from
\tmp\diet.run. The quit command, by contrast, would terminate AMPL before the last file
could be read.

(Users accustomed to UNIX conventions should note that / may be used in place of \ in any
DOS filename interpreted by AMPL, either from the command line or within AMPL’s command
environment.)

Environment variables and initialization files

If you have many option settings or other initializations that you want to carry out each time
AMPL is invoked, you may wish to keep a list of startup commands in a file. AMPL takes the name
of this file from the DOS environment variable OPTIONS_IN, if such a variable has been defined
by the DOS set command. For example, if you have given the DOS command

C:\> set OPTIONS_IN=c:\amplinit.txt
C:\>

AMPL will execute the contents of c:\amplinit.txt before reading any other files or prompt-
ing for any commands. The effect is the same as if include c:\amplinit.txt were the first
command processed by AMPL.

If you want AMPL to remember all your option settings from one invocation to the next, first
set up an options command file by running a short AMPL session like this:

C:\> ampl
ampl: option OPTIONS_INOUT ’c:\amplopt.txt’;
ampl: quit;
C:\>



USING AMPL UNDER MS-DOS 5

AMPL writes to the specified file, c:\amplopt.txt in this case, a list of option commands
that set all options to the values they had when you typed quit. To use this file, set the corre-
sponding environment variable to the same filename:

C:\> set OPTIONS_INOUT=c:\amplopt.txt
C:\>

At each subsequent invocation of AMPL, the previous option settings will be read from the speci-
fied file; and each time thereafter that you quit AMPL, the current option settings — including any
changes you might have made — will be written back to the file. The effect is to preserve all
option values from one invocation to the next.

If you restart the computer or reboot DOS, a file such as c:\amplopt.txt is preserved.
You need only reset the OPTIONS_INOUT environment variable; to save the trouble of typing the
appropriate set command each time, place it in your DOS initialization file (normally
C:\AUTOEXEC.BAT).

The OPTIONS_IN file is read before the OPTIONS_INOUT file, if both are specified.

§3 Memory
AMPL makes use of both ‘‘base’’ and ‘‘extended’’ random-access memory (RAM) under DOS.

AMPL’s requirements for memory should not be confused with its requirements for disk space,
which are discussed in §4 below.

The amount of memory available to AMPL depends on the amount physically installed in the
computer, and on the amount in use by DOS and other programs (such as RAM disks and memory-
resident utilities). The amount of memory (not disk space) required by AMPL includes an initial
memory region upon invocation, plus additional memory for generating instances and running
solvers. The total memory requirement thus varies according to the problem that you are trying to
solve, and tends to increase as an AMPL session proceeds.

Most obviously, a larger problem instance will require more memory to generate and solve.
The size depends upon several factors, including the number of variables, the number of objectives
and constraints, and the number of terms in the objective and constraint expressions.

AMPL’s memory requirements also depend in a less straightforward way upon the complexity
of a model. Memory space is needed for every model component, including sets that are not
directly used to index anything, parameters that are defined in terms of other data, and variables
that are later removed by the presolve phase. The memory requirement for processing a model can
thus be much larger than the size of the resulting instance would suggest. For example, when a
var declaration is indexed over a Cartesian product of many sets,

var Ship {i in ORIG, j in DEST, p in PROD, q in AREA[p], t in 1..T} ...

some memory must be set aside for each resulting variable, even if the great majority of these vari-
ables are later fixed to zero by the constraints and eliminated by presolve. If the total memory is
insufficient, you may need to reformulate the model so that the variable is declared over a subset of
tuples (i,j,p,q,t), as explained in Chapter 6 of the AMPL book.

Since the need for memory ultimately depends upon the model, the data, and any commands
you give, AMPL cannot determine in advance how much memory it might require. Most often, an
insufficient memory message is encountered after typing solve:

ampl: solve;
Too much memory used — 768388 bytes; couldn’t get 32768 more
Highest address used = 0x215a984 = 34974084
C:\>

You can tell that this message comes from the AMPL translator, because it appears immediately
after solve, before any display from the solver. If instead you receive an out-of-memory mes-
sage after some solver output, then the difficulty lies with the solver’s memory requirements. Cer-



6 USING AMPL UNDER MS-DOS

tain algorithms within some solvers may have particularly large additional requirements for mem-
ory; for details, see the discussions of the algorithms in solver-specific booklets.

Clearly there is no single best way to remedy a problem of insufficient memory. We suggest
that you first review your model and data, to ensure that you are not creating unnecessarily great
requirements for memory. If the out-of-memory message comes from the solver, you should also
investigate whether solver-specific directives might reduce the memory needed.

If no reformulations or new directives seem to help, try scaling back your data to see how large
a problem does fit in your computer’s memory. If you find that you can successfully solve a prob-
lem nearly as big as the one you want to solve, you may be able to arrange a quick fix by modify-
ing your startup files (usually C:\AUTOEXEC.BAT and C:\CONFIG.SYS) to eliminate a RAM
disk or some memory-resident utilities, or to run directly under MS-DOS rather than under an envi-
ronment such as Microsoft Windows. If you reach this stage, however, you should consider
installing more memory in your computer to insure reliable performance.

§4 Files
When you type solve, AMPL generates an instance in memory, then writes a description to

one or more temporary files. The solver reads these files, applies an algorithm, and writes its
results to another temporary file, which is in turn read by AMPL. Finally the temporary files are all
deleted. In normal use these steps occur automatically, and you need not give any thought to them.

This section describes two circumstances in which you may want to be more aware of the files
that AMPL is creating: when the temporary files do not fit in the current directory, and when you
want to save a solution for later inspection.

Relocating temporary files
If your disk is getting full, it may not have enough space to hold AMPL’s temporary files, and

you will get some error message after typing solve:

ampl: solve;
not enough swap space
C:\>

To get around this problem, you will have to either free more space on the disk, or direct the tem-
porary files to another disk.

The option TMPDIR specifies a directory to which temporary files will be written. When it is
left at its default setting, an empty string (’’), the temporary files are written to the current DOS
disk drive and directory. Since our examples show a C:\> prompt, you can assume that the files
would be written to the current directory on the C drive. If there were also a D drive having more
free space, you could send the temporary files there by typing

ampl: option TMPDIR "D:\";

You could also send the files to a particular directory on the D drive, say \TMP, by setting
TMPDIR to D:\TMP.

If your DOS installation is configured to create a RAM drive — a disk drive simulated in part of
RAM memory — you can speed up the handling of the temporary files by setting TMPDIR to a
directory on the RAM drive.

Saving solutions
Since a solver called from AMPL normally writes its results into a temporary file, no permanent

record is kept. You can save any portion of the results by redirecting the output of display,
print or printf to a file (simply append > filename to the command), but the solution is other-
wise inaccessible once you specify reset or quit.



USING AMPL UNDER MS-DOS 7

To save a solution for subsequent examination, you may use the write command to override
the creation of temporary files. For example, if you have a model in diet.mod and data in
diet.dat, you could type the following:

C:\> ampl
ampl: model diet.mod; data diet.dat;
ampl: write bdietrun;

ampl: solve;
MINOS 5.4: optimal solution found.
6 iterations, objective 88.2
ampl: quit;

C:\> dir dietrun.*

Volume in drive C is HARD DISK C
Directory of C:\

DIETRUN.NL 1222 10-05-92 6:40p
DIETRUN.SOL 252 10-05-92 6:40p

2 File(s) 282624 bytes free
C:\>

The first character of the string following write is interpreted specially, as explained below. The
rest of the string is combined with different extensions to produce the names for the files that
AMPL uses. The dir listing above shows that two files have been created in this case:
dietrun.nl, which contains the problem description that was sent to the solver, and
dietrun.sol, which contains the result description that was sent back. Because write was
used explicitly, these files take the place of the temporary ones that would normally be generated,
and they are not automatically deleted.

To view the results in dietrun.sol at a later time, you would use the solution com-
mand:

C:\> ampl
ampl: model diet.mod; data diet.dat;

ampl data: solution dietrun.sol;
MINOS 5.4: optimal solution found.
6 iterations, objective 88.2

ampl: display Buy;
Buy [*] :=
BEEF 0
CHK 0

FISH 0
HAM 0
MCH 46.6667
MTL -1.07823e-16
SPG -1.32893e-16
TUR 0

;

You do have to repeat the model and data statements, so that AMPL sets up the appropriate
instance again. But solution then gets the old results directly from the specified file, without
running any solver.

When b is the first character of the string that follows write, as above, AMPL uses a compact
and efficient binary format for the files. When g appears instead, AMPL uses a compact text for-
mat that may be easier to transfer between computers. There is also an m option that causes AMPL
to write linear problems in the widely recognized ‘‘MPS format’’; the resulting filename ends in
mps rather than nl. These files may be useful for communicating test problems to solvers that do
not yet have an AMPL interface.



8 USING AMPL UNDER MS-DOS

The AMPL option auxfiles lets you request creation of several auxiliary files by the write
command:

key extension file contents

a .adj adjustment to objective, e.g., to compensate for
fixed variables eliminated by presolve

c .col names of the variables (columns) sent to the solver
f .fix names of variables fixed by presolve,

and the values to which they are fixed
r .row names of the constraints (rows) sent to the solver
s .slc names of ‘‘slack’’ constraints eliminated

by presolve because they can never be binding
u .unv names of variables dropped by presolve because

they are never used in the problem instance

If you set auxfiles to a string containing one or more of the specified key letters, write cre-
ates the corresponding file with the specified extension (unless it would be empty). For example, if
you type

ampl: option auxfiles "cr";

before solve in our example above, the files dietrun1.col and dietrun1.row are created
and the names of the variables and constraints, respectively, are written to them.


