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Abstract. A new nonmonotone line search algorithm is proposed and analyzed. In our scheme,
we require that an average of the successive function values decreases, while the traditional nonmono-
tone approach of Grippo, Lampariello, and Lucidi [SIAM J. Numer. Anal., 23 (1986), pp. 707-716]
requires that a maximum of recent function values decreases. We prove global convergence for non-
convex, smooth functions, and R-linear convergence for strongly convex functions. For the L-BFGS
method and the unconstrained optimization problems in the CUTE library, the new nonmonotone
line search algorithm used fewer function and gradient evaluations, on average, than either the mono-
tone or the traditional nonmonotone scheme.
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1. Introduction. We consider the unconstrained optimization problem

1.1 min f(x

(1) min f(x),
where f : ®" — R is continuously differentiable. Many iterative methods for (1.1)
produce a sequence Xg, X1, X3, ..., where Xg11 is generated from xj, the current
direction dy, and the stepsize a, > 0 by the rule

Xk4+1 = Xi + apdy.

In monotone line search methods, ay, is chosen so that f(xx11) < f(xx). In nonmono-
tone line search methods, some growth in the function value is permitted. As pointed
out by many researchers (for example, see [4, 16]), nonmonotone schemes can improve
the likelihood of finding a global optimum; also, they can improve convergence speed
in cases where a monotone scheme is forced to creep along the bottom of a narrow
curved valley. Encouraging numerical results have been reported [6, 8, 11, 14, 15, 16]
when nonmonotone schemes were applied to difficult nonlinear problems.

The earliest nonmonotone line search framework was developed by Grippo, Lam-
pariello, and Lucidi in [7] for Newton’s methods. Their approach was roughly the
following: Parameters A, Az, o, and 6 are introduced where 0 < A; < Ay and
0,6 € (0,1), and they set ap = apo” where ay € (A1, \o) is the “trial step” and hy,
is the smallest nonnegative integer such that

(12) f(Xk + Olkdk) < O<max f(Xk_j) + 6oszf(xk)dk.
<j<my
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Here the gradient of f at xj, Vf(Xg), is a row vector. The memory my, at step k is
a nondecreasing integer, bounded by some fixed integer M. More precisely,

mo =0 and for k > 0, 0 < my <min{mg_; +1, M}.

Many subsequent papers, such as [2, 6, 8, 11, 15, 18], have exploited nonmonotone
line search techniques of this nature.

Although these nonmonotone techniques based on (1.2) work well in many cases,
there are some drawbacks. First, a good function value generated in any iteration is
essentially discarded due to the max in (1.2). Second, in some cases, the numerical
performance is very dependent on the choice of M (see [7, 15, 16]). Furthermore, it has
been pointed out by Dai [4] that although an iterative method is generating R-linearly
convergent iterations for a strongly convex function, the iterates may not satisfy the
condition (1.2) for k sufficiently large, for any fixed bound M on the memory. Dai’s
example is

1
(1.3) flz) = 53:2, xeR, x20#0, dp=—xr, and

o — 1 —27% if k =42 for some integer 1,
k= 2 otherwise.

The iterates converge R-superlinearly to the minimizer * = 0; however, condition
(1.2) is not satisfied for k sufficiently large and any fixed M.

Our nonmonotone line search algorithm, which was partly studied in the first
author’s masters thesis [17], has the same general form as the scheme of Grippo,
Lampariello, and Lucidi, except that their “max” is replaced by an average of function
values. More precisely, our nonmonotone line search algorithm is the following:

NONMONOTONE LINE SEARCH ALGORITHM (NLSA).

e Initialization: Choose starting guess xg, and parameters 0 <
Tmax < 1, 0 < 6§ <o <1< p,and p > 0. Set Cy = f(x0),
and k = 0.

e Convergence test: If |V f(xy)| sufficiently small, then stop.

e Line search update: Set x;11 = Xi + aid; where oy, satisfies either the
(nonmonotone) Wolfe conditions:

(14) f(Xk + Oékdk) <Cp+ 60éka(Xk>dk,
(15) Vf(Xk + Oékdk)dk > (TVf(Xk)dk,

or the (nonmonotone) Armijo conditions: aj = dkphk, where ap > 0 is the
trial step, and hy, is the largest integer such that (1.4) holds and oy < p.
e Cost update: Choose 1, € [yip» Mmax], and set

(1.6) Qry1 =mQr +1, Cri1 = (MQrCr + f(Xp41))/Qrs1-

Replace k by k + 1 and return to the convergence test.

Observe that Cj1 is a convex combination of Cy, and f(xx+1). Since Cy = f(x0),
it follows that Cj, is a convex combination of the function values f(xo), f(x1), . . ., f(xg)-
The choice of 7 controls the degree of nonmonotonicity. If 7, = 0 for each k, then
the line search is the usual monotone Wolfe or Armijo line search. If n, = 1 for each
k, then Cy = Ay, where

NMmin <
0o = 17

Lk
A = m;fi, fi = f(xi),
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is the average function value. The scheme with Cy = A was suggested to us by
Yu-hong Dai. In [9], the possibility of comparing the current function value with an
average of M previous function values was also analyzed; however, since M is fixed,
not all previous function values are averaged together as in (1.6). As we show in
Lemma 1.1, for any choice of n; € [0, 1], C lies between fj and Ay, which implies
that the line search update is well-defined. As n approaches 0, the line search closely
approximates the usual monotone line search, and as 7 approaches 1, the scheme
becomes more nonmonotone, treating all the previous function values with equal
weight when we compute the average cost value Cf.

LEMMA 1.1. If Vf(xx)dr <0 for each k, then for the iterates generated by the
nonmonotone line search algorithm, we have fi, < Cy < Ay for each k. Moreover, if
Vf(xg)dr <0 and f(x) is bounded from below, then there exists oy, satisfying either
the Wolfe or Armijo conditions of the line search update.

Proof. Defining Dy, : ® — R by

tCr_1 +
Pul =
we have
Cr—1— f&
Dj(t) = —ht Ik
0 ="y

Since V f(x5)di < 0, it follows from (1.4) that f; < Cj_1, which implies that D (t) >
0 for all t > 0. Hence, Dy, is nondecreasing, and fi = Dy (0) < Dg(t) for all ¢ > 0. In
particular, taking ¢t = nx_1Qr—1 gives

(1.7) Jr = Dp(0) < Dr(nr—1Qr—1) = Ck.

This establishes the lower bound for C} in Lemma 1.1.

The upper bound Cy < Ay is proved by induction. For k = 0, this holds by the
initialization Cy = f(xo). Now assume that C; < A; for all 0 < j < k. By (1.6), the
initialization Qg = 1, and the fact that n; € [0, 1], we have

J %
(1.8) Qjr1=1+ Z H Nj—m < J+ 2.

i=0 m=0

Since Dy, is monotone nondecreasing, (1.8) implies that

(1.9) Cr = Di(Mk—1Qr—1) = Dp(Qr — 1) < Dy (k).
By the induction step,

kCr_1+ fx kAr_1+ fr
1.1 Di(k) = <
(1.10) k(k) k+1 - k+1

Relations (1.9) and (1.10) imply the upper bound of Cj, in Lemma 1.1.

Since both the standard Wolfe and Armijo conditions can be satisfied when
Vf(xr)dr < 0 and f(x) is bounded from below, and since fr < Cy, it follows that
for each k, «y can be chosen to satisfy either the Wolfe or the Armijo line search
conditions in the nonmonotone line search algorithm. 1]

Our paper is organized as follows: In section 2 we prove global convergence under
appropriate conditions on the search directions. In section 3 necessary and sufficient
conditions for R-linear convergence are established. In section 4 we implement our
scheme in the context of Nocedal’s L-BFGS quasi-Newton method [10, 13], and we give
numerical comparisons using the unconstrained problems in the CUTE test problem
library [3].

= Ay.
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2. Global convergence. To begin, we give a lower bound for the step generated
by the nonmonotone line search algorithm. Here and elsewhere, || - || denotes the
Euclidean norm, and g = Vf(xx)", a column vector.

LEMMA 2.1. Suppose the nonmonotone line search algorithm is employed in a
case where gl dy, < 0 and V f satisfies the following Lipschitz conditions with Lipschitz
constant L:

L IV f(xkt1) = VI (xe)|| < Ll|xk41 — xx|| if the Wolfe conditions are used, or
2. |Vf(x) = Vf(xp)| < L||x —xg|| for all x on the line segment connecting Xy,
and xp, + appdy if the Armijo condition is used and pay, < p.
If the Wolfe conditions are satisfied, then

1-0) |gldsl
2.1 ap > .
@1) ’“-( L >||dk||2

If the Armijo conditions are satisfied, then

e (20— 5)> [ }
2.2 ap > min § —, .
(22) e {p ( Lp (| d?

Proof. We consider the lower bounds (2.1) and (2.2) in the following two cases.
Case 1. Suppose that ay, satisfies the Wolfe conditions. By (1.5), we have

(Vf(Xk + Oékdk) — Vf(xk))dk Z (0’ — 1)Vf(Xk)dk.

Since gfd, <0 and o < 1, (0 —1)g}dy, > 0, and by the Lipschitz continuity
of f,

arL||di|? > (o — 1)ggdy,

which implies (2.1).

Case 2. Suppose that oy satisfies the Armijo conditions. If pay > p, then
ap > p/p, which gives (2.2). Conversely, if pay < p, then since hy is the
largest integer such that ap = ayp"* satisfies (1.4) and since fp < Cj, we
have

(2.3) fGxk + pardy) > Cr + Spongidi > f(x) + Spog) di.
When V f is Lipschitz continuous,
fOk + ady) — f(xx) = aglidy + / [V f(xk +tdi) — Vf(xp)]dy dt
0
<oagldi+ [ tL|duf?
0
1
= agyd; + iLaQHdkHQ.
Combining this with (2.3) gives (2.2). o
Our global convergence result utilizes the following assumption (see, for example,

[4, 7]) concerning the search directions.
Direction Assumption. There exist positive constants ¢; and c¢o such that

(2.4) grd;, < —cillgel?,
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and
(2.5) di]l < c2llgkll

for all sufficiently large k.

THEOREM 2.2. Suppose f(x) is bounded from below and the direction assumption
holds. Moreover, if the Wolfe conditions are used, we assume that V f is Lipschitz
continuous, with Lipschitz constant L, on the level set

L={xeR": f(x) < f(x0)}.

Let L denote the collection of x € R" whose distance to L is at most pidmay, where
dmax = supy, ||dx||. If the Armijo conditions are used, we assume that V f is Lipschitz
continuous, with Lipschitz constant L, on L. Then the iterates x;, generated by the
nonmonotone line search algorithm have the property that

(2.6) liminf [|Vf(xc)| = 0.

Moreover, if Nmax < 1, then

(2.7 klirn Vf(xg)=0.
Hence, every convergent subsequence of the iterates approaches a point x*, where
Vf(x*)=0.

Proof. We first show that
(2.8) fr1 < Cr — Bllgell?,
where

. [ bucr 26(1—68)cF (1 —o)c?

2.9 = .
(29) p—min {2, 2UZ90, M2

Case 1. If the Armijo conditions are used and pay > p, then ap > p/p. By
(1.4) and (2.4), it follows that

dper

frer1 < Ck + Sapgldy, < Cr — dayer||gfh |I> < Ck — P

gl

which implies (2.8).
Case 2. If the Armijo conditions are used and pay < u, then by (2.2),

21 - 6)) gl
2.10 a > :
(2.10) oz ( o ) [dil?

and by (1.4), we have

26(1-6)\ (gldi)’
(2.11) i1 < C — < Lp ) <||]:ik||> '

Finally, by (2.4) and (2.5),

26(1 — 8)c?
()) el

(2.12) for1 < C — ( T2

which implies (2.8).
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Case 3. If the Wolfe conditions are used, then the analysis is the same as in
Case 2, except that the lower bound (2.10) is replaced by the corresponding
lower bound (2.1).

Combining the cost update relation (1.6) and the upper bound (2.8),

MQrCr + fr+1

C
k1 = o
_ 2 2
(2.13) - QO+ O = Bl _ Bl
Qk+1 Qr+1

Since f is bounded from below and f; < C} for all k, we conclude that Cj is bounded
from below. It follows from (2.13) that

2
S

If ||gk|| were bounded away from 0, (2.14) would be violated since Qr+1 < k + 2 by
(1.8). Hence, (2.6) holds. If nmax < 1, then by (1.8),

(215) Qi1 = 1+2an i < 1+Zn?ntl San: m

7=01=0

Consequently, (2.14) implies (2.7). O

REMARK. The bound condition aj < p in the Armijo conditions of the line
search update can be removed if V f satisfies the Lipschitz condition slightly outside
of L. In the proof of Theorem 2.2, this bound ensures that when pay < p, the point
X + pagdy lies in the region L, where V f is Lipschitz continuous, which is required
for establishing Lemma 2.1.

Similar to [4], a slightly different global convergence result is obtained when (2.5)
is replaced by the following growth condition on dj: There exist positive constants
71 and 7 such that

(2.16) Idil|? < 71+ Tk

for each k.

COROLLARY 2.3. Suppose Nmax < 1 and all the assumptions of Theorem 2.2 are
in effect except the direction assumption which is replaced by (2.4) and (2.16). If
7o # 0, then

(2.17) likminf IV f(xk)|l = 0.
If 79 =0, then
(2.18) Jim [V ()| = 0.

Proof. We assume, without loss of generality, that 7, > 1. The analysis is identical
to that given in the proof of Theorem 2.2 except that the bound ||dg|| < ¢2]|gk|| used
in the transition from (2.11) to (2.12) is replaced by the bound (2.16). As a result,
the inequality (2.8) is replaced by

B1 1
2.1 < — k
(2.19) Jrt1 < Ck (7_1 ok gkl
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where [, = 2 in Case 1, [, = 4 in Cases 2 and 3, and

[ buer 26(1—6)ci 6(1—o)ct
61_m1n{ 0 ) Lp ) L .

Using the upper bound (2.19) for f(xj+1) in the series of inequalities (2.13) gives

Cry1 < Cp — <ﬂ1)> lgwl|™.

Qk(Tl +T2]€
By (2.15),

ﬁl(l_nmax) 1
2.2 <Cp— | —————= k.
(2.20) Cun < G (2Ll ) g

Since f is bounded from below and C) > fi, we obtain (2.17) when 72 # 0 and (2.18)
when 75 = 0. This completes the proof. 0

3. Linear convergence. In [4] Dai proves R-linear convergence for the non-
monotone max-based line search scheme (1.2), when the cost function is strongly
convex. Similar to [4], we now establish R-linear convergence for our nonmonotone
line search algorithm when f is strongly convex. Recall that f is strongly convex if
there exists a scalar v > 0 such that

1
(3.1) fx) > f(}’)+Vf(Y)(X—Y)+E||X—Y||2
for all x and y € R™. After interchanging x and y and adding,
1
(3.2) (Vix) -VIiy)x-y) > ;IIX*yII?

If x* denotes the unique minimizer of f, it follows from (3.2), with y = x*, that

(3-3) Ix = x*[| <AV F(x)]].

For ¢ € [0, 1], define x(t) = x* + ¢(x — x*). Since f is convex, f(x(t)) is a convex
function of ¢, and the derivative f’(x(t)) is an increasing function of ¢ € [0, 1] with
f/(x(0)) = 0. Hence, for t € [0,1], f'(x(t)) attains its maximum value at ¢t = 1. This
observation combined with (3.3) gives

f(x) /j? )t < f(x(1)) = V() (x — x7)

(3-4) < IVFEx = x*[F < AV

THEOREM 3.1. Suppose that f is strongly convex with unique minimizer x*, the
search directions di in the nonmonotone line search algorithm satisfy the direction
assumption, there exist p > 0 such that ap < p for all k, Nmax < 1, and Vf is
Lipschitz continuous on bounded sets. Then there exists 6 € (0,1) such that

(3.5) fxk) = F(x*) < 0%(f(x0) — F(X"))
for each k.
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Proof. Since f(xx+1) < Cf and Ci41 is a convex combination of Cy and f(xx+1),
we have Cy11 < Cy for each k. Hence,

fXiy1) S Cp < Cpq <+ < Cg = f(x0),
which implies that all the iterates x; are contained in the level set
L={xeR: f(x) < flxo)}.

Since f is strongly convex, it follows that £ is bounded and V f is Lipschitz continuous
on L. By the direction assumption and the fact that ||V f(x)| is bounded on L,
dmax = supy, ||dx|| < oo. Let £ denote the collection of x € R™ whose distance to L is

at most udmax and let L be a Lipschitz constant for Vf on the L.
As shown in the proof of Theorem 2.2,

(3.6) f(xrt1) < Cr — Bllgkll?,

where [ is given in (2.9). Also, by the direction assumption and the upper bound p
on ayg, X1 = X + aidy satisfies

[%k41 = xpl| = clldil| < pezllgell-
Combining this with the Lipschitz continuity of V f gives
IV f(xkt1) = VI (xe) | = llgr+1 — 8kl < Lllxrt1r — xxll < peaLllgell,

from which it follows that

(3.7) lgrt1ll <llgr+r —grll + llgull < bllgrll,  b=1+ pesL.

We now show that for each k,
(3.8) Cri1 — f(x") < 0(Cr — f(x7)),
where
_
B+0*

This immediately yields (3.5) since f(xy) < Cy and Cy = f(xg).
Case 1. ||gk||? > b2(Ck — f(x*). By the cost update formula (1.6), we have

_ mQk(Cr — f(x")) + (fr1 — (X))
L+ nkQk '

0 =1—0ba(l — Nax) and bg =

(3.9) Cry1 — f(x¥)

Utilizing (3.6) gives

Cr — f(x*) + (Cr — f(x*)) — Bllgw?
1+ mkQx
_ Bllgsl?
Qry1

Since Qr+1 < 1/(1 — Nmax) by (2.15), it follows that
Cra1 = f(x*) < O = f(x*) = B(1 — thmax)l|gx 1>
Since ||gx||? > b2(Cr — f(x*)), (3.8) has been established in Case 1.

Cre1 — f(x") < Qi

— O~ f(x")
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Case 2. ||gk||? < b2(Cr — f(x*)). By (3.4) and (3.7), we have

Fxern) = F(x7) < yllgrsall® < 0°lgrll*.
And by the Case 2 bound for ||gg||, this gives
f(xpp1) = F(XF) <Abba(Cr — f(xY)).
Inserting this bound for f(xx4+1) — f(x*) in (3.9) yields

(mQr +70%b2) (Cr — f(x*))
L+ 76Qr
2
(3.10) = (1 - Mbe) (Ck = f(x7)).
Qr+1
Rearranging the expression for by, we have vb%by = 1 — f3by. Inserting this
relation in (3.10) and again utilizing the bound (2.15), we obtain (3.8).
This completes the proof of (3.8), and as indicated above, the linear convergence
estimate (3.5) follows directly. 0
In the introduction, example (1.3) revealed that linearly convergent iterates may
not satisfy (1.2) for any fixed choice of the memory M. We now show that with our
choice for Cy, we can always satisfy (1.4), when k is sufficiently large, provided 7y is
close enough to 1. We begin with a lower bound for f(x) — f(x*), analogous to the
upper bound (3.4). By (3.1) with y = x*, we have

Cry1 — f(x7) <

* 1 *
(3.11) FO0) = F(x7) = ol = x|
Y
If V f satisfies the Lipschitz condition
IV = Vf(x) = Vf(x)I < Lllx = x7,
then (3.11) gives

1

> VI,

(3.12) fx) - fx)

THEOREM 3.2. Let x* denote a minimizer of f and suppose that the sequence
f(xk), k=0,1,..., converges R-linearly to f(x*); that is, there exist constants 6 €
(0,1) and c such that f(xz) — f(x*) < cfF. Assume that the x; are contained in
a closed, bounded convex set K, f is strongly conver on K, satisfying (3.1), V[ is
Lipschitz continuous on K, with Lipschitz constant L, the direction assumption holds,
and the stepsize ay, is bounded by a constant . If nymin > 0, then (1.4) is satisfied for
k sufficiently large, where Cy, is given by the recursion (1.6).

Proof. By (3.9) and the bound Qj < k+ 1 (see (1.8)), we have

S [T ) () = (x)]

Cr — f(x") Qr
L izom S lf(xn_—lf(x*)]
FHL L ioms
k *
(3.13) > (Zm_:_nik ¢k, where ¢ = » M

= I §=0"1j
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Here we define a product H?;il 7n; to be 1 whenever the range of indices is vacuous;

in particular, H;:,i nj = 1. Let ® denote the limit (possibly +o00) of the positive,
monotone increasing sequence ¢g, @1, - .. .
By the direction assumption and (3.12), we have

(3.14) arghdy, > —pca|lgrll? > —2ypea L2 (f (xx) — f(x7)).
Combining the R-linear convergence of f(xy) to f(x*) with (3.14) gives

f(xpg1) — f(x*) — bangrdy < 0! — Sagidy
(3.15) < (0 + 2ypcy L.

Comparing (3.13) with (3.15), it follows that when

)
. _—
(3.16) k+1c(

k
L) 0+ 2pear?),
(1.4) is satisfied. Since nmin > 6, the inequality (3.16) holds for k sufficiently large,
and the proof is complete. ]
As a consequence of Theorem 3.2, the iterates of example (1.3) satisfy the Wolfe
condition (1.4) for k sufficiently large, when 7 = 1 for all k.

4. Numerical comparisons. In this section we compare three methods:

(i) the monotone line search, corresponding to 7y = 0 in the nonmonotone line

search algorithm;

(ii) the nonmonotone scheme [7] based on a maximum of recent function values;

(iii) the new nonmonotone line search algorithm based on an average function

value.
In our implementation, we chose the stepsize oy to satisfy the Wolfe conditions with
§ =10"% and o = .9. For the monotone line search scheme (i), Cy in (1.4) is replaced
by f(xg); in the nonmonotone scheme (ii) based on the maximum of recent function
values, Cy in (1.4) is replaced by
OSHJHS%??{TA f(Xk_j)'

As recommended in [7], we set mg = 0 and my = min{m,_; + 1,10} for & > 0.
Although our best convergence results were obtained by dynamically varying 7, using
values closer to 1 when the iterates were far from the optimum, and using values closer
to 0 when the iterates were near an optimum, the numerical experiments reported here
employ a fixed value 7, = .85, which seemed to work reasonably well for a broad class
of problems.

The search directions were generated by the L-BFGS method developed by No-
cedal in [13] and Liu and Nocedal in [10]; their software is available from the web
page http://www.ece.northwestern.edu/~nocedal /software.html.

We now briefly summarize how the search directions are generated: dy = —B;l gk,
where the matrices By, are given by the update

Bl(€(21 = ’71{317
l l
Bl(czlslSlTBl(czl YEFYI

B =B, - :
o et slTBgllsl yisi

1=0,1,..., M, —1,

B, = B,



NONMONOTONE LINE SEARCH 1053

We took M}, = min{k, 5},
Yi=85+1— 8, SI=Xj+4+1— X5, Ji=k—M;+I,

and

lye—all®
Vi = Yk—1Sk—1 it k> 0,
1 if k=0.

The analysis in [10] reveals that when f is twice continuously differentiable and
strongly convex, with the norm of the Hessian uniformly bounded, B,:l is uniformly
bounded, which implies that the direction assumption is satisfied.

Our numerical experiments use double precision versions of the unconstrained
optimization problems in the CUTE library [3]. Altogether, there were 80 problems.
Our stopping criterion was

197 6x6)loe < 1078+ 1£G0)), ¥lloe = max [yl

except for problems PENALTY1, PENALTY?2, and QUARTC, which would stop at
k = 0 with this criterion. For these three problems, the stopping criterion was

IV f (k) [loo < 1073V £ (x0) [ oo

In Tables 4.1 and 4.2, we give the dimension (Dim) of each test problem, the number
n; of iterations, and the number n; of function or gradient evaluations. An “F” in
the table means that the line search could not be satisfied. The line search routine
in the L-BFGS code, according to the documentation, is a slight modification of the
code CSRCH of Moré and Thuente. In the cases where the line search failed, it
reported that “Rounding errors prevent further progress. There may not be a step
which satisfies the sufficient decrease and curvature conditions. Tolerances may be
too small.” Basically, it was not possible to satisfy the first Wolfe condition (1.4)
due to rounding errors. With our nonmonotone line search algorithm, on the other
hand, the value of Cy was a bit larger than either the function value f(xy) used in
the monotone scheme (i) or the local maximum used in (ii). As a result, we were able
to satisfy (1.4) using the Moré and Thuente code, despite rounding errors, in cases
where the other schemes were not successful.

We now give an overview of the numerical results reported in Tables 4.1 and 4.2.
First, in many cases, the numbers of function and gradient evaluations of the three
line search algorithms are identical. When comparing the monotone scheme (i) to the
nonmonotone schemes (ii) and (iii), we see that either of the nonmonotone schemes
was superior to the monotone scheme. In particular, there were

e 20 problems where monotone (i) was superior to nonmonotone (ii),

e 35 problems where nonmonotone (ii) was superior to monotone (i),

e 15 problems where monotone (i) was superior to nonmonotone (iii),

e 43 problems where nonmonotone (iii) was superior to monotone (i).
When comparing the nonmonotone schemes, we see that the new nonmonotone line
search algorithm (iii) was superior to the previous, max-based scheme (ii). In partic-
ular, there were

e 10 problems where (ii) was superior to (iii),

e 20 problems where (iii) was superior to (ii).

As the test problems were solved, we tabulated the number of iterations where
the function increased in value. We found that for either of the nonmonotone schemes
(ii) or (iii), in roughly 7% of the iterations, the function value increased.
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TABLE 4.1
Numerical comparisons.

Problem Dim Monotone (i) Maximum (ii) Average (iil)
name T nyg T nf Uz nf
ARGLINA 500 2 4 2 4 2 4
ARGLINB 500 F F F F 35 44
ARGLINC 500 F F F F 74 111
ARWHEAD 10000 12 15 12 14 12 14
BDQRTIC 5000 129 156 180 200 162 175
BROWNAL 400 6 14 6 14 6 14
BROYDNT7D 2000 662 668 660 662 660 662
BRYBND 5000 29 32 38 41 38 41
CHAINWOO 800 3578 3811 3503 3530 3223 3258
CHNROSNB 50 295 308 313 315 298 300
COSINE 1000 11 16 12 16 12 16
CRAGGLVY 5000 61 68 59 63 59 63
CURLY10 1000 990 1024 1302 1310 1482 1488
CURLY20 1000 2392 2462 2019 2025 2322 2325
CURLY30 1000 3034 3123 3052 3060 2677 2683
DECONVU 61 605 634 324 326 324 326
DIXMAANA 3000 11 13 11 13 11 13
DIXMAANB 3000 11 13 11 13 11 13
DIXMAANC 6000 12 14 12 14 12 14
DIXMAAND 6000 14 16 14 16 14 16
DIXMAANE 6000 355 368 341 343 341 343
DIXMAANF 6000 284 295 258 260 258 260
DIXMAANG 6000 300 307 297 299 297 299
DIXMAANH 6000 294 305 303 305 303 305
DIXMAANI 6000 2355 2426 2616 2618 2576 2579
DIXMAANJ 6000 251 259 272 274 272 274
DIXMAANK 6000 258 266 220 222 220 222
DIXMAANL 6000 215 220 190 192 190 192
DIXON3DQ 800 4733 4874 4515 4516 4353 4356
DQDRTIC 10000 14 23 11 17 11 17
EDENSCH 5000 22 27 28 31 28 31
EG2 1000 4 5 4 5 4 5
EIGENALS 420 4377 4549 4016 4031 4381 4396
EIGENBLS 420 4572 4698 4214 4226 4288 4301
EIGENCLS 462 3327 3416 3615 3623 3615 3623
ENGVALL1 10000 14 17 14 17 14 17
ERRINROS 50 160 176 184 191 154 162
EXTROSNB 50 13789 17217 | 10128 10658 | 10606 11427
FLETCBV2 1000 1223 1265 1419 1420 1284 1286
FLETCBV3 1000 3 11 3 11 3 11
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TABLE 4.2
Numerical comparisons (continued).

Problem Dim Monotone (i) Maximum (ii) Average (iil)
name n; ny n; ny n; ng
FLETCHBV 500 2 10 2 10 2 10

FLETCHCR 5000 | 25245 27605 | 26449 26553 | 26257 26515
FMINSREF2 10000 385 395 387 389 387 389
FMINSURF 10000 601 611 686 688 686 688
FREUROTH 5000 16 23 16 22 16 22
GENHUMPS 1000 1892 2418 1978 2168 1944 2187
GENROSE 2000 4169 4510 4387 4444 4309 4380

HILBERTA 200 356 388 237 243 365 371
HILBERTB 200 7 9 7 9 7 9
INDEF 500 2 10 2 10 2 10
JIMACK 82 4423 4644 5531 5552 3892 3912
LIARWHD 10000 26 30 28 32 31 34
MANCINO 100 11 15 11 15 11 15
MOREBV 10000 74 7 7 79 7 79
NCB20 3010 429 474 337 347 316 323

NONCVXU2 1000 1227 1262 1583 1591 1583 1591
NONCVXUN 1000 1936 1987 1657 1664 1657 1664

NONDIA 10000 21 27 21 26 21 26
NONDQUAR | 10000 3331 3685 3625 3751 3315 3444
PENALTY1 10000 23 31 23 31 23 31
PENALTY?2 200 F F 131 136 130 133
PENALTY3 200 F F F F 73 107
POWELLSG | 10000 55 63 59 62 68 71
POWER 5000 297 305 302 304 302 304
QUARTC 10000 23 31 23 31 23 31
SCHMVETT | 10000 20 25 21 23 21 23
SENSORS 200 25 29 26 29 26 29
SINQUAD 5000 267 329 319 371 366 431
SPARSINE 1000 6692 6989 7173 7176 6220 6227
SPARSQUR 10000 34 39 35 37 35 37
SPMSRTLS 10000 245 260 243 250 243 250
SROSENBR 10000 17 20 17 20 18 20
TESTQUAD 2000 6431 6628 4549 4551 4456 4462
TOINTGOR 50 88 94 92 93 92 93
TOINTGSS 10000 17 22 17 22 17 22
TQUARTIC 10000 24 29 25 29 25 29
TRIDIA 10000 2781 2860 2977 2980 2637 2641
VARDIM 10000 1 2 1 2 1 2
VAREIGVL 5000 18 21 18 20 18 20

WOODS 10000 15 20 21 24 21 24
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